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We derive optimal cloning limits for finite Gaussian distributions of coherent states and describe techniques
for achieving them. We discuss the relation of these limits to state estimation and the no-cloning limit in
teleportation. A qualitatively different cloning limit is derived for a single-quadrature Gaussian quantum cloner.
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I. INTRODUCTION

Creating exact copies of unknown quantum states chosen
from a nonorthogonal set is impossible, due to the no-
cloning theorem[1,2]. However, it is still possible to make
approximate copies of quantum states. The best achievable
quality of the copy depends on the dimensionality of the
state Hilbert space, as well as the distribution of states picked
from that space. For example, for a uniform distribution of
states picked from a qubit space, the best average overlap
(fidelity) of the clones with the original is56 [3]. For a flat
distribution over an infinite dimensional space the limit is2

3
[4]. This paper investigates the experimentally relevant situ-
ation, in continuous variables, where the distribution of input
states to the cloner is a finite distribution, picked from an
infinite Hilbert space.

In contrast to its counterpart in the single-particle regime
[1,2], cloning of continuous variables[8] has only been in-
vestigated over the last few years. Gaussian cloning ma-
chines are of immediate interest for continuous variables as
they represent the optimal way to clone a wide class of ex-
perimentally accessible states; the Gaussian states, including
coherent and squeezed states. They are so called because
they add Gaussian distributioned noise in the cloning pro-
cess.

We derive quantum cloning limits for finite distributions
of coherent states, and we investigate a method to tailor the
standard implementation using a linear amplifier[5] to take
advantage of the known input state distribution. We also de-
scribe the qualitatively different quantum cloning limits for
coherent states with a distribution in the magnitude of their
amplitudes but with known phase; we will refer to this as
states “on a line.” We also show that a Gaussian quantum
cloner utilizing an optical parametric oscillator, as opposed
to a linear amplifier, is the optimum approach in this case.

The paper is arranged as follows: we begin in the follow-
ing section by reviewing the standard cloning limit for co-
herent states. In Sec. III we examine the cloning of finite
width Gaussian distributions of coherent states and comment
on the connection between this and optimal state estimation.

As well we investigate how the “no-cloning limit” in telepor-
tation is modified for finite distributions. In Sec. IV we con-
sider the case of cloning coherent states on a line, and we
conclude in Sec. V.

II. THE STANDARD CLONING LIMIT

An optimal (Gaussian) cloner for coherent states can be
constructed from a linear optical amplifier and a beam split-
ter [5,6], as shown in Fig. 1.

The input field can be described by the annihilation op-
erator âin and the initial coherent stateual, where a is a
complex number representing the coherent amplitude of the
state. The Heisenberg evolution introduced by the linear am-
plifier transforms this input field into the output field,âout

=ÎGâin+ÎG−1v̂1
†. The field is then divided on a 50:50 beam

splitter. The output modes are then given by

b̂1 =
1
Î2

sÎGâin + ÎG − 1v̂1
† + v̂2d, s1d

b̂2 =
1
Î2

sÎGâin + ÎG − 1v̂1
† − v̂2d. s2d

Since both modes have the same amplitude and noise statis-
tics, we need to only consider the quadrature amplitudes and
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FIG. 1. The optimum quantum Gaussian cloning machine for
complete two quadrature copies. The input fieldâin enters the am-
plifier AMP and is amplified according to the gainG. This field is
then incident onto a 50:50 beam splitter, the output from which
forms the two “clones.” Vacuum noise is added at both the amplifier
and the beam splitter.
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variance of mode 1. The quadrature amplitudesX̂+= b̂1+ b̂1
†

and X̂−=sb̂1− b̂1
†d / i are

X̂+ =
1
Î2

sÎGX̂âin

+ + ÎG − 1X̂v̂1

+ + X̂v̂2

+ d, s3d

X̂− =
1
Î2

sÎGX̂âin

− − ÎG − 1X̂v̂1

− + X̂v̂2

− d. s4d

Assuming the input field is in a coherent state, the amplitude
and phase variancessV+ andV−, respectivelyd are given by

V+ = V− = G. s5d

The standard criterion for determining the efficacy of a
given cloning scheme is the fidelity of the input state with
each of the clones. The fidelity quantifies the overlap of the
input state with the clone. In its simplest form, for two pure
states, the fidelity is the modulus squared of the inner prod-
uct of the two states. When the input is a coherent state, the
fidelity is given by the expression[7]

F =
2

Îs1 + V+ds1 + V−d
expS − 2s1 − gd2uau2

Îs1 + V+ds1 + V−d
D , s6d

whereg=aclone/a is the amplitude gain of the coherent am-

plitude of the clonessaclone=kb̂1l=kb̂2ld with respect to the
coherent amplitude of the input statesa=kâinld. Unit gain
sg=1d is the best cloning strategy when the input state is
completely arbitrary. This is because the exponential depen-
dence of the fidelity on gain will dominate and lead to low
fidelities for largeain unless the gain is exactly one. With
unity gain the fidelity becomes independent of the input
state, and is thus only a function of the output variances.

Picking unit gain by settingG=2 and substituting Eq.(5)
into Eq. (6) gives an average fidelity[defined by F̄
=eFsadPsadd2a] of F̄= 2

3. Since the fidelity does not depend

on the amplitude of the input state at unity gain we haveF̄
=Fe Psadd2a, henceF̄=F.

The optimality of this result was proved by Cerfet al. [8]
by considering the generalized uncertainty principle for mea-
surements[9]. When applied to coherent states this principle
requires that in any symmetric, simultaneous measurement
of the two quadrature amplitudes, sufficient noise is added
such that the signal to noise of the two measurement results
is reduced by at least a half over what would be obtained by
an ideal measurement of one or other of the quadratures.
This result implies that the minimum amount of noise that
can be added in the cloning process is just enough so that the
signal to noise of the quadratures of the clones(as would be
found in an ideal single quadrature measurement) is reduced
to precisely one half of that of the original state. This is just
sufficient to prevent the generalized uncertainty principle be-
ing violated by performing an ideal measurement of, say, the
amplitude quadrature of clone 1 and the phase quadrature of
clone 2. Using Eq.(4) it is easy to show that the signal-to-
noise ratios of the quadratures of each clone are equal and
given byRout

± = 1
2Rin

± . To be more explicit, the input fieldâin

can be written asâin=a+ ân. In this representation the initial
state is now the vacuum(giving rise to quantum noise) and
the coherent amplitudea (now included explicitly in the
Heisenberg evolution) is considered the signal. The output

modeb̂1 can now be written as

b̂1 =
1
Î2

sÎGsa + ând + ÎG − 1v̂1 + v̂2d. s7d

The signal-to-noise transfer ratiosT=Rout
± /Rin

± d of either
quadrature of either clone is

T =
1
2G

1
2sG + G − 1 + 1d

=
1

2
. s8d

Thus each clone has the minimum noise added to it allowed
by quantum mechanics and thus is optimal.

So far we have assumed(as in all previous discussions of
continuous variable cloners) that the input state distribution
is uniform over all quadrature-phase space; the probability of
seeing a given state at the input of the cloner is the same for
all states. However, this implies an infinite distribution
which, for practical reasons, is not the case experimentally.
Therefore, in general, one has some knowledge about the
input state distribution. We now consider how this informa-
tion can be used to improve the output fidelity of the cloner
by tailoring the gain to the input state distribution.

III. CLONING A RESTRICTED GAUSSIAN DISTRIBUTION

Let us consider a two-dimensional Gaussian distributed
coherent input state distribution with mean zero and variance
s2:

Psad =
1

2ps2expS− ax
2 − ay

2

2s2 D , s9d

where ax and ay are the real and imaginary parts, respec-
tively, of the input coherent state. Such a distribution is op-
timal for encoding informationf10g and is experimentally
accessible.

Using this distribution, we can find the average fidelity by
integrating the fidelity for a given stateual [Eq. (6)]
weighted by the probability of obtaining that statePsad over
all a. This is described mathematically by

F̄ =E FsadPsadd2a. s10d

We maximize this fidelity over the gain of the amplifierG

to obtainF̄ as a function only of the variance of the input
state distribution. Knowing the distribution of input states
can now allow us to choose an appropriate amplifier gain to
maximize the cloning fidelity. Since the minimum value ofG

is 1, F̄ is a piecewise continuous function ofs; the two
pieces of the function being joined ats2= 1

2 + 1
Î2. The average

fidelity is given by
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F̄ =5
4s2 + 2

6s2 + 1
, s2 ù

1

2
+

1
Î2

< 1.2

1

s3 − 2Î2ds2 + 1
, s2 ø

1

2
+

1
Î2

< 1.2.

s11d

Since we maximize the average fidelity over the gain,G is
implicitly a function of s, and is given by

G =
8s4

s2s2 + 1d2 , s12d

whens2ù
1
2 + 1

Î2 and byG=1 otherwise.
The average fidelity maximized over the amplifier gain is

shown as a function ofs in Fig. 2. Note that at larges, F̄ssd
is at the standard cloning limitF̄=2/3. In other words, for
sufficiently broad input state distributions, the situation is
equivalent to having a completely arbitrary input state. Ass
decreases, the fidelity increases, because we now have better
knowledge of the likely value of the input state; approaching
unit fidelity as s tends to zero. This is an intuitive result,
since if s=0 then the input state distribution is a two-
dimensionald function in quadrature-phase space and we
know with certainty the value of the input state(i.e., it is the
vacuum) prior to cloning.

Note that in Eq.(8) the minimum allowed noise added to
the clones does not depend on the gain of the amplifierG.
Our procedure of tuning the gain to find the maximum fidel-
ity has retained this property and our clones are therefore
optimal.

A. State estimation

We now consider the connection between cloning and op-
timal state estimation. Dual homodyne detection(or equiva-
lently heterodyne detection) is known to be the optimal tech-
nique for estimating the amplitude of an unknown coherent
state drawn from a Gaussian ensemble[9,11]. For our setup,

dual homodyne detection of the input state would correspond
to setting the amplifier gain toG=1, and detecting the am-
plitude quadrature of one of the output beams and the phase
quadrature of the other. Given that we know the standard
deviation of the input state distributions, it can be shown
that the best estimate of the amplitude of the input state is
given by

a8 =
1
Î2

S 2s2

2s2 + 1
DsX+ + iX−d, s13d

whereX+ and X− are the measured values of the amplitude
and phase quadratures, respectively. These observables obey
the canonical commutation relations and are mathematically
equivalent to the position and momentum canonical vari-
ables. In the limit of broad distributionsss→`d the best
estimate is just given by

a8 =
1
Î2

sX+ + iX−d. s14d

However, as the distribution narrows it is better to underes-
timate the value ofa in accordance with Eq.s13d. In the
limit of s→0 we become certain thata is zero regardless of
the measurement outcome.

We have observed that the signal to noise transfer be-
tween the original state and the clones is not changed by the
choice of amplifier gain, thus optimal state estimation must
be possible using the clones. Some insight into the physics of
the particular choice of amplifier gain which produces the
optimal clones can be obtained by noting that for optimal
clones, the best estimation of the original state amplitude is
determined by measuring the amplitude quadrature of one,
and the phase quadrature of the other, and then setting

a8 = 1
2sX+ + iX−d. s15d

This is true for all distribution sizes down to the point where
the cloning amplifier gainG equals one. For even smaller
distributions we return to the dual homodyne formula. At
such small distribution sizes the quantum noise dominates.

B. Teleportation and the no-cloning limit

Teleportation is the entanglement assisted communication
of quantum states through a classical channel[12]. Telepor-
tation of continuous variables[13] can be achieved using
entanglement of the form

ucl = Î1 − l2o
n

lnun,nl, s16d

which describes a two-mode squeezed vacuum. The strength
of the entanglement is characterized by the parameterl
which is related to the squeezing, or noise reduction, of the
quadrature variable correlations of the modes. Zero entangle-
ment is characterized byl=0, and maximum entanglement
occurs whenl=1. Various ways to characterize the quality
of the teleportation process have been proposedf14–16g, and
have been used to describe experimental demonstrations
f7,17g.

FIG. 2. Average cloning fidelityF̄ (maximized over the ampli-
fier gain) vs standard deviation of the input state probability distri-
bution s. The figure shows that for larges the average fidelity is

equal to the cloning limit ofF̄=2/3, andthat ass decreases, the
average fidelity increases to unity, because the prior knowledge one
has of the input state becomes perfect in this limit.
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In terms of fidelity two distinct bounds have been identi-
fied for the case of an infinite input distribution of unknown

coherent states. The classical limit isF̄=1/2 [7]. Fidelities
higher than this value cannot be achieved in the absence of
entanglement, i.e., whenl=0. The no-cloning limit on the
other hand requires that the teleported version of the input
state is demonstrably superior to that which could be pos-
sessed by anyone else. This is not guaranteed unless the tele-

ported state has an average fidelityF̄ù2/3 [16]. Achieving
this requires a particular quality of entanglement,lù1/3, or
more than 50 % squeezing. We now investigate how this
no-cloning limit changes as a function of the distribution of
the input states.

In a previous paper[18] two of us (P.T.C. and T.C.R.)
numerically optimized the average fidelity of continuous

variable teleportation of a finite Gaussian distribution of co-
herent input states for various levels of entanglement. An
analytical expression for this optimized average fidelity is
given by

F̄ =
1 − 2sl2 − 1ds2

1 − 4sl − 1ds2 , s17d

where s, as before, is the standard deviation of the input
state distribution. Using this result and that derived earlier
for the optimum cloning fidelity,fEq. s11dg, we can find the
squeezingsld required for the teleportation fidelityfEq. s17dg
to equal the no-cloning limit as a function of the distribution
width ssd. This is given by

l =5
8s2 + 16s4 − 2Î2Îs2s2s2 − 1ds1 + 2s2d4

4s2 + 24s4 , s2 ù
1

2
+

1
Î2

< 1.2

6 + 4Î2 −Î2Î3 + 2Î2 + s2 + 2s4

6 + 4Î2 + 2s2
, s2 ø

1

2
+

1
Î2

< 1.2.

s18d

The result is plotted in Fig. 3. The maximum squeezing pa-
rameter valuel=1/Î2 is achieved ats=0. This is the
minimum amount of squeezing required for teleportation
to beat the no-cloning limit for all values ofs. Below this
value it is possible for the teleportation fidelity to be
lower than the no-cloning limit—and for teleported states
not to be superior to that possessed by another party—for
some values ofs. This is demonstrated in Fig. 4 where
l=0.5. Thedashed curve is the no-cloning limit fidelity
and the solid curve is the teleportation fidelity as a func-
tion of s for constantl=0.5. Notethat for s&1 the tele-

portation fidelity drops just below the no-cloning limit.
Only with l=1/Î2 can one be sure that one will beat the
no-cloning limit.

Note that in the limit of larges the teleportation fidelity is
higher than the no-cloning limit and that ats=0 the fidelity
equals the no-cloning limit. The lowest constant valuel can
take and still equal the no-cloning limit at boths→` and
s=0 is l=1/3,corresponding to the quality of entanglement
mentioned above. At lower squeezing parameter values the
teleportation fidelity does not achieve the no-cloning limit
except for the trivial case ofs=0.

FIG. 3. Entanglement required to reach the no-cloning limit as a
function of the input state distribution width. The squeezing param-
eter l is plotted against the standard deviations in dimensionless
units.

FIG. 4. Teleportation fidelityF̄ (solid curve) and the no-cloning
limit (dashed curve) as a function of distribution widths; the level
of squeezing is held constant atl=0.5. The teleportation fidelity
beats the no-cloning limit for a large range of distribution widths,
but dips under for s&1. The quantities presented are
dimensionless.
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A somewhat surprising feature is that the quality of en-
tanglement required to reach the no-cloning limit actually
increases as the width of the distribution is decreased. This
occurs because of the different ways in which the teleporter
and the cloner add noise at unity gain. For example for a
distribution with a standard deviations=3, an entanglement
of l=0.4 is required, significantly higher than thel=1/3
level of entanglement needed for an infinite distribution. Fig-
ure 5 shows the same plot as Fig. 3 but using the more
experimentally familiar parameters of noise reduction(or
squeezing) of the entanglement,

S=
s1 − ld2

1 − l2 , s19d

and the variancesor noise powerd of the distribution

V = s2, s20d

both plotted in decibels. These graphs show that the issue of
the no-cloning limit for teleportation is rather subtle when
the realistic situation of finite distributions of input states is
taken into account.

IV. THE SINGLE QUADRATURE CLONING LIMIT

We now consider cloning of a rather different distribution
of coherent states; one in which all the coherent amplitudes
have the same phase, but have a broad distribution in the
absolute value of their amplitudes. Effectively the signals are
encoded on only one quadrature. In Sec. II we discussed the
optimum cloning limit in terms of a restriction imposed by
the uncertainty principle between the two conjugate param-
eters being copied[8]. For information on a single quadra-
ture, where only one of the conjugate observables is being
copied, it could be easy to reach the naïve conclusion that
there will not be such a cloning limit. However, quantum
mechanics still places a restriction on the fidelity of such
clones because coherent states, even when restricted to a line
in phase space, are nonorthogonal. If the input states carry

information on one quadrature only, a different cloning pro-
cess is required. A new cloning limit, with a much higher
fidelity emerges in such a scenario and is now discussed.

Consider the single-quadrature Gaussian cloner shown in
Fig. 6.

It consists of a phase-sensitive amplifier, an optical para-
metric oscillator(OPO) set to amplify in the real direction
[19–23], followed by a 50:50 beam splitter also made phase
sensitive by the injection of squeezed vacuum noise at the
dark port, v̂SQZ. The output of the OPO is given byÎHâin

+ÎH−1âin
† , where H is the parametric gain. After passing

through the beam splitter, the variances of the output quadra-
tures are

VClone1
± = VClone2

± =
Va

±

2
sÎH − 1 ± ÎHd2 +

Vv̂
±

2
. s21d

Suppose that the input distribution is now described by
the nonsymmetric Gaussian distribution

Psad =
1

2ps2expS− ax
2

2sx
2 +

− ay
2

2sy
2 D . s22d

We assumesy!1, restricting the coherent states to the real
axis. For simplicity we assume that the distribution “along
the line” is sufficiently broad,sx@1, such that fidelity will
be optimized by unity gain operation. Unity gain is achieved
by setting the gain toH= 9

8. A minimum uncertainty state is
assumed for the squeezed input noise, i.e.,Vv̂

+=1/Vv̂
−. This

gives a fidelity of

F → 2

ÎS5

4
+

1

2Vv̂
+DS2 +

Vv̂
+

2
D , s23d

which reaches a global maximum when the beam splitter
input phase is quadrature squeezed such thatVv̂

−=Î5/8, sso
Vv̂

+=Î8/5d. The maximum fidelity of the clone is then
4
9sÎ10−1d. An equivalent result can be achieved by not
injecting squeezed vacuum at the BS but instead inserting
two independent OPOs in each beam splitter output arm.

The R+ of the individual amplitude quadrature clones is
found to be

FIG. 5. Entanglement required to reach the no-cloning limit as a
function of the input state distribution width, as in Fig. 3. This
figure plots the experimentally familiar variables of squeezingsSd
against the variancesVd, in units of decibels.

FIG. 6. The single-quadrature quantum cloner.H is the OPO
gain.
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Rout
+ =

2Rin
+

s2 + Vn
+d

. s24d

With optimized fidelity atVv̂
+=Î5/8, the above expression

reduces toRout
+ =s5Rin

+ /5+Î10d<0.6125Rin
+ . This is a

greater value than the single-quadrature averageR and
lies outside the classical regime.

Unlike the symmetric case discussed in Sec. II, the single-
quadrature clones are entangled. TheR of the summed am-
plitude quadratures of the clones,XSUM

+ =XClone1
+ +XClone2

+ , is
independent of the vacuum squeezing parameter and gives
Rout

+ =1. This indicates that overall no noise has been added
in the cloning process. We also note that the noise outputs of
the phase and amplitude quadratures are very close to the
minimum uncertainty product.

It seems likely that this is the optimum fidelity attainable
for coherent states on a line. The approach is analogous to
the standard cloner setup, and it is hard to imagine how the
phase sensitive amplification and phase sensitive beam split-
ter combination could be improved upon given that overall
no noise is added. However, the argument is not as straight-
forward as for a symmetric cloner because the maximization
of the fidelity is nontrivial, depending upon the phase and
strength of the squeezing injected at the beam splitter. An
extensive search of the parameter space revealed no better
result, and we conjecture that the fidelity is optimal.

V. CONCLUSION

We have shown how to tailor the Gaussian quantum
cloner to optimally clone unknown coherent states picked
from finite symmetric Gaussian distributions. Operating the
cloner at a particular level below unity gain maximizes the
cloning fidelity for such distributions. This maximum fidelity
increases monotonically as a function of the distribution
width from 2/3 in the limit of very broad distributions to 1 in
the limit of very narrow distributions. We discussed the re-
lationship between this optimal gain and state estimation,
and have shown that the no-cloning limit for teleportation of
coherent states changes in a nontrivial way as a function of
the width of the input state distribution.

We have also demonstrated the existence of a qualita-
tively different cloning limit for coherent states on a line, and
have described a machine which clones these states with a
fidelity of F= 4

9sÎ10−1d.
Note added. Recently we have become aware that

Frédéric Grosshans independently derived the optimum clon-
ing limits for finite distributions[24].
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