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Transmission of optical coherent-state qubits

S. Glancy and H. M. Vasconcelds
Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556, USA

T. C. Ralpﬁc
Centre for Quantum Computer Technology, Department of Physics, University of Queensland Brisbane, QLD 4072, Australia
(Received 21 November 2003; revised manuscript received 7 April 2004; published 25 Augugst 2004

We discuss the long-distance transmission of qubits encoded in optical coherent states. Through absorption,
these qubits suffer from two main types of errors, namely the reduction of the amplitude of the coherent states
and accidental application of the Pa#lpperator. We show how these errors can be fixed using techniques of
teleportation and error-correcting codes.
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I. INTRODUCTION we will consider two different methods of encodings qubits

. I . sing coherent states. The first of these is(the+) encod-
Quantum optics has been a fertile field for experlmentafj o = . .

tests of quantum information science. We expect that optica{f]g’ where|0), =|-a) and|1), =|a). An arbitrary qubit ap-
methods will be especially useful in applications that requireDears as
the communication of quantum information over long dis- 1
tances. This has already been proven to be the case for quan- Qu(@) = ==(ul- a) + Vo)), 3)
tum encryption. Most research in this field has focused on VN(a)
the communication of single photon qubits. In this case, thevhere u and v are complex numbers satisfyirjg|>+|v|?
dominant source of decoherence is photon absorption, so et1. To simplify the notation, throughout the remainder of
rors can usually be avoided by engineering experiments thahis paper we assumer is a real number.N(a)=1
use some kind of coincidence counting. Then, either all exq_e—zaz(ﬂv*+ﬂ* ») and is a normalization factor, made neces-
pected photons are observed, and no errors have occurred;@({
some photons are absorbed, fewer photons are observed t

expected, and the experiment must be repeated. _very nearly orthogonalN=1). In the second encoding, we
In this paper, we will discuss the communication of qubltsWiII consider|0), =|0) and|1), =|2a). Using this(0,a) en-

that are encoded using multiphoton optical coherent states_ .. : . L
[1-4]. Because these are multiphoton states, they are moreOdmg’ we will represent an arbitrary qubit with

robust against small levels of absorption. However, the 1

coherent-state qubits exhibit their own errors, so we will |Qoal@)) = ——=(u/0) + v[2a)). 4)

later show how to correct these errors. To perform our error- VN(a)

correcting procedure, we will need a resource of “cat statesBoth of these encodings require the same normalization fac-

of the form |-a)+|a), beam splitters, and high-efficiency tor, and we can easily translate from one encoding to the

photon counters. other by using the displacement opera®ft«a). Methods
The coherent statgy) is defined to be the eigenstate of for performing universal logic operations on these qubits

the annihilation operatd with eigenvaluex, which may be  have already been discussed4i, but we will briefly review

ry because the statesy) and|«) are not exactly orthogo-
, although for a sufficiently large (say a=2) they are

any complex number, the operations needed to correct the decoherence caused dur-
R ing long-distance transmission.
ala) = a|a). (1)
In the Fock basis, the coherent state has the decomposition
Il. DECOHERENCE
*° n
|y = e-\a\Z/ZE i_|n>, (2) Our first task is to characterize the type of errors that will
n=0 Vn! effect the qubits as they travel through a long optical fiber.

We assume photon loss is the dominant decoherence mecha-
nism[6]. This can be modeled by assuming some of the field
is lost in transit via a beam-splitter-type interaction. The qu-
bit enters one mode of the beam splitter and the vacuum
enters the other mode. After passing through the beam split-
ter, some of the qubit’s energy and information will be trans-

and it is generated from the vacuu®), by the displacement
operatorD(a)=exp(a@’- a"8). For a more thorough intro-
duction to coherent states, sg# for example. Specifically,

*Electronic address: sglancy@nd.edu ferred to the second mode of the beam splitter and lost to the
"Electronic address: Hilma.M.DeVasconcelos.2@nd.edu environment. Only a single beam splitter is necessary to
*Electronic address: ralph@physics.uq.edu.au characterize the effects of any number of photon loss events
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and mechanisms. Even though the photons will actually be pe=(1 _pe)|Qi(aV§])><Qi(a\g])|
lost to a myriad of different modes, our assumption that all — —
photons are lost to a single mode is sufficient, because we + PZ|Q.(a\ 1) XQu(a 7)|Z. 9

must trace over this mod@r these modgso calculate the
state of the transmitted qubit.

We will characterize the optical fiber used to transmit the  _ ., _ r _ r
qubit as having an exponential energy l@s%-, where\ is Poa= (1= P) ([0} + »12V7a)) X H.C. +Pel(1[0) = 9}2a))
the loss coefficient of the fiber and is the transmission X H.c., (10)
distance. High-grade commercial fibers typically have
~0.06/km[7]. We will choose a beam-splitter transmissivity

The calculation for thé0,«) encoding is similar and yields

which is equivalent to

of »=e™ to study the decoherence behavior of both qubit —(1-P - [
encodings. After transmission, the state of the qubit and the Poe = E)|Q°“(a_\ 7])><Q°“(a_\ )|
loss mode(denoted with arl) becomes + PoZ|Qou(aV 7)Y Qoula\ )| Z, (11

T s (TN ra (1 = o where Pezl(l—e‘z(l‘”)“z), H.c. is the Hermitian conjugate
[Qulr = ul=aml= avl=ah+ slavamlai=m (5) of the prevzious factor, and is the PauliZ operator defined
by Z(u|0) +v|1),)=(u|0) —|1),). From these calculations,
one can see that the decoherence of the qubits in both encod-
_ I — ings is manifest in two ways. First the amplitude of the co-
Qow)t = 1[0)|0); + ¥]2a\ )| 2a\1 = 7). 6 herent states is changed framto a\'n. Second, with prob-
One question which is natural to address at this point isability Pe, the PauliZ operator is applied, producing a phase
“Which encoding method results in the greatest loss of inforflip in the qubit basis.
mation from the qubit mode?” It is tempting to think, be-
cause of the energy difference between the logical states in lIl. BASIC OPERATIONS
the (0,a) encoding, that this encoding will suffer a cata- _ . _ _
Strophic “Spontaneous_emission”_type error under photon Before we begln our discussion of how this decoherence
loss. However, this is not correct, as can be seen from théan be corrected, we will first describe how to perform a few
following argument. fundamental logic operations on the coherent-state qubits.
The state of the qubit mode after transmission is found byl his will not be a universal set of logic gates but only the
performing a trace over the loss mode. Therefore, we majools we need for error correction.
perform any unitary operation on the loss mode, because that Displacement operatoiThe displacement operator can be
would just be equivalent to performing the trace using aSimulated by sending a qubit into a highly transmissive beam
different set of basis states. The amount of information in thesplitter along with a high amplitude coherent state. The beam
qubit mode would be preserved under any unitary operatiogplitter (BS) performs the unitary transformation
on that mode as well. One can easily see that if we apply 03, -, T8,
D(a\7) to the qubit mode an®(ay1-7) to the loss mode Ups(0) = g% =122, 12
in Eq. (5), we obtain a state equal to that in &@). By this ~ \yherea, and &, are the annihilation operators for the two
argument, we expect that both encodings should exhibit thgygdes entering the beam splitter, and the transmissivity is
same amount of decoherence. Learning exactly how this dgjiven by cod 6. For example, suppose the qubit mode is in

coherence is manifest will require closer inspection. state|a), and we send it and a second mode in the sgate
We must find the final state of the qubit after transmissionjntg a peam splitter with transmissivity. This produces

Because information was lost to the environment during _

transmission, the qubit is in a mixed state, and must be de- |a)|B) — |Nnpa— 1 - 7,3>|V'7,,3+ Vi-na). (13
scribed by a density operator. We first construct a density o — o _
operator for the qubit and loss modes, which is given byln the limit thatg—c, »—1, andBy7— v, this interaction
|Q:)1{Q.| in the (-, +) encoding. A partial trace over the ProducesD(y) on the qubit. This can be seen by performing

or

loss modd is performed by calculating a trace over the second mode in the above expression and
taking the appropriate limits. Becau§@) is just a coherent
% state(not a superposition of two coherent stgtei is not
pe= 2 (NQTHQLNY,. (7)  difficult to approximate the limi3— . We can now use this
n=0 technique to translate between the two qubit encodings with
negligible decoherence.
Without the need for any approximation, we obt§ii Bit-flip gate The bit-flip gate performs the operation
|-a)—|a) and |a@)—|-a) in the (-,+) encoding. It is
ps = (1 =P (ul- aVp) + v]ayn) X H.c. +Pylu|- avn) equivalent to the logicalloT operation or the Pauk matrix
- — in the logical qubit basis. To achieve this transformation, we
- layn) X H.c., (8)  simply apply the Hamiltonian for free-space evolutibh
=hwa'a for a timet=7/w, wherew is the frequency of the
which we can rewrite as light. This produces the unitary operator
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U(m) =™, (14 1) Vv >—
» A
We can easily apply this Hamiltonian by delaying the flight \&(a))< T
of the qubit by one half-cycle with respect to the local oscil- X |QLa))
lator field. Note that we can perforrd for qubits in the o ) o
(0,@) basis with the combinatiol(7)D(-2a). FIG. 1. Schematic diagram for teleportation of a qubit in the

(=, +) encoding. The beam splitter has a transmissivity of 1/2. The
Bp]oton detectors registey andn, photons, and at least one of
andn, must equal zero. Ih; # 0, we applyX. If an odd number of
%hotons is detected, we appy If both n;=n,=0, then the telepor-
tation fails.

Bell-state preparation Many of the operations of a
coherent-state quantum computer, especially those based
quantum teleportation, require the use of Bell states of th
form

1 can be used to correct the amplitude lost during qubit trans-
Bale)= sl @) (49 rigon P 94
To perform the teleportation in the-, +) encoding, we

. . - need to mix the qubiQ.(a)) with one of the Bell state’s two
The preparation of these Bell states is a nontrivial matter. A odes in a 50-50 beam splitter. The schematic diagram for

Bell state can be made by creating a “cat state” of the for%e teleportation is shown in Fig. 1.

E(izt\;“v>0+i| r:zg? ?)?g Soefr;dg](gé%eb(g‘n?tzte"sgd ;[:elé\{)a?huemn MO The state of the three modes after the qubit and the Bell
putp plittegd ' state mix in the beam splitter is given by

the beam splitter’s output ports will contain the two en-

tangled modes of the Bell state. ITo(@) = 1(|0)1] V20| @)s) + w(|— v2a)1|0)s|— a)s)
Therefore, the problem of generating Bell states is re- = =

duced to the construction of a source of cat states. Cat states + 1(|0)1]= \2a)|= @)s) + 1|N2a)1|0)|@)s).

can be produced by sending a coherent state into a nonlinear (16)

medium exhibiting the Kerr effedB]. Although sufficiently
large Kerr nonlinearities have been difficult to produce, sig h hich : d h
nificant progress is being made in this area. For a discussiofg"t © Photon counters, which registerandn, photons.

of an experiment demonstrating the observation of the Ker epending on the results of the measurement, the q_ut_nt may
effect, sed9]. need to be corrected. We can see from Edf) that it is

It is also possible to produce approximate cat states usin possible for both detectors to register photons,lis an
ven number, and,=0, then the qubit needs no correction.

a squeezing interaction, linear optical devices, and photo . _ .
counterq4,10,17. The success of these methods depends ot glq'jbaif[n I?r?d_%urgr?g;' ?S”;'Zn'g\’/etrr:e:uzmrggfttﬁ;&%ﬂﬁdbteo
detecti ticul b f phot in the phot R . '

etecting a_partictiar nUmber of pnotons 1 the photon pplied to the qubit. Ih;=0, andn, is an odd number, then

counter, so for a single attempt there is a small probability t ) )
produce a high-fidelity cat state. Ralphal. calculate that a oth X and Z must be applied. There is also a small prob-

e 2 . .
cat state with a fidelity of 0.95 can be produced with a prob-2bility ~e™* for measuring zero photons in both photon
ability greater than 1%. This presents the technical problen§ounters, |nd|cat|ng a failure of the teleportation. This occurs
of constructing a system which can rapidly repeat cat-statfecause our “basis” states are not orthogonal. _
production attemptgor can simultaneously perform many  For the(0,a) encoding, the teleportation scheme is very
attempt3, so that cat states can be had on demand. The gregiimilar to the scheme used in tie, +) encoding, as we can
est challenge to this cat-state production technique is that Bee in Fig. 2. The basic difference is the displacement opera-
relies on very high efficiency photon detectors which cantion done to the first mode after mixing the qubit and the Bell
distinguish between, for example, five, six, or seven photonsstate in a 50-50 beam splitter.
While such photon detectors do not yet exist, this is also a The input state in this case|i®,.(«)) and the Bell state is
very promising field of research. For a demonstration of a 1
high-efficiency photon counter, s¢&2]. A promising new IBoa(@)) = =——=—=(/0),|0)3 + [2a)5|2a)5).  (17)
method to produce cat states was recently proposed by Lund V2 +2g74
Et al.in [13]. They explain how_hlgh-amplltude cat states AN state after the beam splitter is given by

e produced from squeezed single-photon states, using beam

splitters and inefficient photon detectors. This scheme alsc

has a large probability of failure during a given attempt to | Qunl )} @ —
produce a cat, but it can be implemented with current photon <—><|>‘ <___- |
detectors. It appears likely that the production of cat states Bula)) | 0..(a))
(and Bell statesis a goal that is achievable in the near fu-

ture. FIG. 2. Schematic diagram for teleportation of a qubit in the
Teleportation and ZQuantum teleportation is a surpris- (0,) encoding. The beam splitter has a transmissivity of 1/2. If
ingly straightforward procedure for coherent-state qubitsh,=0, then we must applp(-\2a) to the first mode, and ifi; is
[2,3]. Itis an essential tool for performing many logic opera- odd we applyZ to the third mode. lih,+# 0, we applyX, and ifn,
tions on coherent-state qubits, and we will later show how itis odd we also applg. If both n;=n,=0, the teleportation fails.

After passing through the beam splitter, modes 1 and 2 are
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1 1
2 08 0.8
E
£ 06 £06
& =t
2 = 04
g 04
% 0.2
0.2
, - 1 2 3 4 5
1 2 3 4 5 @
N FIG. 4. The fidelity of the Hadamard transformation as a func-
FIG. 3. Teleportation success probability vse for tion of coherent state amplitude Here we use the worst-case input
u=v=1/\2. qubit |Q)=|2a).
ITou(@)) = u(]0)1]0)5/0)s) +M(|a/\;§>1|a/\,§>2|a>3) qubit basis, which performs the identity to all input qubit
= _ _ basis states exceft), |1),, which becomes [4),|1), .
+ v(|al\2) 1|~ al\2),|0)3) + v(|V2a),|0),| @)s). We then need to measure the two modes exiting the beam

(18) splitter in the basis whose basis states are eigenstat&s of
This can be accomplished by applying the displacement op-

After the beam splitter, we first measung, the number of eratorD(-«) to each of these modes, converting them to the
photons in mode 2. Ifi, is an even number greater than zero, (-, +) encoding. In this encoding, the eigenstatesXcre
then mode 1 must contain the vacuum, and the qubit must bge cat state$—a)+|a), which are distinguishable because
corrected withX. If n; is an odd number, then the qubit must the + cat has only even numbers of photons and the - cat has
be corrected with botlX andZ. However, ifn,=0, then we  odd numbers of photons. We can therefore measure iXthe
must apply the displacemef(v2e) to mode 1 and count eigenbasis by detecting either even or odd numbers of pho-
the number of photons in this mode.rif is even, the qubit tons. The remaining qubit must then be corrected using
needs no correction. H; is odd, the qubit must be corrected and Z (depending on the measurement® produce
with Z. HIQoa(@)-

The probability that the teleportation fails because we de- This procedure for executing has a close analogy with
tect zero photons in both photon counters decreases rapidifie teleportation of logic gates as described by Gottesman
asa increases. In Fig. 3, we plot the probability to success-and Chuang ii14]. They show how logic operations may be
fully perform _a teleportation,Ps=1- |2(0[1(0|T.(@))|?=1  performed on qubits by executing a teleportationlike proce-
~](0{0|D(=V2a) To,(a))|? as a function ofx. The two en-  dure using modified Bell states. In our implementation of the
codings give the same success probability for any choice ofladamard gate, we use a standard Bell state, but we perform
pandv. the joint measurement between the qubit and one qubit from

Notice that we have not yet explained how to accomplistthe Bell state in a different basis.

Z, which is required whenever an odd number of photons is To characterize the effectiveness of this gate, we will ex-
detected during the Bell basis measurement. This is becausenine its fidelity whena is small. Suppose that the two
we propose to use the teleportation operation itself when  detectors count, and n, photons. We will then call the
needed. When an odd number of photons is detected, signaksulting qubltIHQn n) which we hope is approximately
ing that the teleportation has resulted in the s#®@), we equal toH|Q). On average the procedure to impleméht
simply attempt teleportation again and hope to again deteatill result in the mixed state

an odd number. Because the photon detectors always signal

whenZ has been performed, we are free to simply try again.

Hadamard gate The Hadamard gatéd performs the p= E_ E_ P(n, nb)|HQnavnb><HQna'nb|' (20
transformation |0), —|0), +|1), and |1), —|0) =|1), (ne- a0 My=0
glecting normalization It is easiest to perform in théd,a)  whereP(n,,ny) is the probability to detect the combination

encoding, in which the steps required to implemehtire  n, andn,. The fidelity of this operation is given by
similar to those needed for teleportation. We first put our

qubit|Qo,(a)) and one-half of the Bell statB,,(a)) into the F=(Q[HpH|Q). (21)

beam splitter described by the interaction We plot this fidelity as a function of in Fig. 4. There we

Uips(6) = € oano "+ 'a) (19) use the worst-case input quih@) =|2a)=|1),. The fluctuat-
ing structure for smallv is caused by the oscillations of the
where 3, and &, are the annihilation operators for the two beam splitter’s transmissivity=cog(w/2a?).
modes entering the beam splitter. We choéser/2a?. Us- In order to further improve the fidelity for small, we can
ing the approximation that— oo, this interaction becomes choose to operate the Hadamard gate in a probabilistic man-
approximately equal to a controlled sign flip in the logical ner. The combinations aof, andny, which yield lower fideli-
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picted in Fig. 5. It requires two controlled n@NOT) gates

10), [H— [ Z—10), and three Hadamard transformations in the encoding stage,
\FE?IZK_"!%’?‘."E" - ( and another twaNOT gates and threél’s in the decoding

10),~——17} /:: TN H—— D") gates. ThecNoT gate could be applied using the techniques

A M > of coherent linear optic quantum computifdj]. However,

these logic operations are quite difficult to accomplish.
Rather than performing the encoding this way, we will de-
scribe how the properties of coherent-state qubits actually
allow for much more efficient method for encoding and de-

FIG. 5. Quantum logic circuit for the standard three-qubit code
used to correcZ errors. ThecNOT gates are controlled by the qubit .
|Q) and apply thevoT operation to the qubits intersecting the open coding. . . . .
circles. TheH's represent Hadamard transformations. The diagram 1he effect of the first threenoT gates in Fig. 5 is to
shows the encoding of the qubits, the qubits’ passage through th@erform the transformation.
decoherence region, and the decoding of the qubits. The triangles
represent qubit measurements. If both measurementac if (1l0) +2(1))[0)|0) — 1[0)[0)[0) + »DDID). (22
both are|1), then|Q) exits from the decoding. If the measurements

detect different results, then the qubit must be corrected ith At this point the qubit is protected froi errors. After each

qubit receives am, it is protected fronZ errors.

. o ] B ) The structure of coherent-state qubits makes the transfor-
ties will simply be reje_cted and classified as fa_ulures_ Of_themation Eq.(22) surprisingly simple. In fact, we can perform
gate. Suppose we desire to operate the gate with a fidelity Qhjs transformation on an arbitrary, unknown qubit without
0.99, so we will exclude just enougfh, n, combinations to e need for performing the complicatesioT gates. Sup-
ensure this fidelity. We would then like to know, “What is the pose we are given an unknown qubit, and we want to encode
probability that this operation will succeed?” With=2 and it againstz errors before sending it on to another party across
the worst-case input qubit, the Hadamard gate will succeeq great distance. Assume that the qubit arrives in the form
with a probability of 0.29. Usingr=4, the success probabil- u|—a)+v]a), wherea is known to ugit may be any complex

ity is 0.59. It is possible to protect the qubits from destruc-numbey' but « and » are not known. First it may be helpful
tion when. the Hadama_lrd gate fails by using a second layer C{fthought not necessaryo increase the amplitude of the co-
teleportation as described [a4]. We would apply the Had-  perent states used to encode this qubit. This can be accom-
amard gate itselfmeaning the application dfjgs followed  pjished by teleporting the qubit onto a Bell state, one of
by measurement in the eigenbasisXgfto one of the qubits  \y0se modegthe mode which is measurgtias the ampli-

of a Bell state. Then the information-bearing qubit is “tele-1,de « and the other modevhich will contain the teleported

ported” using this modified Bell state. The result of this qubit) has the new amplitudé3a. This allows us to perform
“teleportation” will be equal tdH|Q). Because the Bell state the transformation

does not contain any information, when the Hadamard gate
fails we can simply produce another Bell state and attempt to wl- @)+ vla) — ul- V3a) + ] V3). (23)
performH again.

While teleportation and the Hadamard gate present som€he details of this teleportation procedure are described in
significant technical challenges, they are not entirely beyonthe following section. We then append two modes, contain-
the horizon of current experiments. Using these tools, weéng only vacuum states, to the qubit. The qubit and the two
will show how the decoherence caused to qubits duringracuum modes are sent through the circuit pictured in Fig. 6.
transmission can be corrected. The state(u|-\3a)+v|\3a))|0)|0) enters the circuit from
the left. The first and second modes mix in a beam splitter
whose transmissivity iS)yZ%. Then the second and third
modes mix at a beam splitter with transmissivi;yr%. This

The erroneous application of the Padlioperator can be prepares the stateu|-a)|-a)|-a)+v|a)|a)|a). We have
corrected using a standard error-correcting cfdg, which  therefore accomplished the transformation E2f) without
encodes a single qubit onto three qubits. The quantum circuknowledge of the value of the qubit or the use of traditional
that is traditionally used to accomplish this encoding is de-CNOT operations. The Hadamard transformations may then

IV. Z ERROR CORRECTION

0GB a)), [ O3 )

103, 10);

FIG. 6. Implementation of the three-qubit code on coherent-state qubits i the encoding. The first and last beam splitters have a
transmissivity of 1/3, and the others have a transmissivity of 1/2. The [gitvill emerge from the first mode without error provided that
both detectors register zero photons.
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be applied using the procedure described in the previous sec- " lon+1) . .
tion. Ps=2 ( ) PL(1 - P47, (29)
After the protected qubits are transmitted down long fi- j=0

bers, they must be decodeq, and an error syndrom'e must @%, increasing the number of qubits used in the encoding,
measured. To decode, we first applytdrto each qubit. We o5, jncrease arbitrarily close to 1, provided it 1/2.

can then simulate the twonoT gates used for the decoding o, simplified method for implementation of the three-qubit
In Fig. 5 with the decoding circuit pictured in Fig. 6. Let Us ¢oqe ysing optical coherent states can be easily applied to
first examine the case in which no errors have occurred, sg,is larger code with @+1 qubits, replacing each of the
after the second threld’s the qubits are in the state CNOT gates with a beam splitter. Decoding is accomplished
by pairwise comparison of neighboring qubits using a beam
splitter and a photon counter.

We can compare the states of the first and second modes by Wwith these methods, we can correct the Pautirror ef-
sending them into a beam splitter, and then measuminthe  fecting the qubits as they are transmitted through a long op-
number of photons in the second mode. If neither mode 1 notical fiber.

mode 2 has receivedaerror, thenn,=0, and the system is

left in the state

— —
= V2a)1|0) = a)z + v\ 2a)1|0),| ). (25

Mode 2 can be returned to its original state by sending mOd'ais
1 through an even beam splitter with the vacuum in the othe
input mode. We then make a similar comparison on modes
and 3, measuringiz;=0 photons. The full qubit can be de-
coded into mode 1 by mixing modes 1 and 2 in a bearrhs
splitter with a transmissivity ofr;:%.

If, for example, mode 2 suffers fromaerror during the
transmission, the state of the three qubits after the decodi
H’s will be

= ay|= a)ol— a)s + v|aya)|a)s. (24)

V. AMPLITUDE RESTORATION

If we plan to transport a coherent-state qubit over a long
tance, we must have some way to correct the decrease in
e amplitude of the coherent states. This can be accom-
lished using a slightly modified form of teleportation.

Now let us describe how the teleportation scheme can be
ed to change the amplitude of the coherent states used to
encode a qubit. Suppose we want to change the ¢QbiB))

to |Q.(@)). In this case, we can restore the amplitude of the
r](Slubit using the teleportation scheme in Fig. 1 with the Bell
state

ul= @il @)l a)s + vl@)y|- a)jla)s. (26) = B)ol— s+ | Bl @)s. (30)

In this case, during the comparison of modes 1 and 2 we
would findn, to be some random integer given by a Poisso
distribution whose mean isaZ, and modes 1 and 3 are left in

N This state can be made easily if we have a source of “cat”
states as described above. We first prepare the cat state

the state B B
-2 )| = (31)
w(=1)™|0)1]= @)z + ]0)1|a)s, (27) cos¢ cos
which aside from the overall factor of -1 is equivalent to @nd send it into a beam splitter with transmissivity
2\ -1
Z"( |- @)s + vla)), (28) T=cod o= (1 +%) | 32

where we have simply discarded modes 1 and 2. The qubit
can now be reconstructed in mode 3 by applicationZzof Once we have constructed the necessary Bell state, we pro-
whenn, is odd. If the error instead occurred in mode 3, weceed with teleportation, exactly as described above and pic-
would find n,=0, andn; is Poisson distributed abouin?.  tured in Fig. 1 except thaB,) is replaced with the new Bell
The qubit is then found in mode 1, requiri@ywhenn; is  state. Because the amplitude of the Bell state’s first mode is
odd. In this way, we can detectZerror in a single mode, tailored to match the qubit, they will experience total inter-
and correct the error. If the probability for an error to occurference at the beam splitter. The teleported qubit will then
in each of the modes B, then the probability that we can emerge with an amplitude equal to that of the Bell state’s
transmit an error-free qubit using this procedurePis=1 second mode.

-3P2+2P3. Note that this technique can also be applied in ®gay)

This three-qubit error-correction code can be expanded tencoding using an analogous cat state. We can use this
increase the probability to successfully transmit a qubit bymethod to increase a qubit's amplitude to prepare it for the
adding more modes to the encodifib]. To protect the en- error-correction code of the previous section. This method
coded qubit from a maximum ofi errors requires 2+1  also allows us to repair the decreased amplitude of a qubit
encoding bits. We must first prepare Qubits in thel0) state. ~ which has suffered from some absorption.

Then we apply &NoOT operation to the qubit we are hoping  When we transmit the qubit over a long distance, the co-
to protect and each of thenZncoding qubits. To complete herent amplitude will decrease by the faceot-2. Because
the encoding, we perform the Hadamard transformation to alihe teleportation success probability depends on the ampli-
of the /+1 qubits. The probability to transmit a qubit with- tude ae™"? of the coherent state, our ability to correct the
out error is now amplitude loss will decrease with the distance traveled by the
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Success probability Bell states. She then sends one-half of each Bell pair to Bob
through their long optical fiber. The Bell states will suffer
0.9992 some decoherence during the transmission, so Alice and Bob

must purify the states. A method for purification of Bell
stategmade of coherent states of lighs published in17].

0.02 0.04 06 0.08 0.1 AL A much more thorough discussion of the connections be-
tween error-correction codes and purification of Bell states
0.9988 can be found if18].
Throughout this paper, we have also discussed a number
0.9986 of connections between the two methods used to encode qu-

bits onto coherent states: the encoding whose logand
FIG. 7. Teleportation success probability wd for u=v D StaFes are the Opt'cal coherent states and|«), and the

=1/y2 anda=2. encoding whose logical states 46 (the vacuum stajeand

|2a). We can transform a qubit from one encoding to another

- . ... by using the displacement opera(+a). Both encodings
qubit. Figure 7 shows the teleportation success probability asuffer from the same forms of decoherence at the same rates.

a function of the transmitted distance. This tells us when wi he brobability to teleport a qubit does not depend on its
should perform teleportation to correct the qubit amplitude. P! y port a g PE
encoding. In a future publication, we hope to discuss the

performance of logic operations on both encodings and how
VI. CONCLUSIONS the freedom offered by the displacement operator can in-

. . . crease the efficiency of calculations.
As a coherent state qubit travels along a fiber-optic cable; In this paper, we have not discussed the effects of any

it suffers from two forms of decoherence. Absorption causes .. . i, : e ;
both a decrease in the amplitude of the coherent state andoé’tICaI nonl|n¢ar|t|¢§ durln_g transmission of the qubit. How-
dephasing in the qubit basis. The amplitude can be restorq%ver’ the nonlm_egrltles of fiber-optic cables at these low light
through teleportation using a specially prepared Bell stateeve'.S are ne.gllglble. Of a much greater concen is the need
We can correct the dephasing using the standard three—qut&&r high-quality photon counters and a source Qf cat states.
phase-flip correction code. We have also shown how the ese are required for the measurements during the error-
phase-flip code can be simplified for the coherent-statforrecuon and teleportation procedures and _fpr the produc-
model, and how the phase-flip code can be expanded to pr ion of Bell states. Because of the great ut|!|ty of photon
vide greater qubit fidelity by using greater numbers of qubitsg(r)lzgtﬁ:zi?nwifkagﬁt?éiz’evéi\igggurage experimenters to con-
to encode the information. '

We might note here that in order to transmit a qubit over
a long distance, instead of using an error-correcting code as
we have described, one could employ quantum teleportation. We would like to thank Alexei Gilchrist, Gerard Milburn,
Suppose Alice wants to transmit her qubit to Bob. Ratherdohn LoSecco, and Carol Tanner for helpful discussions.
than encoding her qubit again&t errors and sending the H.V. thanks the Center for Applied Mathematics at the Uni-
three qubits to Bob, she could prepare a large collection ofersity of Notre Dame for their financial support.
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