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It has been showifM.-Y. Ye, Y.-S. Zhang, and G.-C. Guo, Phys. Rev. 89, 022310(2004)] that it is
possible to perform exactly faithful remote state preparation using finite classical communication and any
entangled state with maximal Schmidt number. Here we give an explicit procedure for performing this remote
state preparation. We show that the classical communication required for this scheme is close to optimal for
remote state preparation schemes of this type. In addition we prove that it is necessary that the resource state
have maximal Schmidt number.
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I. INTRODUCTION general method requiring less communication. However, it

Remote state preparatiqi®SP is the preparation of a €an be shown that it is necessary for the initial entangled
state at a remote location using entanglement and classicgfate to have maximal Schmidt number, even for arbitrary
Communication[l_?]_ In generaL one may perform exactly RSP S-Chemes. We give this prOOf in Sec. IV. LaS'[ly we con-
faithful RSP[2,3,7), producing exactly the desired state, or clude in Sec. V.
asymptotically faithful RSP, where the fidelity approaches
one as the number of states prepared approaches infinity Il. EXPLICIT SCHEME
[1,3-6. _ . _
faithful RSP without entanglement. An infinite amount of form

classical information is required to exactly represent an arbi- d-1
trary state, and therefore exact RSP would require an infinite IAY =D aK)[K), (1)
amount of classical communication if there were no en- k=0

tangled resource. A method for exact RSP of a restricted "

ensemble of states is given in Ré2], and an alternative WNere thew are positive real numbers, and each subsystem
method for exact RSP of arbitrary states is given in R&f. is of .d|menS|on d. Any entangled state W'th. maximal
Recently Yeet al. [7] showed that it is possible to perform Schm|dt number may be_ brought to th|§ form via local op-
exact RSP using any pure entangled state, provided thiations. The state we wish to prepare is

Schmidt number is equal to the system dimension. However, d-1
the proof given in Ref[7] does not give a complete tech- 1B = > Bk, (2)
nique for performing this remote state preparation. k=0

Here we give an explicit technique that is based upon an
: : X -Where theg, may be complex.
approximate technique without entanglement, and quantify To explain this remote state preparation scheme, we first

how much classical communication is required for this . : : .
. . . . explain a simple approximate scheme that one would use if
scheme. Similarly to the proof in R€f7], this technique has . .
no entangled resource state were available. In this case, one

three steps: an entanglement transformation, followed by dould communicate an approximation of the coeffici
disentangling measurement, and a final unitary transforma: PP L &hits .
. . o ; and prepare a state based on that approximation. To approxi-
tion. In Sec. Il we describe these steps, giving a technique fof : . .

S ; : ._mateB,, note that the real and imaginary partsgfwill be
achieving the required entanglement transformation which

. . : numbers in the intervdl—1, 1]. We can approximat@, by
Improves upon that given in R.e[f7].' .dividing the interval[—1, 1] into D subintervals of length
The final unitary transformation is based upon an approxi-,
mation of the state. We give a simple method for approxi-
mating the state in Sec. Il, then consider alternative methods [-1,2D-1), [2/ID-1,4D-1), ...,[1-2D,1]. (3)

in Sec. Ill. We give an explicit method that is more efficient ]

for large system dimension, and also derive a nonconstruc//e then denote the numbers of ther sublntcervals that the real
tive method that requires less communication. In addition@nd imaginary parts ofy lie in asn andny, respectively.

we derive a lower bound on the communication required for' Nat is,

this step. This lower bound provides a lower bound on the r_ oo

communication required for RSP schemes of this type, al- M= min{D,[D(Ref+ 1/2]+ 1},

though it does not rule out the possibility of some more 4
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ng = min{D,|D(ImB, + 1)/2] + 1}. Caratheodory’s theorem one may restrict the number of pos-
] ] sible permutations to?-2d+ 2, indicating that the commu-
We use the notation convention tHdtand[] are the floor pnication required is approximately 2 lag However, the set
and ceiling functions, respectively. The min takes account off 42— oq+2 permutations is dependent on the state to be
the fact that the last subinterval is closed, so 1 lies in Sprrepared, so it is still necessary to communicatedobits.
interval D. We may then approximate the real and imaginary Here we describe a straightforward method of determin-
parts of B as ing a set of permutations that is independent of the state to be
ReB ~ (2n.-1)/D-1, ImB~(2nS-1)/D-1. (5) prepared. In general, in order to perfgrm the entanglement
) ) o , transformation, it is necessary that< 2. Here we apply
The error m_thls approximation W|II_ be no more than_Dl/ _ the slightly stronger condition thap%?l—rz(d—l), where
We may define a state corresponding to this approx'mat'o?:min{ai}. This condition implies that the majorization rela-

by tion holds(see Appendix B
_ d-1 The entanglement transformation may be achieved via a
1B)=2{(2n,-1)/D-1+i[(2ni-1)/D-1]}k). (6)  two step process. First the state is transformed ffamto
k=0 the intermediate state
This state will satisfy a-1
o ) =2 alklk, (12)
T \Zd k=0
I8y =Bl =5 ™

[(A  2N71/4 A~ .
where ¢o= 1 and ¢ =(1-y4)/(d-1) for k>0. This en-
However, the statéd’) is not necessarily normalized; the tanglement transformation may be achieved using the mea-
state that is prepared will be the corresponding normalizegurement operators

state,|8’). This state may be a slightly poorer approximation, d-1 & & &
but will still satisfy (see Appendix A A= \"Pk< > _'||><|| + _k|0><0| + —O|k)(k|) . (12
=11k A ag ay
|2 =
KBlsI"= 1 D2 (8) for d-1=k>0, and

Without an entangled state, one would communicate the ,_d_l o,
2d numbersn;, andn¢ using 21 log D bits. Here we use the Ao=\po2 — . 13
convention that log indicates logarithms base 2. We also use =0 =
the convention that the number of “bits” is the logarithm The probabilitiespk:(|ak|2—¢§)/(¢§—¢>§) for k>0 andp,
base 2 of the number of messages, and need not be an integ -3, _ p,. On obtaining measurement reskilif k>0 it is
ger. The preparer would intialize the system in the sf@e  necessary to swap staté® and |k). The total number of
rhe;‘ apply a unitary operatiod such that the final state is measurement results & so the communication required is
B'). log d.

In the case where an entangled state is available, one may This entanglement transformation is followed by an en-
initialize the system in an alternative st that is close to  tanglement transformation to take the state fridmto | ).

|0), such that the operatiod takes the system to the exact |n this case the measurement operators required are
state|8). We express the required initial stai@ as

d-1
d-1 — 1 Nek )
Bx= ==\ [0X0 =11 ], 14
=S hdk). © K \d_1<| ><|+I§1 5 I (14)
k=0

_ _ whered-1=k>0 (there is no measurement operator kor
In order to prepare this state, we first apply an entanglement(). The notation® is used to indicate addition moduth
transformation scheme to transform the entangled $fete —1 put excluding (i.e., 1+ (I+k-1) mod(d-1)]). On ob-

to a second state taining measurement resut; it is necessary to perform a
d-1 cyclic permutation of the staté$) to |d—1). The total num-

|W) = E i K)IK) . (10) ber of possible measurement resultslisl, so the commu-

k=0 nication required is logl—1). Thus this method allows one

The communication that is required depends on the entanglé(-) transform|A) to | W) with communication of only log#
ment transformation method that is used. There are a number-" o
of different methods of performing entanglement transforma- ON€ may then use the method applied in the proof of
tions [8—10], but there is the problem that most of these 1"€orem 1 of Ref[7] to obtain the statéy). That is, one
methods require local operations in subsystem 2 that are d81@Y apply the projection operators
pendent on the state to be prepared. 1

It is possible to use the entanglement transformation Py= a|Xk><Xk|v (15
scheme in Ref9], though this method requires communica-
tion of logd! bits to communicate the permutation used. Viawhere
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X0 = 2 elCmel])). (16)
|

Upon obtaining measurement reskilbne performs the local
operation

Ce= X 29K, (17
|

This step requires an additional ldgoits of classical com-
munication.

The final step is to perform the local operation in sub-
system 1 to take the state frdg to | 8). Communication of
the numbersn, and n; that specify this operation requires
communication of @logD. To determine the value dd
necessary, note that we have requirz%da 1-r?(d-1) in or-
der to perform the entanglement transformation. 49@
=[0| ®|>=[B’ | B, ¥4 is equal to the fidelity between the
state to be preparedp), and the approximate stat@’).
From Eq.(8), the conditionyg=1-r?(d- 1) will be satisfied

for D equal to
5 [ [2d
YN r2d - 1)

To summarize, the RSP scheme with entanglement is
three step process.

Step 1. TransformA) to |¥) using the measurement op-
erators(12), (13), and(14). The communication required is
log(d?®-d).

Step 2. Apply the method given in the proof of Theorem 1
of Ref. [7] to prepare the unentangled stai®. This step
requires logd bits of communication.

Step 3. Perform the unitary operatidth to transform

(18)
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FIG. 1. The entanglement versus classical communication for
the exact RSP of qubit states using a partially entangled state. The
solid curve is that based on the first scheme given, and the dotted
line gives the communication required whggis taken to be real.
The dashed-dotted line is the upper bound on the communication
for the nonconstructive scheme, and the dashed line is a lower
bound on the communication.
a

and 2 only scales as laly This communication is already
small, and it is unlikely that it can be improved upon. How-
ever, the communication for the final step isllagD,,
which is much larger.

In the following we discuss ways of reducing the commu-
nication for this final step. First we give an explicit method
that reduces the communication required, then give a more
efficient, but nonconstructive method, and lastly give a lower

|4 to | B). This step requires communication of the numbersyound on the communication required for this step.

n, and n; to determine the operatiod, and therefore re-
quires communication of@log D, bits.

Ill. CLASSICAL COMMUNICATION REQUIRED

The total classical communication for this scheme is ap
proximately 3logd+2dlogD,. The classical communica-

tion required for this scheme is least when the entangled
state used is close to a maximally entangled state. The
amount of classical communication required goes to infinity

A. Explicit method

One may slightly reduce the communication required for
step 3 by noting that the global phase is arbitrary, so we may
take B, to be real. Then it is only necessary to approximate

2d-1 numbers, and we obtain the fidelity

as the entanglement approaches zero; there is, thereforeTae slightly lower value oD may be taken

tradeoff, just as in the asymptotic schemes considered by

Refs.[3,4].

The classical communication required is shown in Fig. 1

for the case of a qubit. Comparing with the figure given in

2d-1
KelgP=1-=>5". (19
| 2d-1
2= rz(d_ 1) ’ (20)

Refs.[3,4], we can see that the classical communication isand the total communication for step 3 (&d-1) logD,.

significantly larger than for asymptotically faithful RSP. In

This only gives a slight reduction in the communication re-

contrast to the asymptotic case, it is also possible for theuired; an example for qubit states is given in Fig. 1.

classical communication to approach infinity even if the en-

For large system dimensions it is possible to use a more

tanglement is not approaching zero. This is possible becaugsficient coding of the state. One method is to record the

one of the Schmidt coefficients can become arbitrarily smal
even if the entanglement does not.

kigns of the real and imaginary parts@f then usen, andng
to approximate the absolute values of@Reand Img3,. For

One question that naturally arises is whether it is possibléarge d most of then; and n; will be small, so it is more
to perform this RSP scheme with less classical communicaefficient to record the numbers of digits in the binary repre-
tion. The total classical communication required for steps Isentations ofn, and nf, as well as those digits. The total
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communication required for step 3 is then no more tfsme  1—(e/2)? with more than one member df/lmax.l Thus the
Appendix Q regions of states with fidelity at least 1ef2)? with different

[ elements ofM ., do not intersect. Let us denote Be) the
(2d-1)[log(1/rVd-1) + loglog Dgl + 2], (21) volume of the region of states with fidelity at least &-with

where some statdp). From Appendix D, this volume is indepen-
dent of |¢), so we need not include it as an argument. One
2d-1 1 may therefore determine an upper limit on the number of

3= 4r2d-1) I (22) states inM s by dividing the volume of the region of nor-

malized states by/(e/2). The region of normalized states is
The first term is the communication required for the digits,the surface of a hypersphere, and has volum¥ @-1)!. In
and the second term is the communication required for theddition, from Appendix DV(e/2)=27%e/2)%2/(d-1)!.
numbers of digits. The third term includes a correction forTherefore the number of states in the e, is no larger
rounding, as well as the communication required for thethan(2/e)24-2,
signs. For the nonconstructive method, to approximge we
In assessing the scaling of each of the terms withis  simply communicate the indekof a state] ) € M pax SUch
necessary to assume a scalingfolt is not possible to take  that |(¢,| 8)|?=1-€2 In order to be able to perform the en-
r to be independent od, because <1/vd. If re<1/vd, the  tanglement transformation in step 1, we require the state to
first term in Eq.(21) scales approximately linearly witd,  pe ‘approximated with fidelity at least ¥% where e
whereas the second term scalesldsg logd, and therefore  — /g—1. Therefore, the communication required for this
is dominant for larged. However, this situation is unlikely, nonconstructive scheme is no more than
because it would mean that the communication required for o
the numbers of digits imj and i is less than that for the (2d - 2) log(2/rVd - 1). (23
digits themselves. It is more realistic to assume thale-
creases more rapidly than {d (for example, as 1d); this is
because for a larger dimension, it is more likely that one of
the Schmidt coefficients is exceptionally small. Under this We may place a lower bound on the communication re-
assumption, the first term is dominant, as would be expectedjuired in a similar way. LeiM be a set of states satisfying
the fidelity condition. The volume of the set of states that
B. Nonconstructive method may be approximated b,y € M with fidelity at least 1
. . ) o - € is equal toV(e). If M satisfies the fidelity condition,
_ It is possible to further_lmprove the effl_C|ency of the coo_I-V(E) multiplied by the number of states iM must be at
ing, although the proof is not constructive. In general, Neast as large as the total volume of normalized states. We

order to approximate a Statf with fidelity # it is neces- may therefore place a lower bound on the number of states in
sary to have a set of statésl ={| ¢}, such that for any state M by dividing the total volume of normalized states by

|B), the fidelity betweer}) and some element of/ is at V/(e). The volume of normalized states is# (d-1)!, and
least 1-€2. In the following discussion we refer to this con- V(e)=2m%€242/(d—1)1. Thus the total number of states can
dition as the fidelity condition. Given this set, to approximatebe no less tham/e)zgj'_z

|8), we communicate the indéxsuch thaly) has fidelity at Taking e=ryd-1 the' classical communication can be no
least 1-€? with |8). The communication required is then the less thar? v '

logarithm (base 2 of the number of states itM. It was

C. Lower bound

shown in Ref[6] that the number of states i need be no (2d - 2) log(1/ryd - 1). (24)
greater than(2.5/€)?%; here we apply a similar method to
improve upon this bound. The communication required for the nonconstructive method

In order to obtain a set that has a small number of elels close to this, as it is no more thami22 bits larger. In
ments, we introduce an additional condition. This condition,2ddition, the lower bound in Eq24) is similar to the first
which we will call the spacing condition, is that for &),  termin Eq.(21); therefore, provided the first term in E@1)
le)EM, if k= then (¢ @)?<1-€% This conditon IS dominant, the explicit method that we described in Sec.
means that no two elements 8f have fidelity of 1-2 or Il A is close to optimal. o _ _
more with each other. We denote the largest set satisfying 10 Summarize, the communication required for the vari-
this condition by/M.,; this set must also satisfy the fidelity 0US methods is as given in Table I. This is the communica-
condition. To show this result, note thatAfl, is the larg- tion req_uwed for step 3; .that is, the comm.unlc;atlc_)n required
est set satisfying the spacing condition, then there must be i@ og)tam an approximation of the state with fidelity at least
state|8) such thal(ey| B2 <1-¢ for all |¢) € Mz Oth- 1Tr (d_l.)' The total communication for RSP sch_emgs of
erwise |B) could be added tou,,, to obtain a larger set thiS type is equal to these values plusigigd—1)], which is
satisfying the spacing condition. Hence, for ), there the communication required for the first two steps. There-
must be a statp,) € M pax SUch that(e,| 8)|>=1-¢€* and
M max therefore satisfies the fidelity condition. Uif | B) had fidelity as large as 1(=/2)? with both|¢,) and|¢;), by

Because no two states i, have fidelity as large as the chain rule for fidelities, the fidelity betweép,) and|e¢;) would
1-€2 with each other, no state can have fidelity as large agave to be at least 1¢2.
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TABLE |I. The communication required for step 3 using various methods, as well as the lower bound.

Method Communication required
Simple method from Sec. Il ®og D,, where
5 _[ [ 2d l
YIN 2 d-1) I
Simple method takingd, real (2d-1) log D5, where
o | [2d-1 l
27N r(d-1) I
More efficient explicit method (2d-1) [log(1/ryd=-1) +lodlog D3]+2], where
5 _{ [2d-1 l
371N 4r2(@-1) I
Nonconstructive method (2d-2) Iog(2/r\de1)
Lower bound (2d-2) log(1/ryd-1)

fore, for exact RSP schemes of this type, the total communi- This is not the most arbitrary RSP scheme possible. In

cation used cannot be less than general, one may add local ancillas, perform local unitary
5 —_— transformations, local general measurements, and two-way
logld“(d - 1)]+ (2d - 2) log(1/rVd - 1), (25 communication. The POVMs used in each subspace may de-
and there will be a scheme that uses communication of  Pend on the results of previous measurements. Let the initial
state be
log[d?(d—1)]+ (2d - 2) log(2/rvVd - 1). (26) 4'-1
These expressions are plotted for the cdse in Fig. 1. IA)Y= > afK|K), (27)
There is only a few bits difference between E¢&5) and k=0

(26), and the explicit scheme given before requires commuyhered’ < d. Because the local unitary transformations and

nication that is greater than both Eq&5) and(26). measurement operators on subsysfesommute with those

It must be empha_lsized that the lower boug8) is not a on subsystenB, we may combine the operators on sub-
lower bound for arbitrary exact RSP schemes. One reason IS ctemA into a sinale operatol 8 J)) This operator ma
that it was derived from the requirement that a state must b S gie op AV T b y

approximated with fidelity 1#%(d—1). In order for it to be gepend on the state to be preparg, as well as the results

possible to apply the entanglement transformation ftéin of measurementsp. The vgct0r¢ contains the results of
to [W), it is only necessary tha2 < g2. The volume of states Measurements performed in both subsystems. We ajioos
satisfying this condition will, in most cases, be larger, so jreontain real numbers resulting from measurements in bot'h
will be possible to specify the state with less communicatior>uPSystémseven though these results cannot be communi-
(though more communication will be required for the stateCated with finite classical communicatjpras this does r.‘Ot
transformation It is also possible that there may be some™ake the RSP scheme less general. We also combine the
very different RSP scheme that uses less communication. Operators on subsysteB into a single operatoMg(n, ¢).
This operator also may depend on the results of measure-
IV. SCHMIDT NUMBER REQUIRED ments¢, as well as additional information communicated
from subsystenA.

It is possible to obtain stronger results for the Schmidt : , n .
number of the entangled state. For the RSP scheme outlined Aftef performing operat|om/|A(,B,¢), the reduced density
trix in subsysten® is

above the Schmidt number of the entangled state used mud?
be maximal. It is possible to prove that this is necessary for P ® Panc (28)
arbitrary exact RSP schemes as follows. First, note that the _ _

above exact RSP scheme is equivalent to a local measurléy-he_repanc Is the state (.)f Fh_e_ ancilla for subsys'_[eBnAs the
ment performed in subsystefy followed by a unitary trans- anC|I'I§ for. subsysternB is mmallx unentang!ed, it cannot be
formation applied in subsyste® that is based on informa- Modified in any way byMa(8,¢). In addition, althougtp
tion communicated from subsystef will depend onM (8, ¢), it must still be orthogonal t¢k) for
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1B) ® |00 = Mg(A, (Z,)|¢> @ |Yand (30) APPENDIX A: DISTANCE AND FIDELITY
where|i, is the final state of the ancilla. Consider two states that satisfy

In order to obtain ), for any given measurement results 118 - |73,>” e (A1)
¢, one may adjusfz) and the communicated information v
An arbitrary pured-dimensional stat¢s) is equivalent to a where|g’) is not necessarily normalized. The st§8é) may

point on a 21-1 dimensional hypersphei@ne dimension be expressed ~’>:a y+b| BL), where|8L) is orthogonal
may be omitted because we may tgkgto be real. Because to |,8>[.) Then éﬁ (A1|)Bis e|(38uiv:'sllent t(LI|81—a|2+|b|Zi &
|4hano is fixed, andy) is orthogonal tdk) for k>d'-1, the . implies '

state|) ® |9 is equivalent to a point on ad2—1 dimen-
sional hypersphere. Since there is only a finite set of mes- la|=1-Vée-|bf?, (A2)
sages that may be communicatgdhe set of states obtained
by varyingn and|«) can only correspond to ai2—-2 dimen-
sional space, and cannot fill thed22 dimensional space |b| ||
corresponding to the set of statg®. ﬁ = ?
Therefore, even if it is possible to prepare an arbitrary a  1-Ve-|b)
d’-dimensional state and perform one of a finite number ofrhe right-hand side of this expression is minimized (ta)?
operations, it is not possible to prepare an arbitrary=e2-¢* giving
d-dimensional state. Thus it is not possible to exactly prepare )
an arbitraryd-dimensional state if the resource state has a ﬁ < € (A4)
lower Schmidt number. la?  1-€&

and

(A3)

In turn this implies
V. CONCLUSIONS

=1-é€. (A5)

We have given an explicit scheme for performing exact a2 + |b|2
RSP using an arbitrary entangled state with a maximal 5
Schmidt number and classical communication that is close t¢f |3’) is the normalized state corresponding ), then
optimal for schemes of this type. The scheme is a three-step 5
process, involving an entanglement transformation, followed KB|B)2= ﬂl (AB)
by a disentangling measurement, and a final unitary opera- a2+ [bf?
tion to obtain the exact state. ~ .

This method improves on that given in Ré7] in two  Thereforel]| ) -|8")|| < e implies thatl(8| 8")|*=1-¢"

main ways. .

(1) The communication required for the entanglement APPENDIX B: MAJORIZATION AND FIDELITY
transformation is less than 2 laly as compared to log! for In this appendix it is shown tha§2<LZZ is satisfied if
Ref. [7].

Y4=1-(d-1)r2. The majorization condi'[ion&z<lz2 is

(2) We have given an explicit method for determining the equivalent to

final unitary operation.

The majority of the communication is required for the P P )
final unitary operation. The communication required for this > lkﬁ? lOzk, (B1)
step is slightly superlinear id, whereas the communication k=0 k=0

required for the first two steps is logarithmicdnThis com-  \yhere the down arrow indicates that the coefficients are

munication is close to optimal, provided the RSP scheme igqyted into descending order. Becauseitbﬁeare in descend-
of this type; however, we have not eliminated the possibilitying order,

that some more general RSP scheme may require less com-

. . p d-1
munication. 1
: . . N2 & 12
This remote state preparation scheme also requires that pk% %= d-p- 1k—%—1 e (B2)

the Schmidt number of the initial entangled state be maxi-
mal. We have proven that this is necessary even for an arbMultiplying on both sides byd—p-1 and adding=p," ¢
trary remote state preparation scheme. gives
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p d-1
TE h= (1=, (B3) (2d - 1)loglog D3] +[log(nh — 1)1+ >, [[log(n, - 1)]
k=1 k=1
In turn this gives +[log(ng— DT] + (2d - 1)
p d-p-1 < (2d - D)loglog D] +[log(D3f,)]
Dlyi=lyp P +L. (B4) d-1
k=0 d - 1 d - 1

+ 2 [llog(DzReB)1 +[log(DaImB1T] + (2d - 1)
Then substituting the inequalibyzoz 1-(d-1)r? (and us- k=1

ing lyi= ives
9 % Wg) 9 <(2d-1) Iog +loglog D3| + 2
p 1
L2 (= 1)r2
k% $e=1-(d-p-Dr (BS) < (2d- 1)[|og(1/r Jd-1) +loglogDsl+2].  (C3)
Becausen; =1, it is also the case that APPENDIX D: VOLUME OF REGION OF STATES
p Here we consider the problem of determining the volume
1-(d-p-1r2= > la?, (B6)  of the region of state$p) for a given |¢) that satisfies
k=0 [{¢|B)|?=1-€. To do this, we write the sta{@) in the form
thus giving |B) = €% cosble) + sinb|t), (D1)

P P where|¢t) is a state perpendicular tp). Every state may be
D=t (B7)  represented in this way when the rangesdofand ¢ are
k=0 k=0 [-m, 7] and [0,7/2], respectively. The conditioi¢|B)?
=1-¢ implies thatsin | < e. The volume of states is given

Hence the inequality/a=1-(d-1)r? is sufficient to imply 5
y

the majorization relation? < 7.

arcsine T
V(e,<p):f deJ d¢(cosh)S,q_o(sinb), (D2)
APPENDIX C: EFFICIENT CODING 0 -

If the numbers} andn{ record the absolute values of the where

real and imaginary parts g8, and the interval0,1] is di- 2
vided intoD subintervals, then the fidelity is S\(r) = T /2) 1 (D3)
KBIBYP=1- 2d 21 (C1) is the surface area of a hypersphere. It is evident that this
4D expression for the volume is independent|g§, and we

The number of subinterval® should therefore be taken to _therefore omit it as an argument from this point on. Integrat-

be equal to ing over ¢ and using Eq(D3) gives
47Td arcsine
_[ [ 2d-1 €2 V(e) = - 2)IJ cosé sirt®3 gde
ST Vard-1) I o .
A . . . e b ~ 479 |:Sin2d—2 a]arcsme 2.9 2t g, -
The number of bits required to encode the length of the bit- “d-21| 2d-2 d-1)!

strings representing each of the numbets and n; is
logllog D5l. In addition3, is taken to be real, and we require Note that using==1 recovers the formula for the surface area
2d-1 bits to record the signs of the real and imaginary partf a 2d-dimensional hypersphere, which gives the total vol-

of B,. The total communication is therefore ume of normalized states.
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