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We investigate a scheme that makes a quantum nondemolition(QND) measurement of the excitation level
of a mesoscopic mechanical oscillator by utilizing the anharmonic coupling between two beam bending modes.
The nonlinear coupling between the two modes shifts the resonant frequency of the readout oscillator in
proportion to the excitation level of the system oscillator. This frequency shift may be detected as a phase shift
of the readout oscillation when driven on resonance. We derive an equation for the reduced density matrix of
the system oscillator, and use this to study the conditions under which discrete jumps in the excitation level
occur. The appearance of jumps in the actual quantity measured is also studied using the method of quantum
trajectories. We consider the feasibility of the scheme for experimentally accessible parameters.
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I. INTRODUCTION

Quantum mechanics tells us that the energy of an oscilla-
tor is quantized. However, an observation of quantum-
limited mechanical motion in macroscopic objects has not
been possible because the energy associated with individual
phonons is typically much smaller than the thermal energy.1,2

Advances in nanotechnology have enabled experimenters
to build ever smaller mechanical oscillators with high reso-
nance frequencies and quality factors.3 As an individual pho-
non energy becomes comparable to or greater thankBT,
quantum effects begin to appear and it should be possible to
realize various quantum phenomena.

In this paper, we investigate the possibility of observing
transitions amongst the Fock states of a mesoscopic me-
chanical oscillator. To do this requires the coupling of the
system oscillator to a measurement device that sensitively
detects the phonon number of the system oscillator but does
not itself change the excitation level of the oscillator. In the
quantum regime, it becomes very important to model the
precise way that a quantum system interacts with any mea-
suring apparatus, as well as with the environment. Specifi-
cally, it is necessary to take into account the measurement
backaction and to design the system-readout interaction so as
to allow the best possible measurement of the desired ob-
servable. We will show that it is possible in principle to take
advantage of the nonlinear interaction between modes of os-
cillation of an elastic beam or beams to track the state of the
oscillator as it jumps between number states due to its cou-
pling to the surrounding thermal environment.

The laws of quantum mechanics tell us that, even in the
absence of instrumental or thermal noise, a measurement will
tend to disturb the state of the measured system. The inter-
action between the system and the measurement apparatus
means that while information about the measured observable
may be read out from the state of the meter after interacting
with the system, the quantum-mechanical uncertainty in the
initial state of the meter leads to random changes in the con-

jugate observable of the system. This backaction noise on the
conjugate observable is an inevitable result of the very inter-
action that allows the measurement to take place. It has long
been recognized that such backaction noise places a funda-
mental limit on the sensitivity of physical measurements.4

However, the class of measurements known as quantum non-
demolition (QND) measurements partially circumvents this
problem by guaranteeing that the backaction noise does not
affect the results of future measurements of the same quan-
tity. The idea of a QND measurement is widely discussed in
the literature(for example, see Refs. 4–6). In a QND mea-
surement, the interaction Hamiltonian between system and
meter commutes with the internal Hamiltonian of the system:
an ideal QND measurement isrepeatablesince the backac-
tion noise does not affect the dynamics of the measured ob-
servable. In this paper, we are interested in a QND measure-
ment of a phonon number. The conjugate observable of the
number is phase, thus the measurement backaction in our
case will result in diffusion of the phase of the mechanical
oscillations. However, the scheme allows the complete deter-
mination of the oscillator excitation level and thus projects
the system onto a number state in an idealized limit.

The scheme for the QND measurement of a phonon num-
ber that we consider uses two anharmonically coupled modes
of oscillation of a mesoscopic elastic structure. The resonant
frequencies of these two modes are different. The higher-
frequency mode is the system to be measured, while the
lower-frequency oscillator serves as the meter(we refer to
this oscillator as an ancilla). The key idea of the scheme is
that, from the point of view of the readout oscillator, the
interaction with the system constitutes a shift in resonance
frequency that is proportional to the time-averaged excitation
of the system oscillator. This frequency shift may be detected
as a change in the phase of the ancilla oscillations when
driven on resonance. We show that this scheme realizes an
ideal QND measurement of a phonon number in an appro-
priate limit. To measure the phase of the ancilla oscillator, we
imagine a magnetomotive detection scheme so that the actual
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physical quantity measured is an electric current that couples
to the ancilla displacement. Thus our task is to understand
how the strong measurement of the current, represented by
the von Neumann projection scheme on the current operator,
yields information on the system phonon number, and in turn
affects the dynamics of the system via the indirect coupling
through the ancilla oscillator, and in the presence of the in-
evitable coupling of the ancilla and system oscillators to the
environment. This QND measurement scheme where a non-
linear potential provides a phase shift to one oscillator that
reflects the excitation of the other is analogous to the experi-
ment of Peil and Gabrielse,7 which demonstrated a QND
measurement of the excitation of a single trapped electron.
Theoretical discussions of such approximate QND measure-
ments of the excitation of an oscillator date back at least to
Unruh.8

In Sec. II, we introduce our model and construct the
Hamiltonian describing the two oscillators, the magnetomo-
tive coupling, and the coupling to the environment repre-
sented by baths of harmonic oscillators. For the ancilla os-
cillator displacement to directly indicate the system phonon
number, the time scale of the ancilla dynamics must be much
shorter than that of the system. This actually allows us to
adiabatically eliminate the ancilla operators to obtain dy-
namical equations for the system alone. Thus, in Sec. III, we
obtain a reduced master equation for the density matrix of
the system oscillator, which allows us to focus on the physics
of the system dynamics. This adiabatic elimination of ancilla
degrees of freedom is often considered in quantum optics.
However, the adiabatic elimination used in quantum optics is
at temperature zero, and we need to reformulate the method
for finite temperatures.

Once we know the system dynamics, we next focus on
obtaining the experimental outcome. Quantum mechanics al-
lows us to determine the state of the systemconditionedon
the measured currentIstd. The von Neumann projection pos-
tulate says that after a measurement, a quantum system in
some possibly mixed initial state is projected onto the eigen-
state corresponding to the measurement outcome. The con-
tinual measurement and projection of the currentIstd pro-
vides accumulating information on the system phonon
number, and correspondingly a projection onto phonon num-
ber states. The theory of quantum trajectories9–12 has been
developed to deal with such continuous measurements. In
Sec. IV we discuss such quantum trajectory equations for our
system. The method leads to a stochastic master equation for
the system density matrix, where the stochastic component
comes from the particular value of the measured current at
each time, which itself is a stochastic variable since it is the
outcome of a quantum measurement. These equations of mo-
tion for the system conditioned on a particular sequence of
measurement results allow us to investigate the possibility of
tracking the evolution of the system as it jumps between
number states due to its interaction with the thermal bath.
Some details of the formulation of the operators describing
the measurement current that are needed to derive the sto-
chastic master equation are given in the Appendix.

The main discussion of the physical implications of the
model is in Sec. V, where we consider the parameters that are
necessary to observe the oscillator jump between number

states. A reader not interested in the details of the derivation
could read Sec. V and the following sections after the de-
scription of the model in Sec. II. Finally, in Sec. VI we
conclude with a discussion of the feasibility of the scheme
based on current technology and future enhancements.

II. CONSTRUCTING THE HAMILTONIAN

A. The model

In this section, we introduce the model system and show
how the coupling between the system and ancilla approxi-
mates a QND coupling in an appropriate limit. We then de-
rive equations of motion that take into account the couplings
to the environment and the interactions that drive and moni-
tor the oscillations of the ancilla.

Consider a mesoscopic beam with rectangular cross sec-
tion. There are two orthogonal flexing modes that are not
coupled in the linear elasticity theory, but are coupled anhar-
monically. This coupling exists in nature between the two
orthogonal flexing modes of a single mechanical beam.
However, the coupling can also be controlled and engi-
neered: a similar coupling of bending modes in two elastic
beams has been proposed by Yurke.13 In this scheme, two
mesoscopic elastic beams with a rectangular cross section are
connected by a series of mechanical coupling devices. These
devices have the effect of allowing only one type of strain
(the longitudinal stretch) to pass to the other beam. In this
paper, we focus on the extent to which such mechanical de-
vices are able to realize a QND measurement and the con-
straints this places on the specifications of the device, and the
temperature at which the experiment is performed.

For convenience, we refer to the system of interest as
oscillator 0 and the ancilla as oscillator 1, and the corre-
sponding resonant frequencies of the two modes asv0 and
v1, respectively. The ancilla is driven at its resonant fre-
quency, and a measurement apparatus is attached to the an-
cilla. The whole structure is kept at a low temperatureT such
that"v0,kBT, where"=h/2p is Planck’s constant andkB is
Boltzmann’s constant. The oscillators are weakly coupled to
the environment. Figure 1 shows a schematic of our model.

B. System Hamiltonian

Converting the schematic model in the preceding section
into a tractable mathematical model and obtaining the system
dynamics requires some assumptions and simplifications.

FIG. 1. Schematic of a QND measurement using two coupled
mechanical oscillators.
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First, we focus on the anharmonic coupling and the limit
in which it satisfies the QND condition. In linear elasticity
theory, the two flexing modes, which are perpendicular to
each other, propagate independently without interacting. Be-
yond the linear approximation, these modes are coupled. Ex-
pansion of the elastic energy with respect to the strain tensor
is taken up to second order in the harmonic approximation.
By symmetry, the coupling between the modes first occurs at
fourth order, proportional tox0

2x1
2. So we expand the anhar-

monic terms up to quartic order to give

Hanh= "sl̃00x0
4 + l̃11x1

4d + "l̃01x0
2x1

2, s1d

wherel̃i j give the strengths of the nonlinear terms. The first
two terms in Eq.(1) are internal anharmonic terms. Under
the rotating-wave approximation(see below), these terms
cause a shift in the oscillator resonant frequencies and a non-
linear phase shift that depends on intensity(a Kerr nonlin-
earity) resulting in rotational shear of the state in the phase
space of the two oscillators. For the system oscillator, the
small shifts in the energy-level spacings are not important,
and can be ignored. The ancilla oscillator is externally
driven, and so the nonlinearity of this oscillator may become
large, for example leading to multistability for large enough
drive strengths. We will assume that the drive strength is
kept smaller than this range, so that again thex1

4 nonlinear-
ity does not play an essential role. However, thex0

2x1
2 cou-

pling plays an essential role in coupling the system and an-
cilla. Therefore, in the interests of a straightforward presen-
tation, we retain the nonlinear coupling given byl01 and
disregard the nonlinearities of the system and ancilla internal
Hamiltonians. A detailed analysis including noninteracting
nonlinearities and detuning in Ref. 14 has shown that in the
regime of strong damping of the ancilla that we will mostly
consider, the effect of these anharmonic terms will be negli-
gible for small detuning.

In terms of creation and annihilation operators, the Hamil-
tonian is nowH=H0+Vanh, with H0 the harmonic part,

H0 = "v0a0
†a0 + "v1a1

†a1, s2d

andVanh the anharmonic coupling,

Vanh=
1

4
"l01sa0

† + a0d2sa1
† + a1d2. s3d

We have defined the standard raising and lowering operators
for the oscillators,

ai = Îmivi/2"xi + iÎ1/2"mivipi , s4d

and ai
† is the Hermitian conjugate ofai. So far we have

ignored any coupling of the two oscillators to the environ-
ment so as to focus on the interaction of the two oscillators.

In order to perform a QND measurement ofa0
†a0, the

Hamiltonian of the oscillatorsH should satisfy the QND con-
dition

fa0
†a0,H0 + Vanhg = 0. s5d

To show that this condition is satisfied in an appropriate
limit, it is useful to move into an interaction picture with
respect toH0. If the frequencies of the two oscillators satisfy

v0−v1@l01 andvi @l01, then the time-dependent terms in
Vanhstd lead to rapid, small-amplitude oscillations ofai that
essentially average to zero over the time scales for which the
nonlinearity l01 is relevant. If we admit a time coarse-
graining over times longer than the mechanical oscillation
period, we may ignore the rapidly oscillating terms, an ap-
proximation known as the rotating-wave approximation
(RWA). Another intuitive explanation for the rotating-wave
approximation is that the conditionv0−v1@l01 means that
the differences in energy are so large that the energy noncon-
serving transitions are strongly suppressed.

Disregarding the energy nonconserving terms in the
Hamiltonian and then absorbing constant corrections to the
system and ancilla oscillation frequency into the definition of
v0 andv1, we obtain

Vanh
RWAstd = "l01a0

†a0a1
†a1. s6d

The constant term has been disregarded since it merely pro-
vides an overall phase. Note that having made the rotating-
wave approximation, the anharmonic coupling term com-
mutes with the observablea0

†a0, and so a QND measurement
can be achieved under the conditionv0−v1@l01.

36 Return-
ing to the Schrödinger picture, the HamiltonianH now can
be written as

HRWA = "v0a0
†a0 + "v1a1

†a1 + "l01a0
†a0a1

†a1. s7d

In the above rotating-wave Hamiltonian, an excitation of the
system oscillator leads to a frequency shift of the ancilla
oscillator. To detect the system excitation level, the ancilla is
driven on resonance and the phase shift of the oscillations is
measured. The driving of the ancilla may be written in terms
of the term in the Hamiltonian in the Schrödinger picture,

Hdrive = 2"Esa1 + a1
†dcosv1t, s8d

where the parameterE is used to characterize the strength of
the drive. In the interaction picture using the RWA for
v1.E, we get

Hdrive
RWA = "Esa1 + a1

†d. s9d

Now we add the coupling of thermal baths to the system
and ancilla. We employ a standard technique and model the
thermal baths(the surrounding environment) as an infinite
number of harmonic oscillators. The thermal baths are lin-
early coupled to the system or ancilla by coordinate-
coordinate coupling, i.e.,o j Aijxixj, wherexi is the system or
ancilla coordinate andxj is the coordinate of an oscillator in
the bath, with the indexj corresponding to different bath
oscillators. We will again use the rotating-wave approxima-
tion for the coupling since the couplings are weak.

The nature of the coupling with the measurement instru-
ment depends on the measurement scheme. Here we adopt a
magnetomotive detection scheme suggested by Yurkeet
al.15–17A metallized conducting surface on the ancilla oscil-
lator develops an electromotive force across it due to a per-
pendicular magnetic field and the oscillation of the beam.
The voltage developed depends on
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V = lB
dx1

dt
, s10d

whereV is the voltage,B is the magnetic field, the conductor
is of lengthl, andx1 is the displacement of the beam from its
equilibrium position. Depending on the resistanceR of the
conducting strip and the remainder of the circuit, this will
result in a current that is then measured.

In order to quantize this measuring device, we follow the
standard practice in quantum electronics and model this re-
sistance by a semi-infinite transmission line.18 This model
has been used in the context of mechanical measurements
(see Refs. 19 and 20) and is in fact mathematically the same
as the “Rubin model.”21,22 This is certainly a simplified
model of an actual detection circuit which essentially as-
sumes that the noise in the circuit is broadband and Gauss-
ian. The transmission line will be considered to be at a tem-
perature corresponding to the effective noise temperature of
the detection circuit and this noise will affect both the sensi-
tivity and the heating of the ancilla and system oscillators.
More realistic quantum-mechanical models of amplifier cir-
cuits can be found in Ref. 23, for example. Our final model
for the QND setup will be fairly robust to the precise detec-
tion circuit. The resulting current operator is

I ~ o
n

bd,n + bd,n
† , s11d

wherebd,n are the lowering operators for the modes of the
transmission line, and the proportionality constant, which is
not important for our results, depends on the circuit param-
eters. For a linearly coupled system-bath measurement
within the rotating-wave approximation, the Hamiltonian de-
scribing the coupling between each measurement current
mode and the ancilla is proportional tobd,n

† a1+bd,na1
†. The

coupling to the thermal bath modes has the same mathemati-
cal structure. In the rotating-wave approximation, the differ-
ence between a coordinate-coordinate coupling and a
momentum-coordinate coupling can be absorbed into the
definition of the phase of the various raising and lowering
operators. As is usually done, for later convenience we will
include a phase factor ofp /2 so that the coupling to the
baths and measurement current takes the latter form.

The final Hamiltonian for our model is then

H = "v0a0
†a0 + "Esa1 + a1

†d + "o
s

o
n

`

vs,nbs,n
† bs,n

+ "l01a0
†a0a1

†a1 + i"sQ†a0 − Qa0
†d + i"sG†a1 − Ga1

†d

+ i"fD†a1 − Dstda1
†g, s12d

whereG ,D ,Q have the formon
`gssvndbs,n, and the index s

denotes the three different baths: the thermal bath coupled to
the system(0), the thermal bath coupled to the ancilla(1),
and the measurement bath coupled to the ancilla(d). The
strength of the coupling to the bath modes is given by the
coefficientsgssvnd. Later, we will derive the relationship be-
tween these coefficients and the corresponding oscillator
damping rates or quality factors.

III. DYNAMICS OF THE SYSTEM

We use the dynamics described by Eq.(12) to understand
the measurement process. In this section, we first find a mas-
ter equation that describes the evolution of the system and
ancilla alone without explicitly describing the state of the
environment. Secondly, we further simplify this equation by
making use of the difference in time scales between the sys-
tem and ancilla to obtain a master equation for the system
oscillator alone by means of adiabatic elimination. This al-
lows us to study the effect of the QND measurement cou-
pling on the system.

A. Master equation

We develop a master equation for the density operator of
the system alone by integrating out the bath degrees of free-
dom. Because we are interested in high-Q oscillators weakly
coupled to the baths, we employ a rotating-wave approxima-
tion and the Markov approximation that the memory time
scale of the bath is short. In this regime, the rotating-wave
master equation accurately describes the dynamics on time
scales longer than an oscillation period, and the resulting
master equation preserves the positivity of the density ma-
trix. The derivation of such master equations is widely dis-
cussed in the literature; see, for example, Carmichael,11

Walls and Milburn,6 and Caldeira and Leggett.24 Note that
Caldeira and Leggett do not make the rotating-wave approxi-
mation (which we adopt from the quantum optics literature)
but instead make a high-temperature approximation; the two
equations agree in the overlap of their domain of validity
(high temperature and weak coupling to the bath). However,
the Caldeira-Leggett master equation can only be guaranteed
to preserve the positivity of the density operator in the limit
of high temperature.

Assuming that the environment and measurement baths
are in thermal equilibrium, the master equation for the re-
duced density operatorr describing the state of the system
and ancilla in the interaction picture takes what is known as
Lindblad form,

dr

dt
= −

i

"
f"Esa1

† + a1d + "l01a0
†a0a1

†a1,rg+ nsN0 + 1dDfa0gr

+ nN0Dfa0
†gr + ksN1 + 1dDfa1gr + kN1Dfa1

†gr, s13d

where

Dfxgr = 2xrx† − x†xr − rx†x,

andNi are the Bose-Einstein factors at frequencyv0 for N0
andv1 for N1. The first term in Eq.(13) involving the com-
mutator describes the coherent driving of the ancilla oscilla-
tor and the nonlinear coupling between the two oscillators in
the rotating-wave approximation. The remaining terms de-
scribe the dissipative interactions with the various baths. The
coefficientn is

n ; p%b0sv0dugb0sv0du2,

where%b0sv0d is the density of states of the bath coupled to
the system at frequencyv0. It can be experimentally ob-
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tained from the quality factor of the system oscillatorQ0 as
n=v0/2Q0. The coefficientk is the corresponding damping
rate of the ancilla, with contributionsh from the coupling to
the environment andm from the measurement bath. Both
these rates can be expressed in terms of the bath density of
states at frequencyv1 in exactly the same way as forn, and
k=h+m. The terms containing a factorsNi +1d describe the
spontaneous and stimulated emission of phonons into the
thermal bath while the ones withNi correspond to absorption
of phonons.

The master equation(13) can in principle be numerically
integrated. However, we will make some further approxima-
tions in order to derive a master equation for the system
dynamics alone and show that in some limit the readout sys-
tem coupling results in the phase diffusion that is required as
the backaction for the QND measurement, with no extra
noise above this quantum limit. To do this, we assume that
the ancilla is strongly damped. In this limit, the ancilla re-
laxes rapidly to a state consistent with the instantaneous sys-
tem state. As a result, its dynamics are slaved to the system
oscillator and can in fact be eliminated from the equations of
motion. Experimentally, this is the limit in which the dis-
placement of the ancilla directly reflects the system behavior.
This adiabatic eliminationis described in the following sub-
section. The final result of this analysis is Eq.(25) below.

Note thatn ,k are the widths of the oscillator resonances,
and these should be taken into account when assessing the
validity of the rotating-wave approximation. In the presence
of the coupling to the baths, the rotating-wave approximation
is only valid if v0−v1 is much greater than the linewidth of

the oscillators, i.e.,v0−v1@n ,k. This condition can be un-
derstood as not allowing non-energy-conserving transfers of
a phonon between the two oscillators.

B. Adiabatic elimination

For a strongly damped ancillask@nd, the driven ancilla
rapidly relaxes to a state that oscillates with a phase deter-
mined by the current system phonon number. In the interac-
tion picture, this is a displaced thermal state, i.e., a state with
variance of position and momentum equal to those of a ther-
mal state but with nonzero expectation values of position and
momentum consistent with the driving and damping of the
oscillator. It will be useful to transform the equations of mo-
tion in such a way as to make a perturbative expansion
around this steady state. The basic idea is to transform the
origin of phase space such that the ancilla steady state for the
transformed master equation is a thermal state. This transfor-
mation will essentially remove the driving term in the master
equation. This is the approach of Wiseman and Milburn,25

who study adiabatic elimination in a similar model. While
they assume zero temperature and therefore end up with a
perturbation expansion about the displaced ancilla ground
state, we must generalize their techniques to finite tempera-
ture.

Following Wiseman and Milburn, we use the displace-
ment operator,Dsad=expfaa1

†−a*a1g, with a=−iE /k. The
transformed system state isr̃;DsadrDsad†, and we may
write the master equation forr̃ as

ṙ̃ = DsadṙDsad† = − i uau2l01fa0
†a0,r̃g − il01fa0

†a0a1
†a1,r̃g − il01fa0

†a0saa1
† + a*a1d,r̃g+ ksN1 + 1ds2a1r̃a1

† − a1
†a1r̃ − r̃a1

†a1d

+ kN1s2a1
†r̃a1 − a1a1

†r̃ − r̃a1a1
†d + nsN0 + 1ds2a0r̃a0

† − a0
†a0r̃ − r̃a0

†a0d + nN0s2a0
†r̃a0 − r̃a0a0

† − a0a0
†r̃d. s14d

In this master equation, the excitation of the ancilla oscilla-
tions leads to a frequency shift of the system oscillator de-
scribed by the first three terms on the right-hand side of this
equation. The first term is due to the classical mean value of
the ancilla oscillator energy and is just a constant shift in the
system oscillation frequency. We may move to an interaction
picture at this shifted frequency, the most convenient inter-
action picture in which to perform the adiabatic elimination.
The next two terms describe the effect of the fluctuations in
the ancilla excitation. The thermal bath coupling terms(the
last four groups of terms) are the same as before.

The adiabatic elimination will hold when the terms pro-
portional tok in Eq. (14) dominate in the ancilla dynamics.
Thus, the adiabatic elimination is valid in a strongly damped
regime such that

l01uau
k

,
n

k
. ! 1. s15d

We are assuming that the ancilla oscillator relaxes faster than
the system oscillator as well as that the nonlinear dynamics
are weak compared to the damping of the ancilla oscillator.
For the consistency of the following treatment, it will also be
necessary to havel01N1/k.e2. This requirement follows
from the second term(the nonlinear coupling term) on the
right-hand-side of the master equation. This constraint can be
achieved consistent with Eq.(15), for example, by leavinga
finite and choosingN1,l01/k.e, a regime of low tempera-
ture and moderate nonlinearity. The approximations are also
valid at arbitrary temperature in the limit of strong driving
and weak nonlinearity such thatl01/k.e2 and a.e−1
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hold.37 Here the scaling of the driving strength is chosen to
preserve the measurement sensitivity which will scale with
l01a /k. In this regime, the frequency shift of the system
oscillator becomes large.

As mentioned above, in this displaced frame the state of
the readout oscillator is close to a thermal state and we ex-
pandr̃ in the form

r̃ = r0 ^ rN1
+ r1 ^ a1

†rN1
+ r1

†
^ rN1

a1 + r2 ^ a1
†rN1

a1 + r28

^ a1
†2rN1

+ r28
†

^ rN1
a1

2 + Ose3d. s16d

Here theri , i =0,1,2. . . act on thesystem oscillator and the
subscripts indicate orders of magnitude ine. The scalings of
the different parameters withe have been chosen to guaran-
tee the consistency of the expansion. The quantityrN1

is the
thermal density matrix for the ancilla, which in terms of the
average excitation numberN1 is

rN1
= o

n=0

1

N1 + 1
S N1

N1 + 1
Dn

unlknu. s17d

This is the steady state of the master equation for an oscilla-
tor coupled to a thermal bath with temperature given byN1.
We have restricted Eq.(16) to normal ordered terms using
the following identities, which can be proved from this ex-
pression forrN1

:

rN1
a1

† =
N1

N1 + 1
a1

†rN1
, s18d

a1rN1
=

N1

N1 + 1
rN1

a1. s19d

These normal ordering identities are the key to generalizing
the arguments of Wiseman and Milburn to the finite-
temperature case. Using Tr1srN1

d=1 and Tr1sa1
†rN1

a1d=N1

+1, it can be seen that the system density matrix after tracing
out the ancilla state is

rs = Tr1hr̃j = r0 + sN1 + 1dr2. s20d

Now we substitute Eq.(16) into Eq. (14) and, using the
normal ordering identities, derive equations of motion for the
operatorsri, retaining terms in the evolution ofr0 andr2 up
to second order ine,

ṙ0 = − il01fa*a0
†a0r1 − ar1

†a0
†a0g + 2ksN1 + 1dr2 + L0r0

+ kOse3d, s21d

ṙ1 = − il01a0
†a0ar0 + il01a

N1

N1 + 1
r0a0

†a0 − kr1 + kOse2d,

s22d

ṙ2 = − il01a0
†a0Far1

† + a* N1

N1 + 1
r1G + il01Fa

N1

N1 + 1
r1

†

+ a*r1Ga0
†a0− 2kr2 − il01

N1

N1 + 1
fa0

†a0,r0g + kOse3d,

s23d

whereL0r0 refers to the damping of the system oscillator
described by the last two terms in Eq.(14). Whenk is large,
the equation forr1 is strongly damped and quickly decays to
the steady state. So we perform adiabatic elimination by set-
ting ṙ1=0 and obtaining an expression forr1,

r1 = − i
l01

k
Faa0

†a0r0 − a
N1

N1 + 1
r0a0

†a0G + Ose2d. s24d

Substituting Eq.(24) into Eqs.(21) and (23) and using the
definition of the reduced density matrix Eq.(20), we find, up
to second order ine, the master equation for the reduced
density matrix,

ṙs = −
l01

2 uau2s2N1 + 1d
k

fa0
†a0,fa0

†a0,rsgg

− ihv0 + l01suau2 + N1djfa0
†a0,rsg + nsN0 + 1ds2a0rsa0

†

− a0
†a0rs − rsa0

†a0d + nN0s2a0
†rsa0 − rsa0a0

† − a0a0
†rsd.

s25d

This is the main result of this section. Note that the effect of
the adiabatic elimination has essentially been to replacea1
by l01uaua0

†a0/k, an indication that by measuring the ancilla
oscillations it will be possible to obtain information about the
system phonon number.

IV. QUANTUM TRAJECTORIES

Equation(25) describes the statistical behavior of the sys-
tem due to the coupling to the thermal bath and the indirect
coupling to the ancilla thermal bath and the measurement
bath, but does not tell us how the measured current reflects
the system state, or about the correlations of the system dy-
namics with particular measurement outcomes. In this sec-
tion, we derive an equation of motion for the state of the
system conditioned on a particular sequence of measurement
outcomes. This equation is termed aquantum trajectory,9–12

and results from continually projecting onto eigenstates of
the current. Since the current effectively measures phonon
number, this measurement process will tend to force the sys-
tem towards a pure number state that is consistent with the
measurement current. The time scale for this to occur will
depend on the coupling of the system to the measurement
apparatus, which is in turn connected to the sensitivity of the
measurement. On the other hand, the coupling of the system
to a thermal bath will lead it to absorb and emit energy from
the bath. Thus, in order to determine which number state the
system is in and track its evolution, it must be possible to
distinguish between one number state and the next in a time
that is short compared to the time scale over which phonons
are absorbed from and emitted into the thermal bath.
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A quantum trajectory is constructed as follows. Over each
infinitesimal time interval, the system and the measurement
bath states become weakly entangled via the interaction
Hamiltonian. As a consequence, at each time instant, the
state of the system influences the distribution of the possible
values of the currentI that may be obtained in the measure-
ment. In turn, von Neumann projections of the entangled
states allow us to calculate the effect of the measurement of
the current on the system state. The appropriate projection is
onto the current eigenvector corresponding to the measured
current value. This results in a stochastic master equation for
the state evolution. To implement the quantum-trajectory ap-
proach, we perform a simulation by picking the measure-
mentsIstd from the correct probability distribution and fol-
lowing the corresponding evolution of the system state. The
Istd curve produced by such a simulation is representative of
a single experimental run, and is a useful predictor of what
the experimentalist might see. There will be a signal contri-
bution that reflects the system state, as well as a white noise
background arising from both thermal and quantum noise.

A. Description of the measurement

While quantum trajectories are discussed in general at
zero temperature in the quantum optics literature, Wiseman
has discussed the quantum-trajectory equations for homo-
dyne detection at finite temperature(Ref. 12, Sec. 4.4.1). The
demodulated current that reflects changes in the phase of the
ancilla oscillation in our setup is mathematically analogous
to homodyne detection at finite temperature, and so we can
adopt these results here.

The measurement bath is described by the boson opera-
torsbd,n. Since the measurement bath is assumed to be large,
the finely spaced modes with a smooth density of states lead
to a short memory time, a result known as the Markov limit.
To exploit this, it is useful to introduce a global bath operator
which captures the combination of bath modes that interact
with the ancilla oscillating at frequencyv1 at timet (see the
Appendix for the derivation of these results),

Bt =
1

Î2prdsv1dgdsv1d
o

n

gdsvndbd,ne
−isvn−v1dt, s26d

and has time-local commutation rules in the Markov ap-
proximation,

fBt,Bt8
† g = dst − t8d. s27d

The operatorBt should be considered to be a linear combi-
nation of Schrödinger picture operators, with the phase fac-
tors of the coefficients depending on the parameter.26 In
quantum optics, this is termed the input field operator and,
roughly speaking, describes the combination of bath modes
interacting with the system at timet. In terms of these op-
erators, the current Eq.(11) (appropriately scaled to remove
proportionality constants) is

Istd = Bt + Bt
†, s28d

and the interaction Hamiltonian between the ancilla and the
measurement bath in the interaction picture is

Hint
I std = − i"Î2msBta1

† − Bt
†a1d s29d

with m=p%dsv1dugdsvdu2 the ancilla damping rate coming
from the measurement bath coupling as before.

The idea of the calculation is to consider the interaction of
the ancilla with the bath at timet, represented by the operator
Bt, over a small time intervalDt. It is supposed that each
“element” in the time sequence of the bathBt is initially
described by a thermal state. Over the intervalDt, the ancilla
and bath states become weakly entangled. Measurement of
the current(i.e., the bath operatorBt+Bt

†) then finds a value
of the current equal to an eigenvalueI of the current opera-
tor, with the corresponding eigenstateuIl, with a probability
distributionPsId given by the density matrix of the entangled
state in the usual way,

PsId = kI urst + DtduIl. s30d

The measurement also projects the density matrix onto the
eigenstateuIl,

r → uIlkI urst + DtduIlkI
kI urst + DtduIl

. s31d

Since the value of the current measured is a stochastic vari-
able, this projection adds a stochastic component to the evo-
lution of the density matrix.

To follow the evolution over a timeDt, it is useful to
introduce the normalized operator

DB = FE
0

Dt

BtdtGYÎDt . Bt
ÎDt, s32d

which satisfies the commutation rule

fDBstd,DB†stdg = 1. s33d

At time t, the density matrix representing the ancilla and the
segment of the measurement bath represented byDBstd can
be written as a direct product of the system plus ancillarstd
and bathrbstd density matrices,

r̄std = rstd ^ rbstd, s34d

and rbstd is a thermal state. To lowest order, the evolution
under the interaction Eq.(29) gives

r̄st + dtd = rstd ^ rbstd

+ Î2mÎDtfDB†a1 − a1
†DB,rstd ^ rbstdg + OsDtd.

s35d

The second term on the right-hand side of this equation is the
leading-order term in the weak entangling of the state, and
will lead, after projection, to the stochastic part of the
density-matrix evolution. Using theDB notation has made
theOsÎDtd size of this term explicit. To derive the determin-
istic part of the evolution equation, we would need to keep
theOsDtd terms, but since these are already known(the mas-
ter equation in Lindblad form) we will not do this here.

The scheme is now to project this density matrix onto an
eigenstate ofDB+DB† chosen with a probability given by
r̄st+dtd. Because of the weak coupling of the bath with the
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system, this will give a small additional contribution(actu-
ally proportional toÎDt) to the system density matrix de-
pending on the value of the current measured. Since the com-
bination of operatorsDB+DB† is just the displacementX of
the harmonic oscillator represented by the operatorDB, this
projection is most easily done by first transforming the state
of the bath into a Wigner function representation(see, for
example, Ref. 27). At time t, the bath oscillator described by
DBstd is in a thermal state and the distribution ofX is a
Gaussian centered atX=0 and with width 2N1+1
=coths"v1/2kBTd. Following the evolution of the state
shows that at timet+Dt and toOsÎDtd, the distribution ofX
after the evolution corresponding to the operation Eqs.(31)
and(35) remains Gaussian and with the same width, but now
centered aroundÎ2m Trrstdha1+a1

†jDt. This means that the
variableÎDtX is a Gaussian random variable given by

ÎDtX = Î2mka1 + a1
†lDt + Î2N1 + 1dW, s36d

with dW a Wiener increment withdW2=Dt. These results
give us expressions for the measured current and the effect of

the measurement on the system density matrix.
Since the current isX/ÎDt, the first important result is that

the measured current integrated over timeDt is

IstdDt = Î2mka1 + a1
†lDt + Î2N1 + 1dW, s37d

or in differential form

Istd = Î2mka1 + a1
†lstd + Î2N1 + 1jstd, s38d

wherejstd=dW/dt represents white noise with correlations

kjstdl = 0, s39d

kjstdjst8dl = dst − t8d. s40d

The second result is for the increment of the system density
matrix after evolution throughDt and projection by the mea-
surement[cf. (Ref. 12) Eq. (4.113)],

drststd = kXur̄st + DtduXl/psXd=ÎDtX
Î2m

2N1 + 1
fsN1 + 1dsa1rst + rsta1

†d − N1sa1
†rst + rsta1

†d− Trha1rst + rsta1
†jrstg + OsDtd. s41d

Replacing the stochastic variableX by the expression Eq.(36) and retaining only theOsÎDtd term gives

drst =Î 2m

1 + 2N1
fsN1 + 1dsa1rst + rsta1

†d − N1sa1
†rst + rsta1d − ka1 + a1

†lrstgdW+ OsDtd. s42d

Equation(42) is the stochastic term that must be added to the density-matrix evolution of Eq.(13) to give us the stochastic
master equation for the density matrix conditioned on the measurement outcome. Note that the noise termdWappearing in Eq.
(42) is the same as that appearing in Eq.(37), so that it is related to the actual current measuredIstd by Eq. (37),

dW= fIstd − Î2mka1 + a1
†lgDt/Î1 + 2N1. s43d

B. Adiabatic elimination on the stochastic master equation

Just as we did for the master equation, it is possible to adiabatically eliminate the ancilla coordinates and find a stochastic
master equation for the system alone. Using the same expansion for the conditioned density matrix Eq.(16), we can determine
stochastic equations forri

st from Eq. (42). We obtain the set of differential equations,

dr0
st =Î 2m

2N1 + 1
hsN1 + 1dsr1

st + r1
st†dkr1

st†+ r1
stlr0jdW+ Osdtd, s44d

dr1
st =Î 2m

2N1 + 1
hsN1 + 1ds2r28

st + r2
std − kr1

st†+ r1
stlr1

stjdW, s45d

dr2
st = −Î 2m

2N1 + 1
hkr1

st + r1
st†lr2

stjdW. s46d

We have written only the stochastic contributions; the terms proportional todt are the same as in the adiabatic elimination on
the ordinary master equation.

Now we will do the adiabatic elimination as we did for the deterministic master equation. As before, we wish to setdr1
st to

zero. However, sincedr1
st is stochastically driven, this will not be precisely true even in the steady state. In order to replacer1

st

by its mean value at long times, it is necessary to estimate the size of the fluctuations resulting from thedW term. Following
the analysis of Doherty and Jacobs,28 we integrate the stochastic term over the decay time of the ancilla oscillator and compare
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its root-mean-square magnitude with the deterministic terms. Consider the full equation fordr1,

dr1
st = − il01aFa0

†a0r0
st −

N1

N1 + 1
r0

sta0
†a0Gdt− kr1dt +Î 2m

2N1 + 1
hsN1 + 1ds2r28

st + r2d− kr1
st + r1

st†lr1
stjdW+ kOse3ddt. s47d

We integrate this over a timeDt,1/k and use the fact that the mean values ofr0,r1 must be slowly varying over this time
to obtain

Dr1 =E
0

Dt

dr1 s48d

.− il01aFa0
†a0r0 −

N1

N1 + 1
r0a0

†a0GDt − kr1Dt+Î 2m

2N1 + 1
hsN1 + 1ds2r28 + r2d− kr1 + r1†lr1jE

0

Dt

dWst8d + Ose3d. s49d

The random numberDW=e0
DtdWst8d is Gaussian distributed with mean zero and varianceDt,1/k,29 thus the root-mean-

square size ofDW is 1/Îk. As a result, the stochastic term in the update ofr1 scales likee5/2 and is negligible in comparison
to the deterministic terms, which scale likee. As a result, Eq.(24) holds exactly as before. Using Eq.(20) and ia=−ia*

= uau, we finally obtain the stochastic master equation(SME) for the system,

drs = −Hl01
2 uau2s2N1 + 1d

k
†a0

†a0,fa0
†a0,rsg‡Jdt − ihv0 + l01suau2 + N1djfa0

†a0,rsgdt+ nsN0 + 1ds2a0rsa0
† − a0

†a0rs − rsa0
†a0ddt

+ nN0s2a0
†rsa0 − rsa0a0

† − a0a0
†rsddt− Î2kfa0

†a0rs + rsa0
†a0 − 2ka0

†a0lrsgdW, s50d

where

k ; ml01
2 uau2/s2N1 + 1dk2. s51d

Again, the noisedW is related to the measured current,
which using Eq.(24) can be written in terms of the system
phonon number,

IstdDt = Î2N1 + 1s2Î2kka0
†a0lDt + dWd. s52d

V. RESULTS

To further understand the consequences of the stochastic
density-matrix equation(50), we consider a case in which
the initial state is a mixture of number states,rs
=onpnunlknu. (A thermal state is an example of such a state.)
The solution of the stochastic master equation, Eq.(50), re-
mains a mixture of number states if the initial state is a
mixture of number states. For such an initial state, the sto-
chastic master equation can be reduced to an equation for the
weightspn, which takes the form

dpn = − 2nsN0 + 1dfnpn − sn + 1dpn+1gdt− 2nN0fsn + 1dpn

− npn−1gdt − 2Î2ksn − o
n8

n8pn8dpndW. s53d

Since mixtures of number states are invariant under changes
of phase and the number states are eigenstates of the Hamil-
tonian, neither the phase-diffusion term nor the Hamiltonian
terms in the stochastic master equation contribute to the evo-
lution of the phonon-number distribution. It can also be
shown that this system of equations also describes the evo-
lution of the phonon-number distributionpn=knurunl for an

arbitrary (not necessarily diagonal) initial staters0d.
Equation(53) is our central result for analyzing the be-

havior of the measurement protocol. The first two terms of
Eq. (53) containingdt describe emission into and absorption
from the thermal bath coupled to the system. We will see that
the second, stochastic, term tends to concentrate the distribu-
tion psnd onto a single value ofn. The two effects are char-
acterized by the two time scales,n−1 andk−1, and the result-
ing behavior depends on the ratio of these two times. We will
discuss the competition by calculating the occupation num-
ber of the system,ka0

†a0lstd, which is given in terms ofpn

from numerical simulations of Eq.(53) by

ka0
†a0lstd = o

n

npnstd. s54d

First, we turn off the stochastic component and consider
the solutions given by the deterministic part of Eq.(53).
Figure 2 is a plot fork=0 starting from two different initial
statesu1l andu2l and for a bath temperature corresponding to
an average occupation numberN0=1.62. The plot shows that
the deterministic terms in Eq.(53) drive the system towards
a mixed (thermal) state, so that the ensemble average of
ka0

†a0lstd gradually reaches the thermal average at the bath
temperature. This is true regardless of the initial state. Note
that the deterministic part of Eq.(53) also describes the av-
erage over all measurement outcomes even for nonzerok,
since the stochastic term averages to zero. We can define the
characteristic time the system resides in a given number
state, which we call the dwell timetdwell, as the reciprocal of
the initial transition rate given by Eq.(53) with k=0,
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tdwell = Udpn

dt
U

pns0d=1
=

1

2nfN0sn + 1d + sN0 + 1dng
. s55d

Note that the dwell time depends on the initial staten, and
also on the temperature of the bath throughN0.

We turn now to the dynamics resulting from the measure-
ment process in the absence of coupling to the thermal bath.
Figure 3 shows results forka0

†a0lstd for a simulation of Eq.
(53) with n=0 and an initial condition of a thermal state.
Figure 4 shows the individual probabilitiespn for n=0,1,2,3,
for the same simulation. All number states are present ini-
tially, but eventually the system is projected onto stateu1l in
this simulation. In other runs, with different random numbers
for the stochastic term, different final states result, as ex-
pected. The plots show that the stochastic term tends to
project the system state onto a pure number state on a time
scale of orderk−1. We call this time the collapse timetcoll.
Since no coupling to the thermal bath is present in these
simulations, once projected onto a number state, the state is
stationary. The collapse onto a number state can actually be
shown analytically using the solution of the system of Eq.
(53) due to Jacobs and Knight.30

For the phonon numberka0
†a0lstd to take on discrete val-

ues with both the thermalization by the coupling to the bath
and the projection by the measurement process present, we
needtdwell* tcoll. This is illustrated in Fig. 5, which shows
results for the casestdwell@ tcoll andtdwell! tcoll with the fixed

value of N0=1.62. We use values ofk/n=250 giving
tdwell/ tcoll=153 for stateu0l and tdwell/ tcoll=42.4 for stateu1l,
and k/n=5 giving tdwell/ tcoll=3.06 for state u0l and
tdwell/ tcoll=0.85 for stateu1l. The jumps in the occupation
number are clearly evident in the former case, but are not
seen in the latter case. The discreteness in the phonon
number is shown more clearly by plotting histograms
of ka0

†a0lstd, Fig. 6, again using a fixed value ofN0=1.62
but with different values ofk/n equal to 150 and 15.(A bin
width Dka0

†a0l=0.1 is used.) The clustering of theka0
†a0lstd

values around integral values is clearly evident fork/n
=150, is still identifiable fork/n=15, and is completely ab-

FIG. 2. Plot of the solution of Eq.(53) without the stochastic
component,k=0, with the initial stateu1l (solid line) and u2l
(dashed line).

FIG. 3. A plot of a solution to Eq.(53) with n=0 with an initial
state that is thermal.

FIG. 4. Plot ofpnstd for a simulation of Eq.(53) with n=0 for
the statesu0l , u1l , u2l , u3l. The initial state is a thermal state with the
average occupation number 1.63. The figure is for the same simu-
lation as in Fig. 3.
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sent fork/n=3. The increasing sharpness of the jumps with
larger k/n can be seen in a more quantitative manner by
plotting the standard deviation of the phonon number from
integer values, the time and ensemble average ofuka0

†a0lstd
−Intka0

†a0lstdu2, as a function ofk/n (see Fig. 7).
Sincetdwell is dependent on the temperature, the condition

tdwell* tcoll effectively places a limit on the temperature of
the system oscillator even for largek. Settingn=N0 in Eq.
(55) for tdwell, this inequality gives the condition on the tem-
perature for jumps in the number to be seen,

nN0sN0 + 1d/2k & 1. s56d

In order to keep the same resolution for observing clear
jumps as at low temperature,k/n must be increased as tem-
perature increases. This is not an easy task for the experi-
menters: for example, for an oscillator with 1 GHz resonant
frequency, which is the highest frequency currently reported
for a mesoscopic oscillator,3 at T=0.1 K the average occu-
pation number isN0=1.62. When the temperature is raised to
T=1 K, the value rises toN0=20. Thus if we demand the
same resolution for jumping in both cases, the sensitivity of
the measurement at the higher temperature must be increased
by a large factor. This is illustrated by Fig. 8, which shows
ka0

†a0lstd over time for different temperatures corresponding
to N0=1.62 for k/n=150 andN0=20 for k/n=1850. The
productnN0/k has been kept constant at 0.0108 in order to
provide the same resolution for the jumps. Also notice from
Eq. (55) that tdwell decreases with the system staten, making

it difficult to recognize the discrete jumps when the system
state is at highern.

We have so far considered the possibility of observing
discrete occupation numbers in terms of the behavior of the
variableka0

†a0lstd. In actual practice, the occupation number
must be inferred from the measured currentIstd, and is ob-
scured by the noise in this variable. A simple scheme to
reduce the effect of the noise is to average the signal over a

FIG. 5. The evolution of the phonon numberka0
†a0lstd given by

Eq. (53) usingN0=1.62 andk/n=250(first panel) andk/n=5 (sec-
ond panel).

FIG. 6. Histogram ofka0
†a0lstd for a long simulation withk/n

=150 andN0=1.62 (first panel) andk/n=15 (second panel).

FIG. 7. The deviation of ka0
†a0lstd from integral values

as a function ofk/n. The deviation is defined as the average
of uka0

†a0lstd−Intka0
†a0lstdu2.
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sliding window. We can define the measurement timetm as
the averaging time required to give the unit signal-to-noise
ratio. Thus we equate the signalS, given by averaging the
current for unit phonon numberka0

†a0l=1, over the measure-
ment time,

S=KE
0

tm

dQ̃L = 2Î2N1 + 1Î2ktm, s57d

with the noiseN over this averaging time,

N =ÎKE
0

tm

dQ̃2L = Î2N1 + 1tm
1/2. s58d

SettingS/N=1 gives the measurement time

tm =
1

8k
. s59d

For jumps in the measured phonon number to be detected in
the current, we would needtdwell* tm. Notice that the mea-
surement time and the collapse time are comparable. This
means that if the experimenter can infer the system number
state through the measurement current, then the system is
actually projected to that state on the same time scale. The
results for different averaging timesDt are shown in Fig. 9.
For kDt equal to 4.5 or 7.5, the averaging is sufficient to
display the steps inka0

†a0lstd without too much rounding of
the transitions.

The simple averaging is not actually the optimal way to
extractka0

†a0lstd from Istd. In principle, a better approach is

to use the stochastic master equation to reconstruct the dy-
namics of the system given the initial ensemblersst0d and the
measured currentIstd. This can be seen more readily if we
rewrite Eq.(52) as

dW=
1

Î2N1 + 1
hIstd − 2Î2kka0

†a0lstdjdt. s60d

In our simulations we drawIstd at random from the appro-
priate distribution and find the stochastic density matrixrs.

FIG. 8. Evolution ofka0
†a0lstd at a temperature corresponding to

N0=1.62 (first panel) and N0=20 (second panel), with nN0/k
=0.0108 and from an initial stateu2l.

FIG. 9. Filtered current using a running average over various
window sizes, for parametersk/n=250 andN0=1.62. The dotted
line is ka0

†a0lstd given by the stochastic density matrix. The current
was first averaged over a time interval ofkDt=0.15. First panel:
current observed; second panel: window sizekDt=4.5; third panel:
window sizekDt=7.5; fourth panel: window sizekDt=10.5.
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However, usingIstd from experimental data, the experi-
menter can in principle propagate Eq.(53) using Eq.(60)
and then can estimate the phonon number at each time from
Eq. (54). This procedure is itself a low pass filtering that
reduces the noise on the measurement current, corresponding
to the optimal filtering for our model of the system.33,34

VI. PARAMETERS AND CONSTRAINTS

The results of the previous section show that a large value
of the ratio k/n is crucial. To analyze the interplay of the
parameters of an experimental realization, we simplify the
expression fork/n by assuming that most of the damping of
the ancilla comes from the necessary coupling to the mea-
surement device, rather than from the extra thermal bath, i.e.,
m.k. Then using the expression ofk from Eq. (51) and n
=v0/2Q0, we get

k

n
. 4s2N1 + 1d−1Q0Q1

v1

v0
Sl01

v1
D2

uau2. s61d

Equation(61) shows that the success of the measurement
procedure is favored by large oscillator quality factors, large
driven responseuau, and a large value of the anharmonicity
coupling factorl01/v1. In addition, as we have seen, detect-
ing individual jumps becomes harder as the temperature in-
creases. Increasing the quality factors of mesoscopic oscilla-
tors is an active area of research. Currently, values of order
103–104 seem possible. If these could be raised to the values
characteristic of more macroscopic oscillators of the same
material, of order 106 or even higher, the detection of indi-
vidual phonons would become correspondingly easier. The
frequency ratiov1/v0 appearing in Eq.(61) must be less
than unity for our detection scheme, but will probably not be
too small because of geometry constraints. Thus the main
parameters available to optimize the experimental geometry
are the anharmonicity factorl01/v1 and the dimensionless
measure of the driven displacement of the ancilla,uau2 (the
number of phonons in the driven state). We now consider
these factors in more detail.

A. Anharmonicity coefficient

The interaction Hamiltonian for the system and ancilla
oscillators Eq.(7) can be written

HRWA = "v0a0
†a0 + "fv1 + l01n0ga1

†a1, s62d

with n0 the system phonon number. This equation implies
thatl01 can be estimated as the frequency shift of the ancilla
oscillator for a single quantumsn0=1d of the system oscilla-
tor.

For the prototype geometries using the two orthogonal
flexing modes of a single beam, or parallel flexing modes of
two longitudinally coupled beams, the nonlinear coupling
arises from geometrical effects. At second order, the trans-
verse displacement in one mode gives a longitudinal strain,
which then changes the frequency of the second mode. The
strain generated by the flexing motion and the frequency
shift associated with this strain can be derived using elastic-
ity theory, and have been calculated by Harrington and

Roukes.31 A demonstration of such frequency shift detection,
and direct measurement ofl01 between two coupled beams,
have recently been reported.32 The longitudinal strain pro-
duced by a single quantum in the fundamental flexing motion
is

x .
"

m0v0

1

L0
2 , s63d

where m0 is the mass andL0 is the length of the system
beam. Then the ancilla frequency shift caused by this strain
is

l01 = v1
z

2p2x
L1

2

d1
2 , s64d

wherez is a geometric factor(z=3 for clamped beam bound-
ary conditions) andL1,d1 are the length and thickness of the
ancilla beam, respectively. Introducing a dimensionless
quantity,

R;
"2

m1d1
2

1

"v1
, s65d

then the scaled coupling coefficient can be expressed as

l01

v1
=

z

2p2

m1v1L1
2

m0v0L0
2R. s66d

Since the factor of the ratio of the two-mode parameters will
not be too large or small, the most important quantity deter-
mining the anharmonicity factor, which must not be too
small for the success of the measurement scheme, is the di-
mensionless ratioR. This will typically be a small number.
The need for small devices is seen from the scaling of this
parameter with the dimensions.

B. Driving strength

The detection scheme we have considered is to measure
the phase of the driven response of the ancilla oscillator.
Since the detection scheme is magnetomotive, it is natural to
consider the use of magnetic driving in estimating the size of
the displacement parameteruau. For magnetic driving using a
current Idrive in a magnetic fieldB, the dimensionless dis-
placement can be estimated as

uau = Q1
BIdriveL1d1

Î2"v1

ÎR. s67d

Again, the important role ofR in limiting the size ofuau in
this analysis is apparent.

We must also recognize that the size ofuau might be lim-
ited by other physical constraints, rather than by the avail-
able drive strength. One constraint might be to avoid unde-
sired nonlinear effects in the driven beam itself. For a clas-
sical oscillator, at sufficiently large drive amplitudes, nonlin-
ear frequency pulling leads to a multiplicity of solutions and
instability. This occurs when the nonlinear frequency shift is
comparable with the width of the resonancev1/Q1. Using
the same type of estimate for the nonlinear frequency shift as
in Eq. (64) shows that this occurs for
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uau *
1

ÎQ1R
. s68d

A more detailed, quantum-mechanical analysis of the driven
nonlinear oscillator will be presented elsewhere.14

C. Example configuration

As a first estimate of the order of magnitude of the quan-
tities introduced above, we will construct an example con-
figuration using parameters that seem plausible with current
technology.

Recently, oscillators with resonant frequencies as high as
1 GHz have been fabricated3 using silicon carbide. Thus we
consider two flexing modes with resonant frequencies of
v0=2.3 GHz andv1=0.36 GHz so thatv0−v1@l01,n ,k
are satisfied. For this value of the system oscillator fre-
quency,"v0/kBT is unity at a temperature of about 0.1 K.
The oscillators in Ref. 3 were not very small, but it is ex-
pected that the structure can be scaled down while maintain-
ing the high oscillation frequency. We therefore suppose
smaller dimensions consistent with these frequencies,
namely dimensions are 0.6mm30.04mm30.07mm for the
system beam and 0.6mm30.04mm30.01mm for the an-
cilla beam. With these parameters, we obtain

R= 4.263 10−9. s69d

The factorR occurs squared ink/n [via Eq. (66)], which
is required to be large, and so this small factor must be
mitigated by the other quantities in Eq.(66), i.e., large values
of Q and a large driven amplitudeuau. Suppose theQ of the
system oscillator isQ0=10 000 andQ1=1000. For the size of
uau, first consider the magnetic driving. A magnetic fieldB
=10 T andIdrive=1 mA can raise the driven response touau
,105. To reachk/n,1, the nonlinear couplingl01/v1 that
is required is then

l01/v1 = 4.93 10−8. s70d

With the given beam dimensions and the geometric nonlin-
earity, the anharmonic coupling coefficient is actually
l01/v1=1.3310−11, about three orders of magnitude
smaller. One possible way to increase this value might be to
engineer the geometry of the oscillator so that the anhar-
monic coupling is larger than in the simple geometric non-
linearity we have considered.35 Another way to increasek/n
is to increaseuau using a different driving scheme, although
for the value orR in Eq. (69) the limit in Eq. (68) is already
exceeded foruau*103, so that engineering the geometry to
reduce the self-nonlinearity might be necessary. An obvious
way to increasek/n to values greater than unity is to use
oscillators with smaller dimensions, for example carbon
nanotubes.

VII. CONCLUSION

We have analyzed a scheme to observe quantum transi-
tions of a mesoscopic mechanical oscillator. The nonlinear
coupling shifts the frequency of a second(ancilla) oscillator
proportionally to the excitation level of the first(system)

oscillator. This frequency shift may be detected as a phase
shift of the ancilla oscillation when driven on resonance. In
principle, a QND measurement is possible if the coupling
constant between the two oscillatorsl01 is much smaller than
the resonance frequencies of the oscillators, as will usually
be the case. We have derived the master equation for the
system density matrix first integrating out the environment
and measurement degrees of freedom, and then by removing
the ancilla operator using the fact that the time scale of the
system and ancilla dynamics are quite different. The master
equation has three components: phase diffusion as a result of
the measurement backaction, a constant energy shift due to
the excitation of the ancilla oscillator, and number state tran-
sitions due to the interaction with the thermal bath(the en-
vironment).

The measurement process introduces a stochastic compo-
nent into the system dynamics, and we have obtained the
stochastic master equation corresponding to our measure-
ment scheme. From the stochastic master equation, we iden-
tify two competing tendencies that can be characterized by
two parameters. One is the coupling strengthn of the system
and thermal bath, which is associated with the dwell time
tdwell between transitions. The other is the coefficientk, as-
sociated with measurements, which includes not only the
coupling strength of the system to the measurement bath but
also the anharmonic coupling strength between the oscilla-
tors, the driving amplitude. This coefficient is related to the
measurement timetm that is needed for a measurement to be
able to produce an outcome with certainty. To observe clear
quantum jumps, we would needtdwell@ tm. If this condition is
not satisfied, then the experimenter cannot infer the energy
eigenstate of the system from the observed current.

Although our simple estimates based on plausible litho-
graphically prepared oscillators yield values for the ratio
tdwell/ tm too small for the observation of individual phonons,
enhancements to the geometry and the trend to smaller de-
vice sizes should improve the outlook. The basic scheme and
theoretical techniques developed here are fairly general, and
in particular are not restricted to zero temperature, and so can
be also used for other applications such as single spin detec-
tion and noise analysis for a solid-state-based quantum com-
puter. Such possibilities might open up a new stage for ob-
serving quantum dynamics in mesoscopic systems.
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APPENDIX: BATH FIELD OPERATORS

In this appendix, we describe more fully the time-local
measurement bath operatorsBt introduced in Sec. IV A. The
description in terms of finely spaced modes of the bath with
a smooth density of states leads to the short memory or Mar-
kov property of the bath, which can be expressed in terms of
the time-local commutation rules forBt. In the main text, we
introduced the global bath operator as Eq.(26),

Bt =
1

Î2prdsv1dgdsv1d
o

n

gdsvndbd,ne
−isvn−v1dt. sA1d

We first derive the commutation rule Eq.(27). Substitut-
ing Eq. (A1) in the commutator gives

fBstd,B†st8dg =
1

2prdsv1dfgdsv1dg2o
n,n8

gdsvndgdsvn8d

3fbd,n,bd,n8
† g 3 e−isvn−v1dte−isvn8−v1dt8 sA2d

and usingfbd,n,bd,n8
† g=dn,n8 we obtain

fBstd,B†st8dg =
1

2prdsv1dfgdsv1dg2

3 o
n

fgdsvndg2e−isv−v1dst−t8d. sA3d

Changing the sum to integral form

o
n

→ E
0

`

dv rdsvd sA4d

gives

fBstd,B†st8dg =
1

2prdsv1dfgdsv1dg2 3 E
0

`

dv rdsvd

3fgdsvdg2e−isv−v1dst−t8d. sA5d

Sincerdsvd and gdsvd are slowly varying functions around
the ancilla oscillation frequencyv=v1, we can approximate
these asrdsvd.rdsv1d, gdsvd.gdsv1d, and pull them out-
side of the integral. Then introducing«=v−v1 and extend-
ing the lower range of the integration over« to −` leads to
the desired result

fBstd,B†st8dg =
1

2p
E

−`

`

dee−iest−t8d = dst − t8d. sA6d

The interaction Hamiltonian for the ancilla oscillator and
the measurement bath is, from Eq.(12),

Hint
I = i"o

n

gdsvndfbd,n
† stda1std − bd,nstda1

†stdg, sA7d

where we have moved to the interaction picture witha1std
=a1e

−iv1t andbd,nstd=bd,ne
−ivnt the ancilla and bath operators

in this picture, andgdsvnd is the coupling strength. The in-
teraction Hamiltonian can be written in terms of the bath
operatorsBt as

Hint
I std = i"Î2msBt

†a1 − Bta1
†d, sA8d

where the coefficientm is

m ; p%dsv1dugdsv1du2 sA9d

as before, and we have used the fact that the ancilla interacts
predominantly with bath modes near frequencyv1 and again
have assumed a smooth variation of the density of states and
coupling constant so that we can make the replacements
rdsvd.rdsv1d andgdsvd.gdsv1d.
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