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It has been shown[M.-Y. Ye, Y.-S. Zhang, and G.-C. Guo, Phys. Rev. A.69, 022310(2004)] that it is
possible to perform exactly faithful remote state preparation using finite classical communication and any
entangled state with maximal Schmidt number. Here we give an explicit procedure for performing this remote
state preparation. We show that the classical communication required for this scheme is close to optimal for
remote state preparation schemes of this type. In addition we prove that it is necessary that the resource state
have maximal Schmidt number.
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I. INTRODUCTION

Remote state preparation(RSP) is the preparation of a
state at a remote location using entanglement and classical
communication[1–7]. In general, one may perform exactly
faithful RSP[2,3,7], producing exactly the desired state, or
asymptotically faithful RSP, where the fidelity approaches
one as the number of states prepared approaches infinity
[1,3–6].

It is well known that it is not possible to perform exactly
faithful RSP without entanglement. An infinite amount of
classical information is required to exactly represent an arbi-
trary state, and therefore exact RSP would require an infinite
amount of classical communication if there were no en-
tangled resource. A method for exact RSP of a restricted
ensemble of states is given in Ref.[2], and an alternative
method for exact RSP of arbitrary states is given in Ref.[3].
Recently Yeet al. [7] showed that it is possible to perform
exact RSP using any pure entangled state, provided the
Schmidt number is equal to the system dimension. However,
the proof given in Ref.[7] does not give a complete tech-
nique for performing this remote state preparation.

Here we give an explicit technique that is based upon an
approximate technique without entanglement, and quantify
how much classical communication is required for this
scheme. Similarly to the proof in Ref.[7], this technique has
three steps: an entanglement transformation, followed by a
disentangling measurement, and a final unitary transforma-
tion. In Sec. II we describe these steps, giving a technique for
achieving the required entanglement transformation which
improves upon that given in Ref.[7].

The final unitary transformation is based upon an approxi-
mation of the state. We give a simple method for approxi-
mating the state in Sec. II, then consider alternative methods
in Sec. III. We give an explicit method that is more efficient
for large system dimension, and also derive a nonconstruc-
tive method that requires less communication. In addition,
we derive a lower bound on the communication required for
this step. This lower bound provides a lower bound on the
communication required for RSP schemes of this type, al-
though it does not rule out the possibility of some more

general method requiring less communication. However, it
can be shown that it is necessary for the initial entangled
state to have maximal Schmidt number, even for arbitrary
RSP schemes. We give this proof in Sec. IV. Lastly we con-
clude in Sec. V.

II. EXPLICIT SCHEME

As in Ref. [7], the initial state is an entangled state of the
form

uAl = o
k=0

d−1

akuklukl, s1d

where theak are positive real numbers, and each subsystem
is of dimension d. Any entangled state with maximal
Schmidt number may be brought to this form via local op-
erations. The state we wish to prepare is

ubl = o
k=0

d−1

bkukl, s2d

where thebk may be complex.
To explain this remote state preparation scheme, we first

explain a simple approximate scheme that one would use if
no entangled resource state were available. In this case, one
would communicate an approximation of the coefficientsbk,
and prepare a state based on that approximation. To approxi-
matebk, note that the real and imaginary parts ofbk will be
numbers in the interval[21, 1]. We can approximatebk by
dividing the interval[21, 1] into D subintervals of length
2/D

f− 1,2/D − 1d, f2/D − 1,4/D − 1d, . . . , f1 − 2/D,1g. s3d

We then denote the numbers of the subintervals that the real
and imaginary parts ofbk lie in as nk

r and nk
c, respectively.

That is,

nk
r = minhD,bDsRebk + 1d/2c + 1j,

s4d
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nk
c = minhD,bDsImbk + 1d/2c + 1j.

We use the notation convention thatb c and d e are the floor
and ceiling functions, respectively. The min takes account of
the fact that the last subinterval is closed, so 1 lies in sub-
intervalD. We may then approximate the real and imaginary
parts ofbk as

Rebk < s2nk
r − 1d/D − 1, Imbk < s2nk

c − 1d/D − 1. s5d

The error in this approximation will be no more than 1/D.
We may define a state corresponding to this approximation
by

ub̃8l = o
k=0

d−1

hs2nk
r − 1d/D − 1 + ifs2nk

c − 1d/D − 1gjukl. s6d

This state will satisfy

i ubl − ub̃8li ø
Î2d

D
. s7d

However, the stateub̃8l is not necessarily normalized; the
state that is prepared will be the corresponding normalized
state,ub8l. This state may be a slightly poorer approximation,
but will still satisfy (see Appendix A)

zkbub8lz2 ù 1 −
2d

D2 . s8d

Without an entangled state, one would communicate the
2d numbersnk

r andnk
c using 2d log D bits. Here we use the

convention that log indicates logarithms base 2. We also use
the convention that the number of “bits” is the logarithm
base 2 of the number of messages, and need not be an inte-
ger. The preparer would intialize the system in the stateu0l,
then apply a unitary operationU such that the final state is
ub8l.

In the case where an entangled state is available, one may
initialize the system in an alternative stateucl that is close to
u0l, such that the operationU takes the system to the exact
stateubl. We express the required initial stateucl as

ucl = o
k=0

d−1

cke
iwkukl. s9d

In order to prepare this state, we first apply an entanglement
transformation scheme to transform the entangled stateuAl
to a second state

uCl = o
k=0

d−1

ckuklukl. s10d

The communication that is required depends on the entangle-
ment transformation method that is used. There are a number
of different methods of performing entanglement transforma-
tions [8–10], but there is the problem that most of these
methods require local operations in subsystem 2 that are de-
pendent on the state to be prepared.

It is possible to use the entanglement transformation
scheme in Ref.[9], though this method requires communica-
tion of logd! bits to communicate the permutation used. Via

Caratheodory’s theorem one may restrict the number of pos-
sible permutations tod2−2d+2, indicating that the commu-
nication required is approximately 2 logd. However, the set
of d2−2d+2 permutations is dependent on the state to be
prepared, so it is still necessary to communicate logd! bits.

Here we describe a straightforward method of determin-
ing a set of permutations that is independent of the state to be
prepared. In general, in order to perform the entanglement

transformation, it is necessary thataW 2acW 2. Here we apply
the slightly stronger condition thatc0

2ù1−r2sd−1d, where
r =minhaij. This condition implies that the majorization rela-
tion holds(see Appendix B).

The entanglement transformation may be achieved via a
two step process. First the state is transformed fromuAl to
the intermediate state

uFl = o
k=0

d−1

fkuklukl, s11d

where f0=c0 and fk=Îs1−c0
2d / sd−1d for k.0. This en-

tanglement transformation may be achieved using the mea-
surement operators

Ak = ÎpkS o
l=1;lÞk

d−1
fl

al
ullkl u +

fk

a0
u0lk0u +

f0

ak
uklkkuD , s12d

for d−1ùk.0, and

A0 = Îp0o
l=0

d−1
fl

al
ullkl u. s13d

The probabilitiespk=suaku2−fk
2d / sf0

2−fk
2d for k.0 and p0

=1−ok.0pk. On obtaining measurement resultk, if k.0 it is
necessary to swap statesu0l and ukl. The total number of
measurement results isd, so the communication required is
log d.

This entanglement transformation is followed by an en-
tanglement transformation to take the state fromuFl to uCl.
In this case the measurement operators required are

Bk =
1

Îd − 1
Su0lk0u + o

l=1

d−1
cl %k

fl
ullkl uD , s14d

whered−1ùk.0 (there is no measurement operator fork
=0). The notation% is used to indicate addition modulod
−1 but excluding 0(i.e., 1+fsl +k−1d modsd−1dg). On ob-
taining measurement resultk, it is necessary to perform a
cyclic permutation of the statesu1l to ud−1l. The total num-
ber of possible measurement results isd−1, so the commu-
nication required is logsd−1d. Thus this method allows one
to transformuAl to uCl with communication of only logsd2

−dd.
One may then use the method applied in the proof of

Theorem 1 of Ref.[7] to obtain the stateucl. That is, one
may apply the projection operators

Pk =
1

d
uxklkxku, s15d

where
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uxkl = o
l

eifs2p/ddkl−wlgull. s16d

Upon obtaining measurement resultk one performs the local
operation

Ck = o
l

eis2p/ddklullkl u. s17d

This step requires an additional logd bits of classical com-
munication.

The final step is to perform the local operation in sub-
system 1 to take the state fromucl to ubl. Communication of
the numbersnk

r and nk
c that specify this operation requires

communication of 2d log D. To determine the value ofD
necessary, note that we have requiredc0

2ù1−r2sd−1d in or-
der to perform the entanglement transformation. Asc0

2

= zk0uclz2= zkb8 ublz2, c0
2 is equal to the fidelity between the

state to be prepared,ubl, and the approximate stateub8l.
From Eq.(8), the conditionc0

2ù1−r2sd−1d will be satisfied
for D equal to

D1 = dÎ 2d

r2sd − 1d e. s18d

To summarize, the RSP scheme with entanglement is a
three step process.

Step 1. TransformuAl to uCl using the measurement op-
erators(12), (13), and (14). The communication required is
logsd2−dd.

Step 2. Apply the method given in the proof of Theorem 1
of Ref. [7] to prepare the unentangled stateucl. This step
requires logd bits of communication.

Step 3. Perform the unitary operationU to transform
ucl to ubl. This step requires communication of the numbers
nk

r and nk
c to determine the operationU, and therefore re-

quires communication of 2d log D1 bits.

III. CLASSICAL COMMUNICATION REQUIRED

The total classical communication for this scheme is ap-
proximately 3 logd+2d log D1. The classical communica-
tion required for this scheme is least when the entangled
state used is close to a maximally entangled state. The
amount of classical communication required goes to infinity
as the entanglement approaches zero; there is, therefore, a
tradeoff, just as in the asymptotic schemes considered by
Refs.[3,4].

The classical communication required is shown in Fig. 1
for the case of a qubit. Comparing with the figure given in
Refs. [3,4], we can see that the classical communication is
significantly larger than for asymptotically faithful RSP. In
contrast to the asymptotic case, it is also possible for the
classical communication to approach infinity even if the en-
tanglement is not approaching zero. This is possible because
one of the Schmidt coefficients can become arbitrarily small
even if the entanglement does not.

One question that naturally arises is whether it is possible
to perform this RSP scheme with less classical communica-
tion. The total classical communication required for steps 1

and 2 only scales as logd. This communication is already
small, and it is unlikely that it can be improved upon. How-
ever, the communication for the final step is 2d log D1,
which is much larger.

In the following we discuss ways of reducing the commu-
nication for this final step. First we give an explicit method
that reduces the communication required, then give a more
efficient, but nonconstructive method, and lastly give a lower
bound on the communication required for this step.

A. Explicit method

One may slightly reduce the communication required for
step 3 by noting that the global phase is arbitrary, so we may
takeb0 to be real. Then it is only necessary to approximate
2d−1 numbers, and we obtain the fidelity

zkbub8lz2 ù 1 −
2d − 1

D2 . s19d

The slightly lower value ofD may be taken

D2 = dÎ 2d − 1

r2sd − 1d e, s20d

and the total communication for step 3 iss2d−1d log D2.
This only gives a slight reduction in the communication re-
quired; an example for qubit states is given in Fig. 1.

For large system dimensions it is possible to use a more
efficient coding of the state. One method is to record the
signs of the real and imaginary parts ofbk, then usenk

r andnk
c

to approximate the absolute values of Rebk and Imbk. For
large d most of thenk

r and nk
c will be small, so it is more

efficient to record the numbers of digits in the binary repre-
sentations ofnk

r and nk
c, as well as those digits. The total

FIG. 1. The entanglement versus classical communication for
the exact RSP of qubit states using a partially entangled state. The
solid curve is that based on the first scheme given, and the dotted
line gives the communication required whenb0 is taken to be real.
The dashed-dotted line is the upper bound on the communication
for the nonconstructive scheme, and the dashed line is a lower
bound on the communication.
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communication required for step 3 is then no more than(see
Appendix C)

s2d − 1dflogs1/rÎd − 1d + logdlog D3e + 2g , s21d

where

D3 = dÎ 2d − 1

4r2sd − 1d e. s22d

The first term is the communication required for the digits,
and the second term is the communication required for the
numbers of digits. The third term includes a correction for
rounding, as well as the communication required for the
signs.

In assessing the scaling of each of the terms withd it is
necessary to assume a scaling forr. It is not possible to take
r to be independent ofd, becauser ø1/Îd. If r ~1/Îd, the
first term in Eq.(21) scales approximately linearly withd,
whereas the second term scales asd log logd, and therefore
is dominant for larged. However, this situation is unlikely,
because it would mean that the communication required for
the numbers of digits innk

r and nk
c is less than that for the

digits themselves. It is more realistic to assume thatr de-
creases more rapidly than 1/Îd (for example, as 1/d); this is
because for a larger dimension, it is more likely that one of
the Schmidt coefficients is exceptionally small. Under this
assumption, the first term is dominant, as would be expected.

B. Nonconstructive method

It is possible to further improve the efficiency of the cod-
ing, although the proof is not constructive. In general, in
order to approximate a state with fidelity 1−e2, it is neces-
sary to have a set of statesM=huwklj, such that for any state
ubl, the fidelity betweenubl and some element ofM is at
least 1−e2. In the following discussion we refer to this con-
dition as the fidelity condition. Given this set, to approximate
ubl, we communicate the indexk such thatuwkl has fidelity at
least 1−e2 with ubl. The communication required is then the
logarithm (base 2) of the number of states inM. It was
shown in Ref.[6] that the number of states inM need be no
greater thans2.5/ed2d; here we apply a similar method to
improve upon this bound.

In order to obtain a set that has a small number of ele-
ments, we introduce an additional condition. This condition,
which we will call the spacing condition, is that for alluwkl,
uwll[M, if kÞ l then zkwkuwllz2,1−e2. This condition
means that no two elements ofM have fidelity of 1−e2 or
more with each other. We denote the largest set satisfying
this condition byMmax; this set must also satisfy the fidelity
condition. To show this result, note that ifMmax is the larg-
est set satisfying the spacing condition, then there must be no
stateubl such thatzkwkublz2,1−e2 for all uwkl[Mmax. Oth-
erwise ubl could be added toMmax to obtain a larger set
satisfying the spacing condition. Hence, for allubl, there
must be a stateuwkl[Mmax such thatzkwkublz2ù1−e2, and
Mmax therefore satisfies the fidelity condition.

Because no two states inMmax have fidelity as large as
1−e2 with each other, no state can have fidelity as large as

1−se /2d2 with more than one member ofMmax.
1 Thus the

regions of states with fidelity at least 1−se /2d2 with different
elements ofMmax do not intersect. Let us denote byVsed the
volume of the region of states with fidelity at least 1−e2 with
some stateuwl. From Appendix D, this volume is indepen-
dent of uwl, so we need not include it as an argument. One
may therefore determine an upper limit on the number of
states inMmax by dividing the volume of the region of nor-
malized states byVse /2d. The region of normalized states is
the surface of a hypersphere, and has volume 2pd/ sd−1d!. In
addition, from Appendix D,Vse /2d=2pdse /2d2d−2/ sd−1d!.
Therefore the number of states in the setMmax is no larger
than s2/ed2d−2.

For the nonconstructive method, to approximateubl we
simply communicate the indexk of a stateuwkl[Mmax such
that ukwkublu2ù1−e2. In order to be able to perform the en-
tanglement transformation in step 1, we require the state to
be approximated with fidelity at least 1−e2, where e
=rÎd−1. Therefore, the communication required for this
nonconstructive scheme is no more than

s2d − 2d logs2/rÎd − 1d. s23d

C. Lower bound

We may place a lower bound on the communication re-
quired in a similar way. LetM be a set of states satisfying
the fidelity condition. The volume of the set of states that
may be approximated byuwkl[M with fidelity at least 1
−e2 is equal toVsed. If M satisfies the fidelity condition,
Vsed multiplied by the number of states inM must be at
least as large as the total volume of normalized states. We
may therefore place a lower bound on the number of states in
M by dividing the total volume of normalized states by
Vsed. The volume of normalized states is 2pd/ sd−1d!, and
Vsed=2pde2d−2/ sd−1d!. Thus the total number of states can
be no less thans1/ed2d−2.

Taking e=rÎd−1, the classical communication can be no
less than

s2d − 2d logs1/rÎd − 1d. s24d

The communication required for the nonconstructive method
is close to this, as it is no more than 2d−2 bits larger. In
addition, the lower bound in Eq.(24) is similar to the first
term in Eq.(21); therefore, provided the first term in Eq.(21)
is dominant, the explicit method that we described in Sec.
III A is close to optimal.

To summarize, the communication required for the vari-
ous methods is as given in Table I. This is the communica-
tion required for step 3; that is, the communication required
to obtain an approximation of the state with fidelity at least
1−r2sd−1d. The total communication for RSP schemes of
this type is equal to these values plus logfd2sd−1dg, which is
the communication required for the first two steps. There-

1If ubl had fidelity as large as 1−se /2d2 with both uwkl anduwll, by
the chain rule for fidelities, the fidelity betweenuwkl anduwll would
have to be at least 1−e2.
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fore, for exact RSP schemes of this type, the total communi-
cation used cannot be less than

logfd2sd − 1dg + s2d − 2d logs1/rÎd − 1d, s25d

and there will be a scheme that uses communication of

logfd2sd − 1dg + s2d − 2d logs2/rÎd − 1d. s26d

These expressions are plotted for the cased=2 in Fig. 1.
There is only a few bits difference between Eqs.(25) and
(26), and the explicit scheme given before requires commu-
nication that is greater than both Eqs.(25) and (26).

It must be emphasized that the lower bound(25) is not a
lower bound for arbitrary exact RSP schemes. One reason is
that it was derived from the requirement that a state must be
approximated with fidelity 1−r2sd−1d. In order for it to be
possible to apply the entanglement transformation fromuAl
to uCl, it is only necessary thataW 2acW 2. The volume of states
satisfying this condition will, in most cases, be larger, so it
will be possible to specify the state with less communication
(though more communication will be required for the state
transformation). It is also possible that there may be some
very different RSP scheme that uses less communication.

IV. SCHMIDT NUMBER REQUIRED

It is possible to obtain stronger results for the Schmidt
number of the entangled state. For the RSP scheme outlined
above the Schmidt number of the entangled state used must
be maximal. It is possible to prove that this is necessary for
arbitrary exact RSP schemes as follows. First, note that the
above exact RSP scheme is equivalent to a local measure-
ment performed in subsystemA, followed by a unitary trans-
formation applied in subsystemB that is based on informa-
tion communicated from subsystemA.

This is not the most arbitrary RSP scheme possible. In
general, one may add local ancillas, perform local unitary
transformations, local general measurements, and two-way
communication. The POVMs used in each subspace may de-
pend on the results of previous measurements. Let the initial
state be

uAl = o
k=0

d8−1

akuklukl, s27d

whered8,d. Because the local unitary transformations and
measurement operators on subsystemA commute with those
on subsystemB, we may combine the operators on sub-
systemA into a single operatorMAsb ,fW d. This operator may
depend on the state to be prepared,ubl, as well as the results
of measurements,fW . The vectorfW contains the results of
measurements performed in both subsystems. We allowfW to
contain real numbers resulting from measurements in both
subsystems(even though these results cannot be communi-
cated with finite classical communication), as this does not
make the RSP scheme less general. We also combine the
operators on subsystemB into a single operatorMBsnW ,fW d.
This operator also may depend on the results of measure-
mentsfW , as well as additional informationnW communicated
from subsystemA.

After performing operationMAsb ,fW d, the reduced density
matrix in subsystemB is

r ^ ranc, s28d

whereranc is the state of the ancilla for subsystemB. As the
ancilla for subsystemB is initially unentangled, it cannot be
modified in any way byMAsb ,fW d. In addition, althoughr

will depend onMAsb ,fW d, it must still be orthogonal toukl for

TABLE I. The communication required for step 3 using various methods, as well as the lower bound.

Method Communication required

Simple method from Sec. II 2d log D1, where

D1 = dÎ 2d

r2sd − 1d e.
Simple method takingb0 real s2d−1d log D2, where

D2 = dÎ 2d − 1

r2sd − 1d e.
More efficient explicit method s2d−1d flogs1/rÎd−1d+logdlog D3e+2g, where

D3 = dÎ 2d − 1

4r2sd − 1d e.
Nonconstructive method s2d−2d logs2/rÎd−1d

Lower bound s2d−2d logs1/rÎd−1d
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k.d8−1. Without loss of generality, we assume that it is
possible to prepare any stater, provided it is orthogonal to
ukl for k.d8−1. In order to obtain perfect RSP, we require

ublkbu = TrancfMBsnW,fW dsr ^ rancdMB
†snW,fW dg . s29d

If Eq. (29) holds forr andranc, there must be pure states for
which it holds. Therefore we may take these states to beucl
and ucancl. Equation(29) then becomes

ubl ^ ucanc8 l = MBsnW,fW ducl ^ ucancl, s30d

whereucanc8 l is the final state of the ancilla.
In order to obtainubl, for any given measurement results

fW , one may adjustucl and the communicated informationnW.
An arbitrary pured-dimensional stateubl is equivalent to a
point on a 2d−1 dimensional hypersphere(one dimension
may be omitted because we may takeb0 to be real). Because
ucancl is fixed, anducl is orthogonal toukl for k.d8−1, the
stateucl ^ ucancl is equivalent to a point on a 2d8−1 dimen-
sional hypersphere. Since there is only a finite set of mes-
sages that may be communicatednW, the set of states obtained
by varyingnW anducl can only correspond to a 2d8−2 dimen-
sional space, and cannot fill the 2d−2 dimensional space
corresponding to the set of statesubl.

Therefore, even if it is possible to prepare an arbitrary
d8-dimensional state and perform one of a finite number of
operations, it is not possible to prepare an arbitrary
d-dimensional state. Thus it is not possible to exactly prepare
an arbitraryd-dimensional state if the resource state has a
lower Schmidt number.

V. CONCLUSIONS

We have given an explicit scheme for performing exact
RSP using an arbitrary entangled state with a maximal
Schmidt number and classical communication that is close to
optimal for schemes of this type. The scheme is a three-step
process, involving an entanglement transformation, followed
by a disentangling measurement, and a final unitary opera-
tion to obtain the exact state.

This method improves on that given in Ref.[7] in two
main ways.

(1) The communication required for the entanglement
transformation is less than 2 logd, as compared to logd! for
Ref. [7].

(2) We have given an explicit method for determining the
final unitary operation.

The majority of the communication is required for the
final unitary operation. The communication required for this
step is slightly superlinear ind, whereas the communication
required for the first two steps is logarithmic ind. This com-
munication is close to optimal, provided the RSP scheme is
of this type; however, we have not eliminated the possibility
that some more general RSP scheme may require less com-
munication.

This remote state preparation scheme also requires that
the Schmidt number of the initial entangled state be maxi-
mal. We have proven that this is necessary even for an arbi-
trary remote state preparation scheme.

ACKNOWLEDGMENTS

I am grateful for valuable discussions with Patrick Hay-
den, Barry C. Sanders, and Guifré Vidal. This work was
supported by Alberta’s informatics Circle of Research Excel-
lence(iCORE), the Australian Research Council, and the Na-
tional Science Foundation under Grant No. EIA-0086038
through the Institute for Quantum Information at the Califor-
nia Institute of Technology.

APPENDIX A: DISTANCE AND FIDELITY

Consider two states that satisfy

iubl − ub̃8li ø e, sA1d

whereub̃8l is not necessarily normalized. The stateub̃8l may

be expressed asub̃8l=aubl+bub'l, whereub'l is orthogonal
to ubl. Then Eq. (A1) is equivalent tou1−au2+ ubu2øe2,
which implies

uau ù 1 −Îe2 − ubu2, sA2d

and

ubu
uau

ø
ubu

1 −Îe2 − ubu2
. sA3d

The right-hand side of this expression is minimized forubu2
=e2−e4, giving

ubu2

uau2
ø

e2

1 − e2 . sA4d

In turn this implies

uau2

uau2 + ubu2
ù 1 − e2. sA5d

If ub8l is the normalized state corresponding toub8̃l, then

zkbub8lz2 =
uau2

uau2 + ubu2
. sA6d

Thereforeiubl− ub8̃l i øe implies thatzkb ub8lz2ù1−e2.

APPENDIX B: MAJORIZATION AND FIDELITY

In this appendix it is shown thataW 2acW 2 is satisfied if

c0
2ù1−sd−1dr2. The majorization conditionaW 2acW 2 is

equivalent to

o
k=0

p
↓ck

2ùo
k=0

p
↓ak

2, sB1d

where the down arrow indicates that the coefficients are
sorted into descending order. Because the↓ck

2 are in descend-
ing order,

1

p
o
k=1

p
↓ck

2 ù
1

d − p − 1 o
k=p+1

d−1
↓ck

2. sB2d

Multiplying on both sides byd−p−1 and addingok=1
p ↓ck

2

gives
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d − 1

p
o
k=1

p
↓ck

2 ù s1 − ↓c0
2d. sB3d

In turn this gives

o
k=0

p
↓ck

2 ù ↓c0
2d − p − 1

d − 1
+

p

d − 1
. sB4d

Then substituting the inequalityc0
2ù1−sd−1dr2 (and us-

ing ↓c0
2ùc0

2) gives

o
k=0

p
↓ck

2 ù 1 − sd − p − 1dr2. sB5d

Becauseak
2ù r2, it is also the case that

1 − sd − p − 1dr2 ù o
k=0

p
↓ak

2, sB6d

thus giving

o
k=0

p
↓ck

2 ù o
k=0

p
↓ak

2. sB7d

Hence the inequalityc0
2ù1−sd−1dr2 is sufficient to imply

the majorization relationaW 2acW 2.

APPENDIX C: EFFICIENT CODING

If the numbersnk
r andnk

c record the absolute values of the
real and imaginary parts ofbk, and the interval[0,1] is di-
vided intoD subintervals, then the fidelity is

zkbub8lz2 ù 1 −
2d − 1

4D2 . sC1d

The number of subintervalsD should therefore be taken to
be equal to

D3 = dÎ 2d − 1

4r2sd − 1d e. sC2d

The number of bits required to encode the length of the bit-
strings representing each of the numbersnk

r and nk
c is

logdlog D3e. In additionb0 is taken to be real, and we require
2d−1 bits to record the signs of the real and imaginary parts
of bk. The total communication is therefore

s2d − 1dlogdlog D3e + dlogsn0
r − 1de + o

k=1

d−1

fdlogsnk
r − 1de

+ dlogsnk
c − 1deg + s2d − 1d

ø s2d − 1dlogdlog D3e + dlogsD3b0de

+ o
k=1

d−1

fdlogsD3Rebkde + dlogsD3Imbkdeg + s2d − 1d

ø s2d − 1dSlog
D3

Î2d − 1
+ logdlog D3e + 2D

ø s2d − 1dflogs1/rÎd − 1d + logdlog D3e + 2g . sC3d

APPENDIX D: VOLUME OF REGION OF STATES

Here we consider the problem of determining the volume
of the region of statesubl for a given uwl that satisfies
zkw ublz2ù1−e2. To do this, we write the stateubl in the form

ubl = eif cosuuwl + sinuuw'l, sD1d

whereuw'l is a state perpendicular touwl. Every state may be
represented in this way when the ranges off and u are
f−p ,pg and f0,p /2g, respectively. The conditionzkw ublz2

ù1−e2 implies thatusinu u øe. The volume of states is given
by

Vse,wd =E
0

arcsine

duE
−p

p

dfscosudS2d−2ssinud, sD2d

where

Snsrd =
2pn/2

Gsn/2d
rn−1 sD3d

is the surface area of a hypersphere. It is evident that this
expression for the volume is independent ofuwl, and we
therefore omit it as an argument from this point on. Integrat-
ing overf and using Eq.(D3) gives

Vsed =
4pd

sd − 2d!E0

arcsine

cosu sin2d−3 udu

=
4pd

sd − 2d! Fsin2d−2 u

2d − 2
G

0

arcsine

=
2pd

sd − 1d!
e2d−2. sD4d

Note that usinge=1 recovers the formula for the surface area
of a 2d-dimensional hypersphere, which gives the total vol-
ume of normalized states.
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