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We discuss the long-distance transmission of qubits encoded in optical coherent states. Through absorption,
these qubits suffer from two main types of errors, namely the reduction of the amplitude of the coherent states
and accidental application of the PauliZ operator. We show how these errors can be fixed using techniques of
teleportation and error-correcting codes.
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I. INTRODUCTION

Quantum optics has been a fertile field for experimental
tests of quantum information science. We expect that optical
methods will be especially useful in applications that require
the communication of quantum information over long dis-
tances. This has already been proven to be the case for quan-
tum encryption. Most research in this field has focused on
the communication of single photon qubits. In this case, the
dominant source of decoherence is photon absorption, so er-
rors can usually be avoided by engineering experiments that
use some kind of coincidence counting. Then, either all ex-
pected photons are observed, and no errors have occurred; or
some photons are absorbed, fewer photons are observed than
expected, and the experiment must be repeated.

In this paper, we will discuss the communication of qubits
that are encoded using multiphoton optical coherent states
[1–4]. Because these are multiphoton states, they are more
robust against small levels of absorption. However, the
coherent-state qubits exhibit their own errors, so we will
later show how to correct these errors. To perform our error-
correcting procedure, we will need a resource of “cat states”
of the form u−al+ ual, beam splitters, and high-efficiency
photon counters.

The coherent stateual is defined to be the eigenstate of
the annihilation operatorâ with eigenvaluea, which may be
any complex number,

âual = aual. s1d

In the Fock basis, the coherent state has the decomposition

ual = e−uau2/2o
n=0

`
an

În!
unl, s2d

and it is generated from the vacuum,u0l, by the displacement
operatorDsad=expsaâ†−a* âd. For a more thorough intro-
duction to coherent states, see[5] for example. Specifically,

we will consider two different methods of encodings qubits
using coherent states. The first of these is thes−, +d encod-
ing, whereu0lL;u−al and u1lL;ual. An arbitrary qubit ap-
pears as

uQ±sadl =
1

ÎNsad
smu− al + nuald, s3d

where m and n are complex numbers satisfyingumu2+ unu2
=1. To simplify the notation, throughout the remainder of
this paper we assumea is a real number.Nsad=1

+e−2a2
smn* +m*nd and is a normalization factor, made neces-

sary because the statesu−al and ual are not exactly orthogo-
nal, although for a sufficiently largea (say aù2) they are
very nearly orthogonalsN<1d. In the second encoding, we
will consider u0lL;u0l and u1lL;u2al. Using thiss0,ad en-
coding, we will represent an arbitrary qubit with

uQ0asadl =
1

ÎNsad
smu0l + nu2ald. s4d

Both of these encodings require the same normalization fac-
tor, and we can easily translate from one encoding to the
other by using the displacement operatorDs±ad. Methods
for performing universal logic operations on these qubits
have already been discussed in[4], but we will briefly review
the operations needed to correct the decoherence caused dur-
ing long-distance transmission.

II. DECOHERENCE

Our first task is to characterize the type of errors that will
effect the qubits as they travel through a long optical fiber.
We assume photon loss is the dominant decoherence mecha-
nism [6]. This can be modeled by assuming some of the field
is lost in transit via a beam-splitter-type interaction. The qu-
bit enters one mode of the beam splitter and the vacuum
enters the other mode. After passing through the beam split-
ter, some of the qubit’s energy and information will be trans-
ferred to the second mode of the beam splitter and lost to the
environment. Only a single beam splitter is necessary to
characterize the effects of any number of photon loss events
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and mechanisms. Even though the photons will actually be
lost to a myriad of different modes, our assumption that all
photons are lost to a single mode is sufficient, because we
must trace over this mode(or these modes) to calculate the
state of the transmitted qubit.

We will characterize the optical fiber used to transmit the
qubit as having an exponential energy losse−lL, wherel is
the loss coefficient of the fiber andL is the transmission
distance. High-grade commercial fibers typically havel
,0.06/km[7]. We will choose a beam-splitter transmissivity
of h=e−lL to study the decoherence behavior of both qubit
encodings. After transmission, the state of the qubit and the
loss mode(denoted with anl) becomes

uQ±lT = mu− aÎhlu− aÎ1 − hll + nuaÎhluaÎ1 − hll s5d

or

uQ0alT = mu0lu0ll + nu2aÎhlu2aÎ1 − hll . s6d

One question which is natural to address at this point is,
“Which encoding method results in the greatest loss of infor-
mation from the qubit mode?” It is tempting to think, be-
cause of the energy difference between the logical states in
the s0,ad encoding, that this encoding will suffer a cata-
strophic “spontaneous-emission”-type error under photon
loss. However, this is not correct, as can be seen from the
following argument.

The state of the qubit mode after transmission is found by
performing a trace over the loss mode. Therefore, we may
perform any unitary operation on the loss mode, because that
would just be equivalent to performing the trace using a
different set of basis states. The amount of information in the
qubit mode would be preserved under any unitary operation
on that mode as well. One can easily see that if we apply
DsaÎhd to the qubit mode andDsaÎ1−hd to the loss mode
in Eq. (5), we obtain a state equal to that in Eq.(6). By this
argument, we expect that both encodings should exhibit the
same amount of decoherence. Learning exactly how this de-
coherence is manifest will require closer inspection.

We must find the final state of the qubit after transmission.
Because information was lost to the environment during
transmission, the qubit is in a mixed state, and must be de-
scribed by a density operator. We first construct a density
operator for the qubit and loss modes, which is given by
uQ±lTTkQ±u in the s−, +d encoding. A partial trace over the
loss model is performed by calculating

r± = o
n=0

`

lknuQ±lTTkQ±unll . s7d

Without the need for any approximation, we obtain[1]

r± = s1 − Pedsmu− aÎhl + nuaÎhld 3 H.c. +Pesmu− aÎhl

− nuaÎhld 3 H.c., s8d

which we can rewrite as

r± = s1 − PeduQ±saÎhdlkQ±saÎhdu

+ PeZuQ±saÎhdlkQ±saÎhduZ. s9d

The calculation for thes0,ad encoding is similar and yields

r0a = s1 − Pedsmu0l + nu2Îhald 3 H.c. +Pesmu0l − nu2Îhald

3 H.c., s10d

which is equivalent to

r0a = s1 − PeduQ0asaÎhdlkQ0asaÎhdu

+ PeZuQ0asaÎhdlkQ0asaÎhduZ, s11d

where Pe= 1
2s1−e−2s1−hda2

d, H.c. is the Hermitian conjugate
of the previous factor, andZ is the PauliZ operator defined
by Zsmu0lL+nu1lLd=smu0lL−nu1lLd. From these calculations,
one can see that the decoherence of the qubits in both encod-
ings is manifest in two ways. First the amplitude of the co-
herent states is changed froma to aÎh. Second, with prob-
ability Pe, the PauliZ operator is applied, producing a phase
flip in the qubit basis.

III. BASIC OPERATIONS

Before we begin our discussion of how this decoherence
can be corrected, we will first describe how to perform a few
fundamental logic operations on the coherent-state qubits.
This will not be a universal set of logic gates but only the
tools we need for error correction.

Displacement operator. The displacement operator can be
simulated by sending a qubit into a highly transmissive beam
splitter along with a high amplitude coherent state. The beam
splitter (BS) performs the unitary transformation

UBSsud = eusâ1â2
†−â1

†â2d, s12d

where â1 and â2 are the annihilation operators for the two
modes entering the beam splitter, and the transmissivity is
given by cos2 u. For example, suppose the qubit mode is in
stateual, and we send it and a second mode in the stateb
into a beam splitter with transmissivityh. This produces

ualubl → uÎha − Î1 − hbluÎhb + Î1 − hal. s13d

In the limit thatb→`, h→1, andbÎh→g, this interaction
producesDsgd on the qubit. This can be seen by performing
a trace over the second mode in the above expression and
taking the appropriate limits. Becauseubl is just a coherent
state(not a superposition of two coherent states), it is not
difficult to approximate the limitb→`. We can now use this
technique to translate between the two qubit encodings with
negligible decoherence.

Bit-flip gate. The bit-flip gate performs the operation
u−al→ ual and ual→ u−al in the s−, +d encoding. It is
equivalent to the logicalNOT operation or the PauliX matrix
in the logical qubit basis. To achieve this transformation, we
simply apply the Hamiltonian for free-space evolutionH
="vâ†â for a time t=p /v, wherev is the frequency of the
light. This produces the unitary operator
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Uspd = eipâ†â. s14d

We can easily apply this Hamiltonian by delaying the flight
of the qubit by one half-cycle with respect to the local oscil-
lator field. Note that we can performX for qubits in the
s0,ad basis with the combinationUspdDs−2ad.

Bell-state preparation. Many of the operations of a
coherent-state quantum computer, especially those based on
quantum teleportation, require the use of Bell states of the
form

uB±sadl =
1

Î2 + 2e−2a2
su− alu− al + ualuald. s15d

The preparation of these Bell states is a nontrivial matter. A
Bell state can be made by creating a “cat state” of the form
u−Î2al+ uÎ2al, and sending the cat state and the vacuum into
the two input ports of a 50-50 beam splitterUBSsp /4d. Then
the beam splitter’s output ports will contain the two en-
tangled modes of the Bell state.

Therefore, the problem of generating Bell states is re-
duced to the construction of a source of cat states. Cat states
can be produced by sending a coherent state into a nonlinear
medium exhibiting the Kerr effect[8]. Although sufficiently
large Kerr nonlinearities have been difficult to produce, sig-
nificant progress is being made in this area. For a discussion
of an experiment demonstrating the observation of the Kerr
effect, see[9].

It is also possible to produce approximate cat states using
a squeezing interaction, linear optical devices, and photon
counters[4,10,11]. The success of these methods depends on
detecting a particular number of photons in the photon
counter, so for a single attempt there is a small probability to
produce a high-fidelity cat state. Ralphet al. calculate that a
cat state with a fidelity of 0.95 can be produced with a prob-
ability greater than 1%. This presents the technical problem
of constructing a system which can rapidly repeat cat-state
production attempts(or can simultaneously perform many
attempts), so that cat states can be had on demand. The great-
est challenge to this cat-state production technique is that it
relies on very high efficiency photon detectors which can
distinguish between, for example, five, six, or seven photons.
While such photon detectors do not yet exist, this is also a
very promising field of research. For a demonstration of a
high-efficiency photon counter, see[12]. A promising new
method to produce cat states was recently proposed by Lund
et al. in [13]. They explain how high-amplitude cat states can
be produced from squeezed single-photon states, using beam
splitters and inefficient photon detectors. This scheme also
has a large probability of failure during a given attempt to
produce a cat, but it can be implemented with current photon
detectors. It appears likely that the production of cat states
(and Bell states) is a goal that is achievable in the near fu-
ture.

Teleportation and Z. Quantum teleportation is a surpris-
ingly straightforward procedure for coherent-state qubits
[2,3]. It is an essential tool for performing many logic opera-
tions on coherent-state qubits, and we will later show how it

can be used to correct the amplitude lost during qubit trans-
mission.

To perform the teleportation in thes−, +d encoding, we
need to mix the qubituQ±sadl with one of the Bell state’s two
modes in a 50-50 beam splitter. The schematic diagram for
the teleportation is shown in Fig. 1.

The state of the three modes after the qubit and the Bell
state mix in the beam splitter is given by

uT±sadl = msu0l1uÎ2al2ual3d + msu− Î2al1u0l2u− al3d

+ nsu0l1u− Î2al2u− al3d + nsuÎ2al1u0l2ual3d.

s16d

After passing through the beam splitter, modes 1 and 2 are
sent to photon counters, which registern1 and n2 photons.
Depending on the results of the measurement, the qubit may
need to be corrected. We can see from Eq.(16) that it is
impossible for both detectors to register photons. Ifn1 is an
even number, andn2=0, then the qubit needs no correction.
If n1 is an odd number, andn2=0, thenZ must be applied to
the qubit. Ifn1=0, andn2 is an even number, thenX must be
applied to the qubit. Ifn1=0, andn2 is an odd number, then
both X and Z must be applied. There is also a small prob-
ability ,e−a2

for measuring zero photons in both photon
counters, indicating a failure of the teleportation. This occurs
because our “basis” states are not orthogonal.

For thes0,ad encoding, the teleportation scheme is very
similar to the scheme used in thes−, +d encoding, as we can
see in Fig. 2. The basic difference is the displacement opera-
tion done to the first mode after mixing the qubit and the Bell
state in a 50-50 beam splitter.

The input state in this case isuQ0asadl and the Bell state is

uB0asadl =
1

Î2 + 2e−4a2
su0l2u0l3 + u2al2u2al3d. s17d

The state after the beam splitter is given by

FIG. 1. Schematic diagram for teleportation of a qubit in the
s−, +d encoding. The beam splitter has a transmissivity of 1/2. The
photon detectors registern1 andn2 photons, and at least one ofn1

andn2 must equal zero. Ifn1Þ0, we applyX. If an odd number of
photons is detected, we applyZ. If both n1=n2=0, then the telepor-
tation fails.

FIG. 2. Schematic diagram for teleportation of a qubit in the
s0,ad encoding. The beam splitter has a transmissivity of 1/2. If
n2=0, then we must applyDs−Î2ad to the first mode, and ifn1 is
odd we applyZ to the third mode. Ifn2Þ0, we applyX, and if n2

is odd we also applyZ. If both n1=n2=0, the teleportation fails.
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uT0asadl = msu0l1u0l2u0l3d + msua/Î2l1ua/Î2l2ual3d

+ nsua/Î2l1u− a/Î2l2u0l3d + nsuÎ2al1u0l2ual3d.

s18d

After the beam splitter, we first measuren2, the number of
photons in mode 2. Ifn2 is an even number greater than zero,
then mode 1 must contain the vacuum, and the qubit must be
corrected withX. If n2 is an odd number, then the qubit must
be corrected with bothX andZ. However, ifn2=0, then we
must apply the displacementDsÎ2ad to mode 1 and count
the number of photons in this mode. Ifn1 is even, the qubit
needs no correction. Ifn1 is odd, the qubit must be corrected
with Z.

The probability that the teleportation fails because we de-
tect zero photons in both photon counters decreases rapidly
asa increases. In Fig. 3, we plot the probability to success-
fully perform a teleportation,Ps=1−z2k0u1k0uT±sadlz2=1
− z2k0u1k0uDs−Î2adT0asadlz2 as a function ofa. The two en-
codings give the same success probability for any choice of
m andn.

Notice that we have not yet explained how to accomplish
Z, which is required whenever an odd number of photons is
detected during the Bell basis measurement. This is because
we propose to use the teleportation operation itself whenZ is
needed. When an odd number of photons is detected, signal-
ing that the teleportation has resulted in the stateZuQl, we
simply attempt teleportation again and hope to again detect
an odd number. Because the photon detectors always signal
whenZ has been performed, we are free to simply try again.

Hadamard gate. The Hadamard gateH performs the
transformation u0lL→ u0lL+ u1lL and u1lL→ u0lL− u1lL (ne-
glecting normalization). It is easiest to perform in thes0,ad
encoding, in which the steps required to implementH are
similar to those needed for teleportation. We first put our
qubit uQ0asadl and one-half of the Bell stateuB0asadl into the
beam splitter described by the interaction

UiBSsud = eiusâ1â2
†+â1

†â2d, s19d

where â1 and â2 are the annihilation operators for the two
modes entering the beam splitter. We chooseu=p /2a2. Us-
ing the approximation thata→`, this interaction becomes
approximately equal to a controlled sign flip in the logical

qubit basis, which performs the identity to all input qubit
basis states exceptu1lLu1lL, which becomes −u1lLu1lL.

We then need to measure the two modes exiting the beam
splitter in the basis whose basis states are eigenstates ofX.
This can be accomplished by applying the displacement op-
eratorDs−ad to each of these modes, converting them to the
s−, +d encoding. In this encoding, the eigenstates ofX are
the cat statesu−al± ual, which are distinguishable because
the + cat has only even numbers of photons and the − cat has
odd numbers of photons. We can therefore measure in theX
eigenbasis by detecting either even or odd numbers of pho-
tons. The remaining qubit must then be corrected usingX
and Z (depending on the measurements) to produce
HuQ0asadl.

This procedure for executingH has a close analogy with
the teleportation of logic gates as described by Gottesman
and Chuang in[14]. They show how logic operations may be
performed on qubits by executing a teleportationlike proce-
dure using modified Bell states. In our implementation of the
Hadamard gate, we use a standard Bell state, but we perform
the joint measurement between the qubit and one qubit from
the Bell state in a different basis.

To characterize the effectiveness of this gate, we will ex-
amine its fidelity whena is small. Suppose that the two
detectors countna and nb photons. We will then call the
resulting qubituHQna,nb

l, which we hope is approximately
equal toHuQl. On average, the procedure to implementH
will result in the mixed state

r = o
na=0

`

o
nb=0

`

Psna,nbduHQna,nb
lkHQna,nb

u, s20d

wherePsna,nbd is the probability to detect the combination
na andnb. The fidelity of this operation is given by

F = kQuHrHuQl. s21d

We plot this fidelity as a function ofa in Fig. 4. There we
use the worst-case input qubituQl= u2al= u1lL. The fluctuat-
ing structure for smalla is caused by the oscillations of the
beam splitter’s transmissivityh=cos2sp /2a2d.

In order to further improve the fidelity for smalla, we can
choose to operate the Hadamard gate in a probabilistic man-
ner. The combinations ofna andnb which yield lower fideli-

FIG. 3. Teleportation success probability vsa for
m=n=1/Î2.

FIG. 4. The fidelity of the Hadamard transformation as a func-
tion of coherent state amplitudea. Here we use the worst-case input
qubit uQl= u2al.
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ties will simply be rejected and classified as failures of the
gate. Suppose we desire to operate the gate with a fidelity of
0.99, so we will exclude just enoughna, nb combinations to
ensure this fidelity. We would then like to know, “What is the
probability that this operation will succeed?” Witha=2 and
the worst-case input qubit, the Hadamard gate will succeed
with a probability of 0.29. Usinga=4, the success probabil-
ity is 0.59. It is possible to protect the qubits from destruc-
tion when the Hadamard gate fails by using a second layer of
teleportation as described in[14]. We would apply the Had-
amard gate itself(meaning the application ofUiBS followed
by measurement in the eigenbasis ofX) to one of the qubits
of a Bell state. Then the information-bearing qubit is “tele-
ported” using this modified Bell state. The result of this
“teleportation” will be equal toHuQl. Because the Bell state
does not contain any information, when the Hadamard gate
fails we can simply produce another Bell state and attempt to
performH again.

While teleportation and the Hadamard gate present some
significant technical challenges, they are not entirely beyond
the horizon of current experiments. Using these tools, we
will show how the decoherence caused to qubits during
transmission can be corrected.

IV. Z ERROR CORRECTION

The erroneous application of the PauliZ operator can be
corrected using a standard error-correcting code[15], which
encodes a single qubit onto three qubits. The quantum circuit
that is traditionally used to accomplish this encoding is de-

picted in Fig. 5. It requires two controlled not(CNOT) gates
and three Hadamard transformations in the encoding stage,
and another twoCNOT gates and threeH’s in the decoding
gates. TheCNOT gate could be applied using the techniques
of coherent linear optic quantum computing[4]. However,
these logic operations are quite difficult to accomplish.
Rather than performing the encoding this way, we will de-
scribe how the properties of coherent-state qubits actually
allow for much more efficient method for encoding and de-
coding.

The effect of the first threeCNOT gates in Fig. 5 is to
perform the transformation.

smu0l + nu1ldu0lu0l → mu0lu0lu0l + nu1lu1lu1l. s22d

At this point the qubit is protected fromX errors. After each
qubit receives anH, it is protected fromZ errors.

The structure of coherent-state qubits makes the transfor-
mation Eq.(22) surprisingly simple. In fact, we can perform
this transformation on an arbitrary, unknown qubit without
the need for performing the complicatedCNOT gates. Sup-
pose we are given an unknown qubit, and we want to encode
it againstZ errors before sending it on to another party across
a great distance. Assume that the qubit arrives in the form
mu−al+nual, wherea is known to us(it may be any complex
number), but m andn are not known. First it may be helpful
(thought not necessary) to increase the amplitude of the co-
herent states used to encode this qubit. This can be accom-
plished by teleporting the qubit onto a Bell state, one of
whose modes(the mode which is measured) has the ampli-
tudea and the other mode(which will contain the teleported
qubit) has the new amplitudeÎ3a. This allows us to perform
the transformation

mu− al + nual → mu− Î3al + nuÎ3l. s23d

The details of this teleportation procedure are described in
the following section. We then append two modes, contain-
ing only vacuum states, to the qubit. The qubit and the two
vacuum modes are sent through the circuit pictured in Fig. 6.

The statesmu−Î3al+nuÎ3aldu0lu0l enters the circuit from
the left. The first and second modes mix in a beam splitter
whose transmissivity ish= 1

3. Then the second and third
modes mix at a beam splitter with transmissivityh= 1

2. This
prepares the statemu−alu−alu−al+nualualual. We have
therefore accomplished the transformation Eq.(22) without
knowledge of the value of the qubit or the use of traditional
CNOT operations. The Hadamard transformations may then

FIG. 5. Quantum logic circuit for the standard three-qubit code
used to correctZ errors. TheCNOT gates are controlled by the qubit
uQl and apply theNOT operation to the qubits intersecting the open
circles. TheH’s represent Hadamard transformations. The diagram
shows the encoding of the qubits, the qubits’ passage through the
decoherence region, and the decoding of the qubits. The triangles
represent qubit measurements. If both measurements areu0l or if
both areu1l, thenuQl exits from the decoding. If the measurements
detect different results, then the qubit must be corrected withZ.

FIG. 6. Implementation of the three-qubit code on coherent-state qubits in thes−, +d encoding. The first and last beam splitters have a
transmissivity of 1/3, and the others have a transmissivity of 1/2. The qubituQ±l will emerge from the first mode without error provided that
both detectors register zero photons.
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be applied using the procedure described in the previous sec-
tion.

After the protected qubits are transmitted down long fi-
bers, they must be decoded, and an error syndrome must be
measured. To decode, we first apply anH to each qubit. We
can then simulate the twoCNOT gates used for the decoding
in Fig. 5 with the decoding circuit pictured in Fig. 6. Let us
first examine the case in which no errors have occurred, so
after the second threeH’s the qubits are in the state

mu− al1u− al2u− al3 + nual1ual2ual3. s24d

We can compare the states of the first and second modes by
sending them into a beam splitter, and then measuringn2, the
number of photons in the second mode. If neither mode 1 nor
mode 2 has received aZ error, thenn2=0, and the system is
left in the state

mu− Î2al1u0l2u− al3 + nuÎ2al1u0l2ual3. s25d

Mode 2 can be returned to its original state by sending mode
1 through an even beam splitter with the vacuum in the other
input mode. We then make a similar comparison on modes 2
and 3, measuringn3=0 photons. The full qubit can be de-
coded into mode 1 by mixing modes 1 and 2 in a beam
splitter with a transmissivity ofh= 1

3.
If, for example, mode 2 suffers from aZ error during the

transmission, the state of the three qubits after the decoding
H’s will be

mu− al1ual2u− al3 + nual1u− al2ual3. s26d

In this case, during the comparison of modes 1 and 2 we
would findn2 to be some random integer given by a Poisson
distribution whose mean is 2a2, and modes 1 and 3 are left in
the state

ms− 1dn2u0l1u− al3 + nu0l1ual3, s27d

which aside from the overall factor of −1 is equivalent to

Zn2smu− al3 + nual3d, s28d

where we have simply discarded modes 1 and 2. The qubit
can now be reconstructed in mode 3 by application ofZ
whenn2 is odd. If the error instead occurred in mode 3, we
would find n2=0, andn3 is Poisson distributed about 2a2.
The qubit is then found in mode 1, requiringZ when n3 is
odd. In this way, we can detect aZ error in a single mode,
and correct the error. If the probability for an error to occur
in each of the modes isPe, then the probability that we can
transmit an error-free qubit using this procedure isPs=1
−3Pe

2+2Pe
3.

This three-qubit error-correction code can be expanded to
increase the probability to successfully transmit a qubit by
adding more modes to the encoding[16]. To protect the en-
coded qubit from a maximum ofn errors requires 2n+1
encoding bits. We must first prepare 2n qubits in theu0l state.
Then we apply aCNOT operation to the qubit we are hoping
to protect and each of the 2n encoding qubits. To complete
the encoding, we perform the Hadamard transformation to all
of the 2n+1 qubits. The probability to transmit a qubit with-
out error is now

Ps = o
j=0

n S2n + 1

j
DPe

j s1 − Ped2n+1−j . s29d

By increasing the number of qubits used in the encoding,Ps
can increase arbitrarily close to 1, provided thatPe,1/2.
Our simplified method for implementation of the three-qubit
code using optical coherent states can be easily applied to
this larger code with 2n+1 qubits, replacing each of the
CNOT gates with a beam splitter. Decoding is accomplished
by pairwise comparison of neighboring qubits using a beam
splitter and a photon counter.

With these methods, we can correct the PauliZ error ef-
fecting the qubits as they are transmitted through a long op-
tical fiber.

V. AMPLITUDE RESTORATION

If we plan to transport a coherent-state qubit over a long
distance, we must have some way to correct the decrease in
the amplitude of the coherent states. This can be accom-
plished using a slightly modified form of teleportation.

Now let us describe how the teleportation scheme can be
used to change the amplitude of the coherent states used to
encode a qubit. Suppose we want to change the qubituQ±sbdl
to uQ±sadl. In this case, we can restore the amplitude of the
qubit using the teleportation scheme in Fig. 1 with the Bell
state

u− bl2u− al3 + ubl2ual3. s30d

This state can be made easily if we have a source of “cat”
states as described above. We first prepare the cat state

U−
b

cosu
L + U b

cosu
L s31d

and send it into a beam splitter with transmissivity

T = cos2 u = S1 +
a2

b2D−1

. s32d

Once we have constructed the necessary Bell state, we pro-
ceed with teleportation, exactly as described above and pic-
tured in Fig. 1 except thatuB±l is replaced with the new Bell
state. Because the amplitude of the Bell state’s first mode is
tailored to match the qubit, they will experience total inter-
ference at the beam splitter. The teleported qubit will then
emerge with an amplitude equal to that of the Bell state’s
second mode.

Note that this technique can also be applied in thes0,ad
encoding using an analogous cat state. We can use this
method to increase a qubit’s amplitude to prepare it for the
error-correction code of the previous section. This method
also allows us to repair the decreased amplitude of a qubit
which has suffered from some absorption.

When we transmit the qubit over a long distance, the co-
herent amplitude will decrease by the factore−lL/2. Because
the teleportation success probability depends on the ampli-
tude ae−lL/2 of the coherent state, our ability to correct the
amplitude loss will decrease with the distance traveled by the
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qubit. Figure 7 shows the teleportation success probability as
a function of the transmitted distance. This tells us when we
should perform teleportation to correct the qubit amplitude.

VI. CONCLUSIONS

As a coherent state qubit travels along a fiber-optic cable,
it suffers from two forms of decoherence. Absorption causes
both a decrease in the amplitude of the coherent state and a
dephasing in the qubit basis. The amplitude can be restored
through teleportation using a specially prepared Bell state.
We can correct the dephasing using the standard three-qubit
phase-flip correction code. We have also shown how the
phase-flip code can be simplified for the coherent-state
model, and how the phase-flip code can be expanded to pro-
vide greater qubit fidelity by using greater numbers of qubits
to encode the information.

We might note here that in order to transmit a qubit over
a long distance, instead of using an error-correcting code as
we have described, one could employ quantum teleportation.
Suppose Alice wants to transmit her qubit to Bob. Rather
than encoding her qubit againstZ errors and sending the
three qubits to Bob, she could prepare a large collection of

Bell states. She then sends one-half of each Bell pair to Bob
through their long optical fiber. The Bell states will suffer
some decoherence during the transmission, so Alice and Bob
must purify the states. A method for purification of Bell
states(made of coherent states of light) is published in[17].
A much more thorough discussion of the connections be-
tween error-correction codes and purification of Bell states
can be found in[18].

Throughout this paper, we have also discussed a number
of connections between the two methods used to encode qu-
bits onto coherent states: the encoding whose logicalu0l and
u1l states are the optical coherent statesu−al andual, and the
encoding whose logical states areu0l (the vacuum state) and
u2al. We can transform a qubit from one encoding to another
by using the displacement operatorDs±ad. Both encodings
suffer from the same forms of decoherence at the same rates.
The probability to teleport a qubit does not depend on its
encoding. In a future publication, we hope to discuss the
performance of logic operations on both encodings and how
the freedom offered by the displacement operator can in-
crease the efficiency of calculations.

In this paper, we have not discussed the effects of any
optical nonlinearities during transmission of the qubit. How-
ever, the nonlinearities of fiber-optic cables at these low light
levels are negligible. Of a much greater concern is the need
for high-quality photon counters and a source of cat states.
These are required for the measurements during the error-
correction and teleportation procedures and for the produc-
tion of Bell states. Because of the great utility of photon
counters and cat states, we encourage experimenters to con-
tinue their work on these devices.
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