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Optimal cloning for finite distributions of coherent states
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We derive optimal cloning limits for finite Gaussian distributions of coherent states and describe techniques
for achieving them. We discuss the relation of these limits to state estimation and the no-cloning limit in
teleportation. A qualitatively different cloning limit is derived for a single-quadrature Gaussian quantum cloner.
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[. INTRODUCTION As well we investigate how the “no-cloning limit” in telepor-
. . tation is modified for finite distributions. In Sec. IV we con-
Creating exact copies of L_mk_nown q_uantum states Choseé]der the case of cloning coherent states on a line, and we
from a nonorthogonal set is impossible, due to the N0+ onclude in Sec. V. '
cloning theoren{1,2]. However, it is still possible to make Y
approximate copies of quantum states. The best achievable Il. THE STANDARD CLONING LIMIT
quality of the copy depends on the dimensionality of the . .
. e . An optimal (Gaussiap cloner for coherent states can be
state Hilbert space, as well as the dlstrlb_utlon Of. states pICkegonstrugted fr(gm a Iinezr optical amplifier and a beam split-
from that space. For example, for a uniform distribution oft  [5.6], as shown in Fig. 1
st_ate_s picked from a qu_b I space, _the pest average overlas Th'e input field can bé déscribed by the annihilation op-
(fidelity) of the clones with the original |§ [3]. For a flat erator &, and the initial coherent statler), where a is a

distribution over an infinite dimensional space the I|m|l§|s complex number representing the coherent amplitude of the

[4]. This paper investigates the experimentally relevant Situg,te The Heisenberg evolution introduced by the linear am-

a:'cin' Irt] c?ﬁtmtlious vgrlabfl_e§t, wg_e{gt:h? dIStI’I.bLIitI(()jnfOf Inputpliﬁ_er transforms this input field into the output fieldy,,
states fo the cloner is a finite distribution, picked Trom an_ gz +.G-151. The field is then divided on a 50:50 beam

infinite Hilbert space. . :
! . . . . __splitter. The output modes are then given b
In contrast to its counterpart in the single-particle regime P P 9 y

[1,2], cloning of continuous variablg®] has only been in-
vestigated over the last few years. Gaussian cloning ma-
chines are of immediate interest for continuous variables as
they represent the optimal way to clone a wide class of ex- .1 = N
perimentally accessible states; the Gaussian states, including b,= =(VG&,+ G- 10] - 0,). (2
coherent and squeezed states. They are so called because V2

they add Gaussian distributioned noise in the cloning prosince both modes have the same amplitude and noise statis-

n 1 —. ~ <~ ~
e LG G T, @
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cess. tics, we need to only consider the quadrature amplitudes and
We derive quantum cloning limits for finite distributions

of coherent states, and we investigate a method to tailor the Clone 1; by %+

standard implementation using a linear amplifig} to take _— !

advantage of the known input state distribution. We also de- X

scribe the qualitatively different quantum cloning limits for P

coherent states with a distribution in the magnitude of their ~._' 50:50 BS

amplitudes but with known phase; we will refer to this as &, ° VG + VG — 10! ' b'es

states “on a line.” We also show that a Gaussian quanturr AMP ;/ > 2=

cloner utilizing an optical parametric oscillator, as opposed . Clone 2 b, 72

to a linear amplifier, is the optimum approach in this case. *

The paper is arranged as follows: we begin in the follow-
ing section by reviewing the standard cloning limit for co-
herent states. In Sec. Ill we examine the cloning of finite . ) ) )
width Gaussian distributions of coherent states and comment F!G- 1. The optimum quantum Gaussian cloning machine for

on the connection between this and optimal state estimatiofOMPIete two quadrature copies. The input figjdenters the am-
P plifier AMP and is amplified according to the gath This field is

then incident onto a 50:50 beam splitter, the output from which
forms the two “clones.” Vacuum noise is added at both the amplifier
*Electronic address: cochrane@physics.ug.edu.au and the beam splitter.
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andf(‘-(B —kA)T)/i are state is now the vacuuriving rise to quantum noigeand
=01=hy

the coherent amplitude: (now included explicitly in the

co 1 = —_— o, Heisenberg evolutionis considered the signal. The output
X = E(VGX;n FNG-1X; +X5), ) modeb, can now be written as

L b= =(Gla+a) +\G-To,+). ()
X" = =(GX ~VG-1X +X;). 4 1T T S A T A T2

\}12 n

Assuming the input field is in a coherent state, the amplitudelhe signal-to-noise transfer ratiér =R,/ Ri;) of either
and phase variancé¥* andV-, respectively are given by ~ quadrature of either clone is

V=V =G. (5) g 1
2 =, (8)

The standard criterion for determining the efficacy of a = %(G +G-1+1 2
given cloning scheme is the fidelity of the input state with
each of the clones. The fidelity quantifies the overlap of theThus each clone has the minimum noise added to it allowed
input state with the clone. In its simplest form, for two pure by quantum mechanics and thus is optimal.
states, the fidelity is the modulus squared of the inner prod- So far we have assuméds in all previous discussions of
uct of the two states. When the input is a coherent state, theéontinuous variable clonershat the input state distribution

fidelity is given by the expressiof] is uniform over all quadrature-phase space; the probability of
5 21 -g)af? seeing a given state at the input of the cloner is the same for

F=— p< / ) (6) all states. However, this implies an infinite distribution
VL +VH(L+V) VL +VH(1+V) which, for practical reasons, is not the case experimentally.

h _ is th litud in of th h ¢ _Therefore, in general, one has some knowledge _about the

whereg=agione/ a is the amp ltude gain of the coherent am input state distribution. We now consider how this informa-

plitude of the clonesacione=(P1)=(b2)) with respect to the tjon can be used to improve the output fidelity of the cloner

coherent amplitude of the input state=(&)). Unit gain by tailoring the gain to the input state distribution.

(g=1) is the best cloning strategy when the input state is

completely arbitrary. This is because the exponential depen-

dence of the fidelity on gain will dominate and lead to low lll. CLONING A RESTRICTED GAUSSIAN DISTRIBUTION

fidelities for large «;, unless the gain is exactly one. With

unity gain the fidelity becomes independent of the input

state, and is thus only a function of the output variances.
Picking unit gain by setting>=2 and substituting Eq5)

Let us consider a two-dimensional Gaussian distributed
coherent input state distribution with mean zero and variance

into Eq. (6) gives an average fidelitydefined by F 1 -
— P(a) = ———e —a 9
= [F(a)P(a)d?a] of JF=3. Since the fidelity does not dep_end @)= 272 X 252 ,
on the amplitude of the input state at unity gain we h#ve
=F [ P(a)d?a, henceF=F. where a, and «, are the real and imaginary parts, respec-

tively, of the input coherent state. Such a distribution is op-

by considering the generalized uncertainty principle for meatimal fqr encoding informatiorf10] and is experimentally
surement$9]. When applied to coherent states this principleacces,s'ble'_ o ! L
requires that in any symmetric, simultaneous measurement YSing this distribution, we can find the average fidelity by
of the two quadrature amplitudes, sufficient noise is addedtegrating the fidelity for a given statgw) [Eq. (6)]
such that the signal to noise of the two measurement result{€ighted by the probability of obtaining that statex) over

is reduced by at least a half over what would be obtained b@!l @ This is described mathematically by

an ideal measurement of one or other of the quadratures.

This result implies that the minimum amount of noise that _:f 2

can be added in the cloning process is just enough so that the 4 F(a)Pla)da. (10
found in an ideal single quacratire measremaneduced e maximize this fidelty over the gain of the ampifier

to precisely one half of that of the original state. This is just!0 obtainF as a function only of the variance of the input
sufficient to prevent the generalized uncertainty principle beState distribution. Knowing the distribution of input states
ing violated by performing an ideal measurement of, say, théan now allow us to choose an appropriate amplifier gain to
amplitude quadrature of clone 1 and the phase quadrature 8taximize the cloning fidelity. Since the minimum value®f
clone 2. Using Eq(4) it is easy to show that the signal-to- is 1, F is a piecewise continuous function of, the two
noise ratios of the quadratures of each clone are equal argleces of the function being joined a%:%+%. The average

+ _1

given by R; = ZRﬁ]. To be more explicit, the input field,,  fidelity is given by

The optimality of this result was proved by Cextfal. [8]
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FIG. 2. Average cloning fidelityf (maximized over the ampli-
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dual homodyne detection of the input state would correspond
to setting the amplifier gain t&=1, and detecting the am-
plitude quadrature of one of the output beams and the phase
quadrature of the other. Given that we know the standard
deviation of the input state distributiom, it can be shown
that the best estimate of the amplitude of the input state is
given by

/_i< 20%
“« _\E 20%+1

where X* and X~ are the measured values of the amplitude
and phase quadratures, respectively. These observables obey
the canonical commutation relations and are mathematically
equivalent to the position and momentum canonical vari-
ables. In the limit of broad distributionr— ) the best

)(X+ +iX7), (13

fier gain vs standard deviation of the input state probability distri- estimate is just given by

bution o. The figure shows that for large the average fidelity is

equal to the cloning limit 05:2/3, andthat aso decreases, the
average fidelity increases to unity, because the prior knowledge one \

has of the input state becomes perfect in this limit.

40° +2 it

— Jec?+1 T T2 2 7

F= L (12)
———— P=T+==12
(3-22)0?+1 2 2

Since we maximize the average fidelity over the ga&nis
implicitly a function of o, and is given by

G= 8o
T (20%+ 1)

wheng?=3+% and byG=1 otherwise.

(12

The average fidelity maximized over the amplifier gain is

shown as a function af in Fig. 2. Note that at large, F(o)
is at the standard cloning limif=2/3. In other words, for

a' = %(X+ +iX7). (19

12
However, as the distribution narrows it is better to underes-
timate the value ofe in accordance with Eq(13). In the
limit of o— 0 we become certain thatis zero regardless of
the measurement outcome.

We have observed that the signal to noise transfer be-
tween the original state and the clones is not changed by the
choice of amplifier gain, thus optimal state estimation must
be possible using the clones. Some insight into the physics of
the particular choice of amplifier gain which produces the
optimal clones can be obtained by noting that for optimal
clones, the best estimation of the original state amplitude is
determined by measuring the amplitude quadrature of one,
and the phase quadrature of the other, and then setting

a' =3(XT+iX). (15)
This is true for all distribution sizes down to the point where
the cloning amplifier gainG equals one. For even smaller

sufficiently broad input state distributions, the situation isgistriputions we return to the dual homodyne formula. At

equivalent to having a completely arbitrary input state.dAS  gych small distribution sizes the quantum noise dominates.
decreases, the fidelity increases, because we now have better

knowledge of the likely value of the input state; approaching

unit fidelity as o tends to zero. This is an intuitive result,
since if =0 then the input state distribution is a two-

B. Teleportation and the no-cloning limit

Teleportation is the entanglement assisted communication

dimensional § function in quadrature-phase space and weof quantum states through a classical charifg]. Telepor-

know with certainty the value of the input stdiee., it is the
vacuum) prior to cloning.

Note that in Eq(8) the minimum allowed noise added to
the clones does not depend on the gain of the ampl@ier
Our procedure of tuning the gain to find the maximum fidel-

ity has retained this property and our clones are thereforsvhich describes a two-mode squeezed vacuum. The strength

optimal.

A. State estimation

tation of continuous variablegl3] can be achieved using
entanglement of the form

) =1 -\22 \"[n,n), (16)

of the entanglement is characterized by the parameter

which is related to the squeezing, or noise reduction, of the

quadrature variable correlations of the modes. Zero entangle-

We now consider the connection between cloning and opment is characterized by=0, and maximum entanglement

timal state estimation. Dual homodyne detection equiva-

lently heterodyne detectigms known to be the optimal tech-

occurs whem=1. Various ways to characterize the quality
of the teleportation process have been prop¢sddiqg, and

nique for estimating the amplitude of an unknown coherenhave been used to describe experimental demonstrations

state drawn from a Gaussian ensen®d.1]. For our setup,

[7,17).
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FIG. 3. Entanglement required to reach the no-cloning limitas aF'G- 4. Teleportation fidelity” (solid curvg and the no-cloning
function of the input state distribution width. The squeezing param-I

imit (dashed curveas a function of distribution widtl; the level
eter\ is plotted against the standard deviatierin dimensionless ~ ©f Squeezing is held constant &&0.5. The teleportation fidelity
units.

beats the no-cloning limit for a large range of distribution widths,

but dips under for o<1. The quantities presented are
- _— . . dimensionless.
In terms of fidelity two distinct bounds have been identi-

fied for the case of an infinite input distribution of unknown

. . - variable teleportation of a finite Gaussian distribution of co-
coherent states. The classical limit#s=1/2[7]. Fidelities  porent jnput states for various levels of entanglement. An
higher than th's. value cannot be ach|eveq n Fhef absence g alytical expression for this optimized average fidelity is
entanglement, i.e., when=0. The no-cloning limit on the iven by

other hand requires that the teleported version of the inpu

state is demonstrably superior to that which could be pos- — 1-2\*-1)¢?

sessed by anyone else. This is not guaranteed unless the tele- = m (17)
ported state has an average fidelfiy=2/3 [16]. Achieving

this requires a particular quality of entanglemex#:1/3, or  where o, as before, is the standard deviation of the input
more than 50 % squeezing. We now investigate how thistate distribution. Using this result and that derived earlier

no-cloning limit changes as a function of the distribution of for the optimum cloning fidelity[Eq. (11)], we can find the
the input states.

squeezing\) required for the teleportation fidelif\Eq. (17)]
In a previous papefl8] two of us (P.T.C. and T.C.R.

to equal the no-cloning limit as a function of the distribution
numerically optimized the average fidelity of continuouswidth (o). This is given by

802 + 160* - 212/02(26% - 1)(1 + 20°)* 11
vavo( 7 X ), =+ ==~12
402 + 240° 2 (18
A= — 18
6+ 42 —\2\3+ 22 + 02+ 26* 11
— , = +-—==12.
6 + 42 + 207 2 42

The result is plotted in Fig. 3. The maximum squeezing paportation fidelity_drops just below the no-cloning limit.
rameter valuen=1/y2 is achieved atr=0. This is the Only with A=1/2 can one be sure that one will beat the
minimum amount of squeezing required for teleportationno-cloning limit.

to beat the no-cloning limit for all values @f. Below this Note that in the limit of larger the teleportation fidelity is
value it is possible for the teleportation fidelity to be higher than the no-cloning limit and that @=0 the fidelity
lower than the no-cloning limit—and for teleported statesequals the no-cloning limit. The lowest constant valuean

not to be superior to that possessed by another party—fdake and still equal the no-cloning limit at both— o and
some values ofr. This is demonstrated in Fig. 4 where o=0isA=1/3,corresponding to the quality of entanglement
A=0.5. Thedashed curve is the no-cloning limit fidelity mentioned above. At lower squeezing parameter values the

and the solid curve is the teleportation fidelity as a func-teleportation fidelity does not achieve the no-cloning limit
tion of o for constanti\=0.5. Notethat for o<1 the tele- except for the trivial case aF=0.

042313-4



OPTIMAL CLONING FOR FINITE DISTRIBUTIONS OF.. PHYSICAL REVIEW A 69, 042313(2004)

-3 ‘ T ‘ Clone 1
—>
_4t B
50:50 BS
5 _ in VHés, +VH — 14,
a° d R O
A Clone 2
N— I
o -6/ |
1
I
7 J i UsQz
FIG. 6. The single-quadrature quantum clortdris the OPO
_% s s s gain.
-20 -10 0 10 20
V (dB)

information on one quadrature only, a different cloning pro-

FIG. 5. Entanglement required to reach the no-cloning limit as €SS IS requ'red: A new cloning !'m't’ W_'th a mu_Ch higher
function of the input state distribution width, as in Fig. 3. This fidelity e_merges 'r_‘ such a scenario and '§ now discussed. )
figure plots the experimentally familiar variables of squeezify _Consider the single-quadrature Gaussian cloner shown in
against the variance/), in units of decibels. Fig. 6.

It consists of a phase-sensitive amplifier, an optical para-

A somewhat surprising feature is that the quality of en_metrlc oscillator(OPO) set to amplify in the real direction

tanglement required to reach the no-cloning limit actually[19 23, foIIowed_by a 50:50 beam splitter also mac_;le phase
: : P sensitive by the injection of squeezed vacuum noise at the
increases as the width of the distribution is decreased. Thi ark Dort The outout of the OPO is given byHA
occurs because of the different ways in which the teleporte J—QAT’USQZ' outpu PO s given byHa,
VH=-14,, whereH is the parametric gain. After passin
+ n

and the cloner add noise at unity gain. For example for a ; :
distribution with a standard deviatian=3, an entanglement through the beam splitter, the variances of the output quadra-

of A=0.4 is required, significantly higher than the=1/3 tures are
level of entanglement needed for an infinite distribution. Fig- Vi VE
ure 5 shows the same plot as Fig. 3 but using the more Véonazvaonee:?a(\f'r—li\’ﬁ)z’f—U- (21)

experimentally familiar parameters of noise reductiam

squeezingof the entanglement, . o .
a Y g Suppose that the input distribution is now described by

o= (1-))? (19 the nonsymmetric Gaussian distribution
T 1o . , ,
- , -,
) . P . P - ——ex X + ) 22
and the variancéor noise powerof the distribution () Pmo? o2 _¥20§ (22
V=62, (20)

) ) , We assumer, <1, restricting the coherent states to the real
both plotted in decibels. These graphs show that the issue @fis. For simplicity we assume that the distribution “along

the no-cloning limit for teleportation is rather subtle when e |ine” is sufficiently broadg,> 1, such that fidelity will

the realistic situation of finite distributions of input states is o optimized by unity gain operation. Unity gain is achieved

taken into account. by setting the gain té1=2. A minimum uncertainty state is
assumed for the squeezed input noise, M§=1/V;. This

IV. THE SINGLE QUADRATURE CLONING LIMIT gives a fidelity of
We now consider cloning of a rather different distribution 5
of coherent states; one in which all the coherent amplitudes F— , (23)
have the same phase, but have a broad distribution in the 5 1 Vg
absolute value of their amplitudes. Effectively the signals are 4 + VA 2 )

encoded on only one quadrature. In Sec. Il we discussed the

optimum cloning limit in terms of a restriction imposed by hich h lobal . h he b i
the uncertainty principle between the two conjugate parami/1ch reaches a global maximum when the beam splitter

eters being copiegB]. For information on a single quadra- MPUt phase is quadrature squeezed such\haty5/8, (so
ture, where only one of the conjugate observables is beinY; =V8/5). The maximum fidelity of the clone is then
copied, it could be easy to reach the naive conclusion thaj(V10-1). An equivalent result can be achieved by not
there will not be such a cloning limit. However, quantum injecting squeezed vacuum at the BS but instead inserting
mechanics still places a restriction on the fidelity of suchtwo independent OPOs in each beam splitter output arm.
clones because coherent states, even when restricted to a lineThe R* of the individual amplitude quadrature clones is

in phase space, are nonorthogonal. If the input states carfpund to be
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2R* V. CONCLUSION
REw= . (24)
ot 2+ We have shown how to tailor the Gaussian quantum

cloner to optimally clone unknown coherent states picked
. - . _— . from finite symmetric Gaussian distributions. Operating the
with optlmlzegi f'del'tx athﬂS/& the abtzve EXPIESSION cloner at a particular level below unity gain maximizes the
reduces toR,,=(5R;,/5+Vy10)~0.6125R;,. This is a  ¢loning fidelity for such distributions. This maximum fidelity
greater value than the single-quadrature aver&g@and increases monotonically as a function of the distribution
lies outside the classical regime. width from 2/3 in the limit of very broad distributions to 1 in
Unlike the symmetric case discussed in Sec. Il, the singlethe |imit of very narrow distributions. We discussed the re-
quadrature clones are entangled. Theof the summed am-  |ationship between this optimal gain and state estimation,
plitude quadratures of the clon&s,=XGiona* XCiones IS and have shown that the no-cloning limit for teleportation of

independent of the vacuum squeezing parameter and givegherent states changes in a nontrivial way as a function of

Reu=1. This indicates that overall no noise has been addeghe width of the input state distribution.

in the cloning process. We also note that the noise OUtpUtS of We have also demonstrated the existence of a qua”ta_

the phase and amplitude quadratures are very close to thgely different cloning limit for coherent states on a line, and

minimum uncertainty product. have described a machine which clones these states with a
It seems likely that this is the optimum fidelity attainable figelity of F=2(10-2.

for coherent states on a line. The approach is analogous t0 Note added. Recently we have become aware that

the standard cloner setup, and it is hard to imagine how thgraqéric Grosshans independently derived the optimum clon-
phase sensitive amplification and phase sensitive beam spl‘hg limits for finite distributions[24].

ter combination could be improved upon given that overall
no noise is added. However, the argument is not as straight-
forward as for a symmetric cloner because the maximization
of the fidelity is nontrivial, depending upon the phase and The authors would like to thank P. K. Lam for helpful
strength of the squeezing injected at the beam splitter. Aliscussions. This work was supported by the Australian Re-
extensive search of the parameter space revealed no betsarch Council. The diagrams in this paper were produced
result, and we conjecture that the fidelity is optimal. with PyScript[25].
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