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[1] The profiles for the water table height h(x, t) in a shallow sloping aquifer are
reexamined with a solution of the nonlinear Boussinesq equation. We demonstrate that the
previous anomaly first reported by Brutsaert [1994] that the point at which the water table
h first becomes zero at x = L at time t = tc remains fixed at this point for all times t > tc is
actually a result of the linearization of the Boussinesq equation and not, as previously
suggested [Brutsaert, 1994; Verhoest and Troch, 2000], a result of the Dupuit assumption.
Rather, by examination of the nonlinear Boussinesq equation the drying front, i.e., the
point xf at which h is zero for times t � tc, actually recedes downslope as physically
expected. This points out that the linear Boussinesq equation should be used carefully
when a zero depth is obtained as the concept of an ‘‘average’’ depth loses meaning at that
time. INDEX TERMS: 1829 Hydrology: Groundwater hydrology; 1832 Hydrology: Groundwater

transport; KEYWORDS: drying front, nonlinear effects, sloping aquifer
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1. Introduction

[2] Boussinesq [1877] first formulated a general theory of
unconfined groundwater flow in sloping aquifers. Since then,
many analytical and numerical solutions of the Boussinesq
equation have been developed and have been found to be
particularly useful in modeling the hydrology of upland
watersheds [e.g., Brutsaert and Nieber,1977; Parlange et
al., 1981; Sanford et al., 1993; Brutsaert, 1994; Lockington,
1997; Brutsaert and Lopez, 1998; Szilagyi and Parlange,
1998; Szilagyi et al., 1998; Hogarth and Parlange, 1999;
Verhoest and Troch, 2000; Parlange et al., 2001]. A common
technique to developing analytical solutions for sloping
aquifers is to linearize the diffusive term in the Boussinesq
equation [e.g., Brutsaert,1994]. However, as indicated by
Brutsaert [1994], an anomaly is observed after the drying
front first appears. If h(x, t) is the thickness of the water layer
taken perpendicular to the bedrock, having a slope angle i and
x being the spatial coordinate measured along the bedrock
with x= 0 being the lower end and x=L being the upper end of
the bedrock, then ‘‘a difficulty arises as h(x, t) becomes 0 at x=

L. Physically, after this occurs, the point of h = 0 would be
expected to slide down along the bottom of the aquifer from
x = L in the direction of x = 0’’ [Brutsaert, 1994, p. 2762].
Verhoest and Troch [2000, p. 796], using essentially Brut-
saert’s solution, elaborated that ‘‘as time increases, the
solution prevents the point where the groundwater table
reaches the bedrock from sliding down along the bottom of
the aquifer, resulting in slowing down the decrease of the
outflow rate’’. This suggestion that the Dupuit assumption
is the cause of the problem [Brutsaert, 1994; Verhoest and
Troch, 2000] was quite reasonable as it is well known in
that the Dupuit assumption can lead to poor profiles even
when the drainage rate is accurate.
[3] This note is concerned with elucidating the cause of

this difficulty. Previous solutions used the linearized form of
the Boussinesq equation. We shall demonstrate here that this
difficulty does not arise with the nonlinear version of the
Boussinesq equation and that it is not a Dupuit assumption
but the linearization which is the cause of the problem.

2. Analysis

[4] Using the following dimensionless variables,

x* ¼ x=L ð1Þ

h* ¼ h=D ð2Þ

t* ¼ tDk cos i=fL2 ð3Þ

where D is the initial water depth, f is the drainable porosity
and k is the saturated hydraulic conductivity, then using
these variables, Boussinesq’s equation can be written as
[Brutsaert, 1994]:

@h*

@t*
¼ @

@x*
h*

@h*

@x*

� �
þ e

@h*
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ð4Þ
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where

e ¼ L tan i=D; ð5Þ

h* satisfies the following initial and boundary conditions,

h* ¼ 1; 0 < x* < 1; at t* ¼ 0 ð6Þ

h* ¼ 0; at x* ¼ 0 for t* > 0 ð7Þ

@h*

@x*
¼ �e at x* ¼ 1 for 0 < t* < tc* ð8Þ

Equation (8) is the condition of zero flux at x* = 1 and t*c is
the time when

h* 1; tc*ð Þ ¼ 0 ð9Þ

Of course, for t* > t*c,

h* xf*; t*
� �

¼ 0 ð10Þ

Equation (10) is not a boundary condition but is used to
define x*f where x*f is the point along the bedrock at which
for t* > t*c, h* = 0. When there is no drying front, as is the
case for the linearized solution of the Boussinesq equation,
then x*f = 1 for all times, t > t*c. Note that at the position on
the bedrock where h* = 0, the flux, q*, given by

q* ¼ �h*
@h*

@x*
� eh*; ð11Þ

is automatically zero for t > tc as it must be for an
impervious surface, as long as @h*/@x is not infinite. Thus
the numerical solution of equation (4) will tell us directly
whether x*f , when h* = 0, remains equal to one as in the
linear case or whether x*f < 1 for t* > tc.

3. Results and Discussion

[5] An explicit finite difference scheme was developed
for the solution of equation (4) subject to the initial and
boundary conditions stated in equations (5)–(8)

hi;nþ1
* ¼ hi;n* 1þ að Þ � ahi�1;n* þ b h*

2
iþl;n � 2h*

2
i;n þ h*

2
i�1;n

� �
;

i ¼ 2; 3 . . .M � 1; ð12aÞ

h1;nþ1* ¼ 0 ð12bÞ

hM ;nþ1* ¼ hM�1; nþ1* � eDx*; ð12cÞ

where a = eDt*
Dx*

, b = Dt*
2 Dx*ð Þ2

, Dx* and Dt* are the grid size

and time step, respectively, i and n are the indices that result
from the discretization, and i = 1 and M are the two
boundary nodes (for x* = 0 and 1, respectively). The

stability condition is Dt* � min 1

2 Dx*ð Þ2
; e
Dx*

� �
. No special

treatment was needed for determination of the moving
front xf obtained for h*i,n+1 effectively equal to zero in

agreement with the definition of equation (10) (the first,
very small, negative value is in fact chosen because of the
discretization). The accuracy of this solution method was
also checked using PDE2D [Sewell, 1993] software. Both
solutions were found to be in excellent agreement.
[6] Figures 1–3 present the numerical solutions for three

representative dimensionless hillslope aquifers given by e =
10, 1.0, and 0.1, respectively. In Figures 1–3 the top graph
presents the shape of the dimensionless water table h*
(x*, t*) at various times t*, prior to and following t*c . Notice
that after t* = t*c i.e., after the first time when h* (1, t*) = 0,
the point x*f ‘‘slides’’ down the bedrock and does not remain
at x* = 1 as in the case of the linearized solution [Brutsaert,
1994]. The behavior of x*f as a function of t* for t* > t*c
is presented by the middle graph in Figures 1–3.
[7] It is now possible to understand why for t* > t*c there

is a receding drying front for the nonlinear case, but not for
the linearized approximation. Reverting to variables with
dimensions, to compare with the linear case, the flux can be
written as

q=h ¼ �k
@h

@x
cos iþ sin i

� �
ð13Þ

for the nonlinear case and

q=h ¼ �k h�1D
@h

@x
cos iþ sin i

� �
ð14Þ

in the linear case, where D is some judiciously chosen
‘‘average’’, i.e., fixed, depth. q/fh is the velocity of the
fluid in the x-direction and in particular for h = 0 is equal to
dxf /dt, which must be zero for t = tc, and the question is why
a zero velocity, i.e., xf = L can or cannot be maintained for
t > tc.
[8] Using again dimensionless variables equation (13)

then becomes

� dxf *

dt*
¼ eþ @h*

@x*
ð15Þ

and from equation (14)

�h*
dxf *

dt*
¼ h*eþ @h*

@x*

D

D
: ð16Þ

At t* = t*c , equation (15) gives @h*/@x* = �e in agreement
with equation (8). For t* > t*c the aquifer continues drying
and even if there were no receding drying front j@h*/@x*j
would have to decrease, and eventually be zero. As soon as
j@h*/@x*j is smaller than e, equation (15) shows that dx*f /dt
cannot be zero, thus a receding drying front must start, as
observed numerically. The numerical solution did not
require the use of equation (15), i.e., the latter is not a
‘‘boundary condition’’. Rather equation (15) should be
automatically satisfied once the numerical solution is
obtained and indeed we have done so. The bottom graph
in Figures 1–3 is a plot of both dx*f /dt* and e + @h*/dx* as
generated from the numerical solutions. The complete
agreement indeed confirms that equation (15) tracks the
position of x*f .
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Figure 1. Hillslope type e = 10. Note for all figures the asterisk in the figure captions has been dropped
for convenience. (top) Water table height h* as a function of dimensionless distance x*, (middle) x*f as a
function of time t* for t* > t*c , and (bottom) dx*f /dt* as a function of e + dh*/dx*f at x*f.

W04601 STAGNITTI ET AL.: TECHNICAL NOTE

3 of 6

W04601



Figure 2. Hillslope type e = 1.0. (top-bottom) As in Figure 1.
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[9] The situation is very different for the linear case in
equation (16). As time approaches tc, � (D/D)(@h*/@x*)
will approach zero. However since h* = 0 for t* � t*c on the
bedrock, so will @h*/@x* remain equal to zero. Thus drying
of the hillslope can proceed without any need for j@h*/@x*j
to become smaller, as in the nonlinear case. That is, there is
no necessity in the linear case to have a drying front.
[10] We are very grateful to a reviewer for pointing out

that our findings are consistent with a specific aspect of a
known problem of the nonlinear diffusion equation, which
is a parabolic equation for h > 0 but not for h = 0 making it
‘‘degenerate parabolic’’ [Peletier, 1971; Aronson, 1986].
Such equations need not have classical solutions and if at
some instant the solution has compact support its support
will remain compact for any later time. Of course, linear-

ization makes the equation parabolic everywhere and thus
eliminates the possibility of having compact support.

4. Conclusions

[11] We have demonstrated in this paper that the anomaly
first observed by Brutsaert [1994] that the water table h(x, t)
remains at x = L when h = 0 for all times t > tc where tc is the
first time when h = 0 at x = L is indeed an artifact of the
linearization of the Boussinesq equation and not a result of
the application of the Dupuit assumption. In contrast to
those observations we have demonstrated that the point xf,
i.e., the point along the bedrock at which h first becomes
zero at a time t > tc, indeed recedes from xf = 1 at t = tc for
all times greater than tc. We have shown that the recession

Figure 3. Hillslope type e = 0.1. (top-bottom) As in Figure 1.
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of xf is in exact agreement with equation (15) which results
from the nonlinearity of the Boussinesq equation. This is an
important reminder that one must be wary of possible
nonphysical consequences when using a linearized Boussi-
nesq equation when the aquifer hits bedrock.

[12] Acknowledgments. The first author acknowledges the support
of the Australian Research Council International Linkage grant LX0211202
and Large Grant Scheme A10014154.
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