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Tractable molecular theory of transport of Lennard-Jones fluids
in nanopores

Suresh K. Bhatia,a) Owen Jepps, and David Nicholson
Division of Chemical Engineering, The University of Queensland, Brisbane QLD 4072, Australia

~Received 5 August 2003; accepted 3 December 2003!

We present here a tractable theory of transport of simple fluids in cylindrical nanopores, which is
applicable over a wide range of densities and pore sizes. In the Henry law low-density region the
theory considers the trajectories of molecules oscillating between diffuse wall collisions, while at
higher densities beyond this region the contribution from viscous flow becomes significant and is
included through our recent approach utilizing a local average density model. The model is validated
by means of equilibrium as well nonequilibrium molecular dynamics simulations of supercritical
methane transport in cylindrical silica pores over a wide range of temperature, density, and pore
size. The model for the Henry law region isexact and found to yield an excellent match with
simulations at all conditions, including the single-file region of very small pore size where it is
shown to provide the density-independent collective transport coefficient. It is also shown that in the
absence of dispersive interactions the model reduces to the classical Knudsen result, but in the
presence of such interactions the latter model drastically overpredicts the transport coefficient. For
larger micropores beyond the single-file region the transport coefficient is reduced at high density
because of intermolecular interactions and hindrance to particle crossings leading to a large decrease
in surface slip that is not well represented by the model. However, for mesopores the transport
coefficient increases monotonically with density, over the range studied, and is very well predicted
by the theory, though at very high density the contribution from surface slip is slightly
overpredicted. It is also seen that the concept of activated diffusion, commonly associated with
diffusion in small pores, is fundamentally invalid for smooth pores, and the apparent activation
energy is not simply related to the minimum pore potential or the adsorption energy as generally
assumed. ©2004 American Institute of Physics.@DOI: 10.1063/1.1644108#

I. INTRODUCTION

The transport of molecules in nanopores and confined
spaces is a problem of long-standing importance in hetero-
geneous catalysis, gas-solid reactions, and adsorptive separa-
tions, with a history dating back to the early work of
Knudsen.1 In recent years intense worldwide activity in the
applications of newly developed templated and molecularly
imprinted materials, carbon nanotubes, as well as a host of
other microporous and mesoporous materials has led to re-
newed interest in the subject.2,3 Nevertheless, despite the
long history, understanding is still far from satisfactory for
pores of nanoscale dimension and models largely empirical
even for pores of ideal shape.4

In his seminal work Knudsen1 analyzed the momentum
transfer processes at the pore walls assuming diffuse reflec-
tion, in the absence of any intermolecular as well as wall–
molecule interactions. He thereby determined a transport co-
efficient for cylindrical pores, which is concentration
independent and applicable to low pressures at which the
mean free path is much greater than the pore diameter. Knud-
sen’s treatment was subsequently modified in a more elabo-
rate analysis by von Smoluchowski,5 who considered the
molecular trajectories in the pore and corrected Knudsen’s

result by a small factor of 3p/8. Further refinement was pro-
vided by Pollard and Present6 in a classic analysis that con-
sidered also collision processes in the pore when the mean
free path is smaller than the pore diameter. These profound
developments accurately apply to noninteracting systems,
where they predict the surface slip arising from diffuse re-
flection at the pore wall. However, there are no equivalent
results to date for systems with realistic interactions, al-
though formal theories in this direction have been
proposed.7,8 Because of the limited tractability of these theo-
ries, it is still common to use empirical formulations for na-
nopores smaller than about 2 nm, considered to be in the
‘‘configurational’’ or ‘‘activated’’ diffusion regime4 where the
transport is strongly influenced by interactions. For larger
pores it is common to use the framework of the dusty gas
formulation of Masonet al.,9 while ignoring interactions in
the spirit of the Knudsen and related treatments,1,5,6 to esti-
mate fluxes and transport coefficients. In this approach the
transport model superposes diffusive and viscous flows, so
that for pure component flow in a cylindrical pore

j z52S D01
r p

2r̂kBT

8h D r̂

kBT
¹zm, ~1!

in which D0 is a diffusion coefficient,r p is the pore radius
measured from the center of the surface LJ sites, andh is a
mean viscosity. The second term in the parentheses on the
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right-hand side represents the contribution from viscous flow.
The latter is based on the established Hagen–Poiseuille
model, obtained by solving the Navier–Stokes equation as-
suming no slip at the wall and uniform pressure over the
cross section. The mechanistic interpretation of the diffusion
coefficient D0 is, however, somewhat less certain, as dis-
cussed above, and varies from that of a Knudsen diffusivity
for gaseous phase transport9 to surface diffusivity when a
dense adsorbate phase is involved.4 From Eq.~1! a Fickian
coefficient is obtained by application of the Darken thermo-
dynamic factor to obtain10

Dt5S D01
r p

2r̂kBT

8h D S ] ln~ f !

] ln~ r̂ ! D
T

, ~2!

which assumes equilibrium over the pore cross section. Here
f is a pseudo-gas-phase fugacity that would be in equilibrium
with the pore fluid at the mean adsorbed number densityr̂.

In recent communications from this laboratory11,12 sev-
eral fundamental weaknesses in the above formulation have
been identified, apart from the empirical nature of the diffu-
sion coefficientD0 . The most significant of these is the use
of a uniform mean densityr̂ and mean viscosity coefficient
h, averaged over the pore cross section in the application of
the Poiseuille flow model in Eq.~1!. While this may be ac-
ceptable in large pores at high densities near saturation, at
low densities~i.e., low bulk fugacities! and in narrow pores a
strong density profile exists due to the effect of the adsorbent
potential field and these assumptions are unsatisfactory. In
addition, there is an inconsistency in the above formulation
in that while the Poiseuille flow model is derived based on
the assumption of a uniform pressure over the pore cross
section, the application of the Darken factor in Eq.~2! as-
sumes a uniform chemical potential~i.e., thermodynamic
equilibrium! over the same cross section. Because a strong
nonuniform density profile exists normal to the pore wall,
particularly at low and moderate densities, this assumption
violates the Gibbs–Duhem relation.

A more refined application of the Navier–Stokes equa-
tions has been proposed by Bitsaniset al.13 who allow for
viscosity variations over the pore cross section by evaluating
the local viscosity at a coarse-grained density,

r̄~r !5
6

ps f
3 Eur8u,s f /2

r~r1r 8!dr 8, ~3!

obtained upon local averaging of the density over a sphere of
radiuss f /2, wheres f is the molecular diameter. However,
their analysis also assumes a uniform pressure over the cross
section, while using the equilibrium density profiles~i.e., as-
suming a uniform chemical potential over the cross section!,
in violation of the Gibbs–Duhem relation. In addition, their
approach uses a no-slip condition at the pore surface and
therefore predicts a vanishing transport coefficient at low
densities that is contrary to experiment.4

Some progress towards the incorporation of interactions,
while overcoming the above modeling deficiencies, has re-
cently been achieved in our laboratory11,12 by approximating
the location of the diffuse reflection as that of the minimum
of the fluid–solid potential. Consideration of the momentum

transfer processes at this location, combined with viscous
flow in the pore in the presence of density gradients, pro-
vides a satisfactory, though not quantitatively exact, explana-
tion of the concentration dependence of the transport coeffi-
cient over a wide range of densities and pore sizes. In these
studies the modified equation of motion in cylindrical geom-
etry,

1

r

d

dr F rh~r !
duz

dr G5r~r !
dm

dz
, ~4!

obtained upon combining the Navier–Stokes and Gibbs–
Duhem equations, has been solved assuming cross-sectional
equilibrium, with a frictional condition at the pore wall,

kr0u052h
duz

dr
at r 5r 0 , ~5!

which considers perfectly diffuse reflection at the location,
r 0 , of the minimum of the fluid–solid interaction potential.
Hereu0 is the streaming velocity atr 5r 0 ~i.e., the slip ve-
locity!. The left-hand side of Eq.~5! represents the rate of
momentum loss due to diffuse reflection for particles cross-
ing the potential minimum while moving towards the wall.
Further,k is a friction coefficient andr0 the local reference
density at r 0 . The wall collision frequency for particles
crossing the potential minimum is assumed to depend on this
density and, based on kinetic theory considerations,k
5AmkBT/2p. Further, it may be noted that while molecules
will have zero net axial velocity immediately after diffuse
reflection, Eq.~4! implicitly assumes that they equilibrate
with the incident molecules and attain the streaming velocity
u0 over a vanishingly small distance. This assumption is nec-
essary because the viscous model used in the interior region
is valid only for a fluid in microscopic local equilibrium. In
actual fact a nonequilibrium region must exist before the
viscous model becomes applicable, but this is assumed to be
small and of negligible influence. Solution of Eqs.~4! and
~5! provides the axial streaming velocity profileuz(r ) and
the axial flux j z following j z52@*0

r 0ruz(r )r(r )dr#/r p
2. Use

of the phenomenological relation

j z5
Dt0r̂

kBT
~2¹m! ~6!

then leads to the transport coefficient

Dt0~ r̂ !5
2kBT

r̂r p
2 F 1

kr0r0
S E

0

r 0
rr~r !dr D 2

1E
0

r 0 dr

rh~r̄~r !! S E
0

r

r 8r~r 8!dr8D 2G , ~7!

in which the local viscosity is obtained via the locally aver-
aged density model~LADM ! in Eq. ~3!. Equation~7! is con-
sistent with the general dusty gas model form@cf. Eqs. ~1!
and ~2!#, superposing diffusive~or surface slip! and viscous
contributions represented by the first and second terms in
parentheses, respectively. However, the underlying kinetic
theory assumes uncorrelated Maxwellian distributions of ve-
locities in the three principal directions at the potential mini-
mum location in estimating the friction factor, which is inac-
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curate at low pressures at which intermolecular collisions are
infrequent. The theory also neglects penetration of the repul-
sive region of the solid–fluid potential as it assumes diffuse
reflection at the location of the potential minimum itself.

Here we develop a new theory for the diffusive term that
is exact for low pressures where intermolecular interactions
are negligible and the fluid–solid interaction dominates. The
model solves the Hamiltonian dynamics of the molecules
oscillating between diffuse wall reflections in the potential
field due to the solid and makes no assumption about the
location of the point of reflection, which is obtained from the
solution of the equations of motion. It is shown that a modi-
fied theory combining this diffusive part with the viscous
contribution in Eq.~7! accurately predicts transport coeffi-
cients over a wide range of pore sizes and temperatures,
except for high densities where, as discussed previously,11,12

the surface slip is drastically reduced and alternate, dense
phase, theories may be more appropriate. For validation of
the theory equilibrium and nonequilibrium molecular dy-
namics~EMD and NEMD, respectively! computations have
been performed and are reported here. A brief initial report of
the low-density theory is also provided elsewhere.14

II. TRANSPORT MODEL

We first develop here a theory for the transport coeffi-
cient of a Lennard-Jones~LJ! fluid at low pressures in the
conservative external potential field of a cylindrical pore. To
this end we consider a particle moving in the pore under the
influence of this external potential and an applied axial force
f. The latter represents the applied force in NEMD simula-
tions or, in effect, a chemical potential gradient~2¹m!. Such
a particle when moving towards the wall is reflected at some
radial positionr c1 at which its radial velocity becomes zero
and it reverses direction. Under these circumstances the par-
ticle will execute an oscillating or hopping motion, as de-
picted~front view! in Fig. 1, in which the particle trajectory
has a point of closest approach to the center located at radial
positionr c0 . Since the external potential field due to the pore
walls is conservative, the radial location of the point of re-
flection, r c1 , is the same on both ends of the trajectory~i.e.,

a single oscillation!. At this positionr c1 , it is assumed that
diffuse reflection occurs in the tangent (u-z) plane. This ide-
alized diffuse reflection model for the surface is not neces-
sarily an accurate representation of a real solid adsorbent, as
demonstrated in recent studies of atomically detailed
surfaces.15,16 Reflection from atomically smooth surfaces
~such as graphitic materials! is quite close to being purely
specular, while even from surfaces that are quite rough on
the atomic scale, reflection can be more than 50% specular.
Recent studies17 with single-wall carbon nanotubes have
shown a relatively smooth energy landscape that would favor
nearly specular reflection and high transport coefficients.
However, the theory to be developed can be readily extended
to accommodate any other reflection condition, and for the
purposes of illustrating the development the idealized diffuse
reflection condition suffices. Significantly, this is also the
condition embedded in the widely used Knudsen theory1,5 of
the transport coefficient in hard sphere systems. In this con-
nection it should be noted that the above studies with atomi-
cally detailed surfaces15–17have considered idealized defect-
free systems, which is perhaps somewhat unrealistic. Real
carbons, for example, are quite defective with a high degree
of disorder, as confirmed in laboratory studies and interpre-
tation of x-ray diffractograms of heat-treated carbons.18,19 In
addition, reverse Monte Carlo–determined carbon structures
based on interpretations of x-ray diffraction structure factors,
as well as transmission electron microscopy studies, reveal
the presence of a high degree of disorder in carbons and even
suggest the presence of a large number of rings having fewer
than six members in graphene planes.20 In such materials the
fraction of specularly reflected particles is likely to be sig-
nificantly less than that from defect-free surfaces, and the
choice of appropriate boundary conditions is therefore some-
what ambiguous. In this scenario and in the absence of de-
finitive boundary conditions, the diffuse reflection condition
suffices for the purpose of the present development.

Under conditions of steady flow the transport coefficient
may be related to the mean hopping time^t& of the trajectory
by means of the phenomenological equation

^uz&5
Dt0

kBT
f 5

f

m
^t&, ~8!

in which ^uz& is the mean streaming velocity in the pore and
f ^t& represents the mean axial momentum gain in a single
oscillation. Equation~8! represents a somewhat different ap-
proach than an early attempt21 at computing the flux in con-
fined spaces under a concentration gradient by averaging the
product of path length and axial velocity obtained from nu-
merically computed trajectories. Equation~8! suggests that
the flux is instead determined by the mean oscillation or
‘‘hopping’’ time of a trajectory. Further, we shall treat the
trajectories analytically rather than numerically, leading to
dramatic savings in computational time. Equation~8! leads
to the transport coefficient

Dt05
kBT

m
^t&, ~9!

in which the quantitym/^t& may be viewed as an Einstein
friction coefficient. As defined above, the transport coeffi-

FIG. 1. Schematic of trajectories of an oscillating molecule projected onto
the pore cross section.
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cient is based on a chemical potential gradient driving force
and must be multiplied by the Darken thermodynamic factor
@cf. Eq. ~2!# to obtain the Fickian transport diffusivity. To
determine the oscillation time for an arbitrary trajectory we
solve the equations of motion

dpr

dt
52

]H

]r
, ~10!

dr

dt
5

]H

]pr
, ~11!

dpz

dt
52

]H

]z
, ~12!

for a particle with Hamiltonian

H5V~r !1
pr

2

2m
1

pu
2

2mr2
1

pz
2

2m
2z f ~13!

in a conservative radial potential fieldV(r ). Here we choose
z50 at the point of diffuse reflection where the particle re-
verses direction. Since there is no tangential force, angular
momentum is conserved—i.e.,pu5const during the motion.
Equations~12! and ~13! readily yield

pz5 f t1pz0 , ~14!

where pz0 is the random axial momentum after diffuse re-
flection atr c1 . Since^pz0&50 for diffuse reflection, we ob-
tain ^uz&5 f ^t&/m, where the averaging is performed with
respect to the distributions ofpr , pu , andpz0 . Further, Eq.
~14! is readily integrated to yield

z5
pz0

m
t1

f

2m
t2, ~15!

which combines with Eq.~14! to provide

pz
2

2m
2 f z5

pz0
2

2m
, ~16!

thereby ensuring that the Hamiltonian in Eq.~13! is conser-
vative.

At low pressures for which intermolecular interactions in
the adsorbed phase are negligibleV(r )5f f s(r ), where
f f s(r ) is the one-dimensional position-dependent external
potential due to the solid–fluid interaction in the pore. Sub-
stitution of Eq.~13! into Eqs.~10! and ~11! provides

dpr

dr
52

m

pr
S ]f f s

]r
2

pu
2

mr3D , ~17!

whose integration yields the radial momentum profile for
particles moving towards the pore wall:

pr~r 8,r ,pr ,pu!5H 2m@f f s~r !2f f s~r 8!#1pr
2~r !

1
pu

2

r 2 S 12
r 2

r 82D J 1/2

. ~18!

Here pr(r 8,r ,pr ,pu) is the radial momentum at positionr 8
for a particle having radial momentumpr at positionr. Equa-
tions ~11! and ~13! now readily combine to provide the os-
cillation time as

t~r ,pr ,pu!52mE
r c0~r ,pr ,pu!

r c1~r ,pr ,pu! dr8

pr~r 8,r ,pr ,pu!
, ~19!

where r c1(r ,pr ,pu) and r c0(r ,pr ,pu) are the values ofr 8
corresponding to the solution of

pr~r 8,r ,pr ,pu!50. ~20!

It is now necessary to consider the distributions ofpr andpu

in order to determine the mean value oft for the particles in
the pore space. For the system under investigation these will
follow the canonical distribution

c~r ,u,z,pr ,pz ,pu!

5c0 expF2bS f f s~r !1
pr

2

2m
1

pu
2

2mr2D G , ~21!

with b51/kBT, which is the form attained for a constant-
temperature system with no correlation between particle
states.22 Averaging of the oscillation timet in Eq. ~19! with
respect to the above distribution and substitution into Eq.~9!
now provides the low-density transport coefficient

Dt0
LD5

2

pmQE
0

`

e2bf f s~r !drE
0

`

e2bpr
2/2mdpr

3E
0

`

e2bpu
2/2mr2dpuE

r c0~r ,pr ,pu!

r c1~r ,pr ,pu! dr8

pr~r 8,r ,pr ,pu!
,

~22!

where Q5*0
`re2bf f s(r )dr and pr(r 8,r ,pr ,pu) follows Eq.

~18!. This result may be expected to be valid under condi-
tions at which intermolecular interactions are insignificant.

Development of an exact theory such as that above for
higher densities, where intermolecular interactions cannot be
neglected, is as yet elusive. Despite vigorous attempts,7,8

progress in this direction has been limited and the theories
remain largely intractable. Here we adopt a simplified ap-
proach in which Eq.~22! provides the diffusive contribution,
while the second term in Eq.~7! provides the viscous contri-
bution at higher densities, leading to

Dt0~ r̂ !5Dt0
LD1

2kBT

r̂r p
2 E

0

r 0 dr

rh„r̄~r !… S E0

r

r 8r~r 8!dr8D 2

,

~23!

which, as we shall demonstrate, provides remarkably good
predictions over a wide range of densities. Upon comparison
with Eq. ~7! it is readily evident thatDt0

LD now essentially
represents a surface slip term in a viscous flow model.

III. MODEL SYSTEM AND SIMULATION METHODS

The model developed here is in principle applicable to
any system of rigid fluid particles in which the fluid–wall
interaction can be described in terms of a single one-
dimensional potential fieldV(r ). For the purpose of testing
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and validating the above theory, however, we have con-
ducted simulations modeling the flow of methane, treated as
an LJ fluid, in cylindrical silica pores having infinitely thick
amorphous walls comprised of close-packed LJ sites. The
simulations parallel those discussed in detail elsewhere,12

and we therefore provide here only a brief description. The
LJ 12-6 potential is used to model the fluid–fluid and fluid–
solid interactions. For methane we use the parameter values
« f /kB5148.1 K, s f50.381 nm, while for the solid we use
«s /kB5290 K, ss50.29 nm.12 The one-dimensional fluid–
solid potential at any position is obtained by summing over
the interaction of an LJ methane particle at that position with
sites lying up to 5 atomic diameters on either side. The
Lorentz–Berthelot rules are applied to estimate fluid–solid
LJ parameters, and a total of 12 layers of sites in the pore
wall are used in the summation. A cutoff distance of 1.5 nm
is used in estimating fluid–fluid interactions.

In the molecular dynamics computations conducted par-
ticle trajectories are obtained by solving the equations of
motion

r̈ i52
1

m(
j Þ i

¹iF i j 1G2l~ t ! ṙ i ~24!

using a fifth-order Gear technique with a time step of 1 fs.
Herel(t) is a thermostat factor determined by the Gaussian
thermostatting technique23 employed for temperature control,
F i j is the potential energy of thei - j interaction, andG is a
constant acceleration applied to every particle in NEMD
simulations. For EMD simulationsG50. The run length is
typically 83106– 103106 time steps, the first 43104 steps
of which are rejected. A diffuse scattering condition is ap-
plied at the wall so that, on reversing direction~i.e., reflec-
tion! when closer to the wall than the potential minimum, the
tangential and axial components of the particle velocity are
randomized while conserving kinetic energy. The simulations
are started with an initial configuration having about 500
particles, generated using grand canonical Monte Carlo
~GCMC! simulations following the Metropolis algorithm.24

Model isotherms were also determined using the same algo-
rithm.

In the present work transport coefficients of methane
have been determined using both EMD and NEMD in cylin-
drical silica pores of various diameters in the range of 0.75–
5.4 nm at temperature of 450 K and for various temperatures
in the range of 300–500 K for a pore diameter of 3.01 nm. In
the EMD simulations a collective transport coefficient is ob-
tained from the autocorrelation of the fluctuating axial
streaming velocity of the system via the Green–Kubo
relation10

Dt05N lim
t→`

E
0

t

^uz~0!uz~ t !&dt, ~25!

where

uz~ t !5
1

N (
i 51

N
dzi

dt
5

1

N (
i 51

N

v iz~ t ! ~26!

is the instantaneous streaming velocity. In EMD where no
external driving force is applied the time-averaged system

streaming velocity must vanish; however, the momentum
loss due to diffuse reflection at the wall leads to a fluctuating
instantaneous streaming velocity whose autocorrelation is
exploited to yield the collective transport coefficient perti-
nent to practical applications.10–12 In the NEMD computa-
tions a constant axial accelerationGz (5 f /m) in the range of
0.001–0.02 nm/ps2 is applied to particles and an effective
transport coefficientDt0 computed from the measured flux
following

j z5
Dt0r̂m

kBT
Gz , ~27!

where j z is the axial number flux andr̂ is the average num-
ber density of methane in the pore:

r̂5
2

r p
2 E0

r p
rr~r !dr5

N

V
. ~28!

Herer p is the radius corresponding to the first layer of solid
atoms andV the volume of the pore used in the simulation.
Linear response behavior with transport coefficient indepen-
dent of the applied acceleration is obtained for the range of
Gz used.

FIG. 2. Methane adsorption isotherms~a! at various temperatures in a silica
nanopore of diameter 2.39 nm, and~b! in nanopores of various diameter at
450 K.
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IV. RESULTS AND DISCUSSION

A. Classical hard sphere theory

Equation~22! provides the low-pressure transport coef-
ficient in the presence of a one-dimensional potential field in
a cylindrical pore, which is more general than the classical
Knudsen theory developed for noninteracting systems. The
zero-interaction limit may be derived from the present result
by substitutingf f s50, r<r ph and f f s→`, r .r ph . Here
r ph is the radius of the available pore space given byr ph

5r p2s f s
h , wheres f s

h is the sum of the radius of the methane
and silica surface hard sphere particles. In this case the inner
boundary of the oscillation,r c0 , is obtained from solution of
Eqs.~18! and ~20! as

r c05
rpu

Ar 2pr
21pu

2
, ~29!

while r c15r ph . Equations~18! and ~22! now yield

Dt0
LD5

2

pmQ
E

0

r ph
drE

0

`

e2bpr
2/2mdprE

0

`

e2bpu
2/2mr2dpu

3E
r c0~r ,pr ,pu!

r ph dr8

Apr
21pu

2~r 222r 822!
, ~30!

with Q5r ph
2 /2. It is straightforward to perform the above

integrations and obtain the result

Dt0
LD5

4r ph

3
A2kBT

pm
, ~31!

which holds in the presence of only hard sphere interactions.
This is precisely the well-known Knudsen result1,5,6 and il-
lustrates the versatility of the present approach that can con-
sider arbitrary fluid–solid interaction potentials of the form
f f s(r ). In what follows we discuss the results for the LJ
12-6 interactions used here for the chosen system of methane
in cylindrical silica pores, using both simulation and theory.

B. Supercritical isotherms

Prior to computing transport coefficients, initially super-
critical isotherms of methane in the temperature range of
300–450 K were determined by GCMC simulations for a
silica cylindrical nanopore of 3.01 nm diameter~measured
from centers of the surface sites!. Figure 2~a! depicts the
isotherms at five different temperatures, showing a linear
~i.e., Henry’s law! region up to a methane pore density of
approximately 1 nm23. Saturation is not achieved at the su-
percritical temperatures chosen, despite high fugacities well
beyond the range of interest in most chemical processes. Fig-
ure 2~b! depicts the effect of pore diameter on the isotherms
at 450 K, again showing a Henry’s law region up to a density
of about 1 nm23 with saturation not being achieved even at
high fugacity exceeding 100 bars. Nevertheless, a pore-size-
dependent capacity is evident from Fig. 2~b!, with the largest
pore size having the highest capacity, which may be attrib-
uted to the effect of methane–methane intermolecular inter-
actions. At the smallest pore size of 0.75 nm only a single

central file of methane particles centered at the pore axis is
anticipated, so that viscous effects may be expected to be
small at this size. Figures 3~a!–3~d! depict density profiles at
various pore sizes, showing only centrally located particles at
the smallest diameter of 0.75 nm and essentially monolayer
coverage of the whole surface at the larger sizes. At a pore
diameter of 1.05 nm the peak is no longer located at the pore
axis, but about 0.18 nm away, a distance somewhat smaller
than the particle radius. Consequently, successive particles
along the axis are staggered in the radial direction, with their
interaction inhibiting complete monolayer coverage. Figures
4~a!–4~c! depict different views of particle configurations at
this pore size, illustrating the difficulty in accommodating
two particles on the same diameter. This is responsible for
the apparently lower saturation capacity at this pore size evi-
dent in Fig. 2~b!. It is also seen that the density profiles from
GCMC and EMD, as well as NEMD calculations to be dis-
cussed, are essentially identical, indicating that cross-
sectional equilibrium is attained during the transport. This
feature was also noted in our recent studies for subcritical
temperatures11,12 and justifies the assumption of a uniform
chemical potential over the pore cross section in the integra-
tion of Eq. ~4!.

C. Low-density transport

Transport coefficients at 450 K were subsequently deter-
mined using EMD and NEMD, as described earlier, for vari-
ous pore sizes at low densities~r,0.8 nm23! in the Henry’s
law region. At these conditions the transport coefficient was
essentially independent of density, and both EMD and
NEMD yielded similar results, as will be subsequently dis-
cussed. The latter is in agreement with recent reports11,12

from this laboratory for transport at subcritical temperatures.
Figure 5 depicts the computed variation of the transport co-
efficient of methane with pore diameter at 450 K, as well as
the theoretically predicted results based on Eq.~22!. The MD
results represent an average value taken over 6–10 runs of
107 time steps at adsorbed densities below 0.5 nm23 and are
given by the symbols with the error bars depicting the stan-
dard deviation. The standard deviation lies in the range of
5%–10% of the mean, although the error bars appear insig-
nificant on the scale of the figure. Excellent agreement be-
tween simulation and theory is seen, consistent with our as-
sertion that Eq.~22! provides an exact result for the transport
coefficient under conditions of diffuse reflection. Both EMD
and NEMD are seen to provide consistent results, in agree-
ment with the earlier results at subcritical conditions. The
excellent agreement is evident even at the small pore diam-
eter of 0.75 nm for which only single-file diffusion can occur
since the peak in the density profile lies at the pore axis@cf.
Fig. 3~a!#. Also shown as the dash-dotted line in Fig. 5 is the
Knudsen result in Eq.~31! with r ph taken as the pore diam-
eter r p . This line clearly overpredicts the transport coeffi-
cient several fold and even by more than an order of magni-
tude in the single-file region. If, on the other hand, we
chooser ph as the radius corresponding to the center of the
colliding particles and user ph5r p2s f s

h , with s f s
h

50.92s f s @wheres f s5(s f1ss)/2], the dashed curve is ob-
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tained on the logarithmic coordinates used, which consider-
ably reduces the discrepancy at very small pore sizes. Nev-
ertheless, in mesopores in the range of 2–5 nm considerable
error still remains because of the neglect of dispersive inter-
actions in Eq.~31!. Such interactions will decrease the oscil-
lation period of the trajectories and consequently reduce the
transport coefficient. Physically, the latter occurs because the
reduction in period results in lower momentum gain between
successive diffuse reflections at the wall.

Besides the comparison of predicted transport coeffi-
cients with simulation results, a good test of the theory is the
comparison of axial streaming velocity profiles. To this end
Eqs.~11!–~13! yield

dpz

dr
5

m f

pr
, ~32!

which readily integrates to provide

pz
2~r !5pz02m fE

r

r c1 dr8

pr~r 8,r ,pr ,pu!
~33!

for particles moving away from the wall, for which the radial
momentum is negative, and

pz
1~r !5pz01E

r c1

r c0 dr8

pr~r 8,r ,pr ,pu!
1E

r c0

r dr8

pr~r 8,r ,pr ,pu!
~34!

for particles moving towards the wall, for which the radial
momentum is positive. Equations~33! and ~34! combine to
provide the mean axial streaming velocity at any radial po-
sition as

^vz&5
1

m
@^pz

2&1^pz
1&#

5
2 f

pmrkBT E
0

`

e2bpr
2/2mdprE

0

`

e2bpu
2/2mr2dpu

3E
r c0~r ,pr ,pu!

r c1~r ,pr ,pu! dr8

pr~r 8,r ,pr ,pu!
. ~35!

Comparison of velocity profiles predicted by Eq.~35! with
simulation results gave excellent agreement in all cases. As
an example, Fig. 6 depicts the agreement for a pore of diam-
eter 2.39 nm at 450 K and density of 0.18 nm23, with an
applied acceleration of 0.015 nm/ps2.

NEMD calculations were also performed of the transport
coefficient in a pore of diameter 3.01 nm at various tempera-
tures in the range of 300–500 K, and the results are depicted
by the symbols in Fig. 7. As in Fig. 5, the MD values repre-
sent an average of 6–10 runs of 107 time steps, and the
superimposed error bars represent the corresponding stan-
dard deviation. The theoretical values are also shown in the
figure, represented by the solid line, again demonstrating ex-
cellent agreement between theory and simulation. Good lin-
earity on the Arrhenius coordinates used is also evident, with
the linear regression line~dashed! yielding an apparent acti-

FIG. 3. Radial density profiles at 450
K for various pore sizes and densities,
as given in each of parts~a!, ~b!, ~c!,
and ~d!. Solid lines represent GCMC-
determined equilibrium profiles, while
dashed lines represent profiles from
EMD and dotted lines those from
NEMD. In ~c! only GCMC- and
NEMD-determined profiles are de-
picted.

4478 J. Chem. Phys., Vol. 120, No. 9, 1 March 2004 Bhatia, Jepps, and Nicholson

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  130.102.42.98 On: Thu, 29 Sep 2016

02:54:42



vation energy of 5.69 kJ/mol. This is construed as an ‘‘ap-
parent’’ value because in principle there is no activation bar-
rier to the axial transport in pores with a uniform surface as
assumed here. However, because the oscillating molecules
possess different energies depending on the values ofr c0 and
r c1 , an apparent activation energy may be associated with
the energy suitably averaged over the trajectories, in excess
of the underlying mean potential energy. More precisely, we
may define an activation energy as

E52
d ln Dt0

LD

db
, ~36!

which combines with Eqs.~13!, ~14!, ~16!, and~22! to pro-
vide

E5
^~H2pz0

2 /2m!t&

^t&
2^f&. ~37!

Physically, this may be construed as the excess of a suitably
averaged Hamiltonian over the sum of the average potential
energy and axial kinetic energy, and therefore in a loose

sense an average of the total radial and angular kinetic ener-
gies. For comparison with the activation energy of 5.69 kJ/
mol in Fig. 7, at the temperature of 400 K~midpoint of the
temperature range used! we estimate the mean total radial
and angular kinetic energy as 3.326 kJ/mol (N0kBT, where
N0 is the Avogadro number!, which is slightly lower. How-
ever, from Eq.~37! it is evident that the apparent activation
energy is biased towards the longer trajectories having higher
kinetic energies, justifying its significantly higher value.

To determine the effect of pore size on the activation
energy, theoretical values of the low-density transport coef-
ficient at various temperatures in the range of 300–500 K
have been determined and are depicted in Fig. 8. The Arrhen-
ius character of the temperature dependence over this narrow
temperature range is clearly evident, for the several pore
sizes used, with the apparent activation energy reducing with
decrease in pore diameter. Figure 9 depicts the variation in
apparent activation energy with pore diameter, determined
from the slopes of the lines in Fig. 8. The increase in appar-
ent activation energy with increase in pore diameter is most

FIG. 4. Sample configurations of LJ methane particles in a 1.05-nm-diam
pore.~a! Side view and~b! cross-sectional view, at density of 4.5 nm23. ~c!
Cross-sectional view at density of 0.45 nm23.

FIG. 5. Comparison of simulation and predicted variation of low-density
transport coefficient with pore diameter for methane at 450 K.

FIG. 6. Comparison of simulation and predicted velocity profiles in a 2.39-
nm-diam pore at density of 0.18 nm23 at 450 K, for an applied acceleration
of 0.015 ps/nm2.

FIG. 7. Predicted and simulation results for variation of low-density trans-
port coefficient with temperature for a 3.01-nm-diam pore. The dashed line
represents linear regression of the MD data on the semi logarithmic coordi-
nates used.
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prominent at small pore sizes in the micropore range~,2 nm
diameter!, above which it is almost constant. Also superim-
posed in the figure is the variation in the magnitude of the
minimum potential energy with pore diameter, showing an
opposite trend to the activation energy. This is a rather inter-
esting result as it is in contradiction to the conventional em-
pirical assumption that the activation energy for diffusion is
proportional to the heat of adsorption4 or the magnitude of
the minimum potential energy—i.e.,E5aufminu where 0.3
,a,1. The discrepancy is, however, readily resolved by Eq.
~37!, which suggests that the activation energy is instead
related to the excess of the suitably averaged Hamiltonian
~excess over the mean potential energy! representing a
temperature-dependent potential barrier.

D. Variation of transport coefficient with density

Following the success of the low-density theory, as dis-
cussed above, computations of the density variation of the
transport coefficient at 450 K were done for various pore

sizes in order to test the adequacy of the expression in Eq.
~23! and to compare it with its predecessor in Eq.~7!. Fig-
ures 10~a!, 10~b!, and 10~c! depict the results for pore diam-
eters of 0.75 nm, 1.05 nm, and 1.57 nm, respectively, lying in
the micropore region, with solid circles representing trans-
port coefficients determined by NEMD and solid triangles
those determined by EMD. Although the standard deviation
was not determined at every density, it was found that at the
low density the transport coefficient varied by less than 10%
in repeat runs with different initial configurations at selected
densities, while at high density this variation was within 5%.
While this was predominantly the case, for the NEMD at low
densities a few points~less than 5% of the NEMD runs!
showed significantly larger statistical deviation and were ig-
nored. Consistent with our earlier work for mesopores,11,12

there is good agreement between the EMD and NEMD val-
ues of the coefficient, confirming their equivalence in the
micropore region as well. This is also consistent with other
literature reports25,26 for diffusion in micropores and is to be
expected given their agreement for mesopores where viscous
flow is very significant and can even dominate over the
purely diffusive part. In micropores the latter is expected to
provide the major contribution to the flow, with viscous
transport being considerably weaker. This behavior is indeed
evident in Fig. 10, where the transport coefficient is essen-
tially independent of density for the 0.75-nm-diam pore. For
the larger micropores in Figs. 10~b! and 10~c! some increase
in transport coefficient is evident at densities above about 0.5
nm23, suggesting the onset of viscous flow. At the pore di-
ameter of 1.05 nm there is a subsequent rapid decline in the
transport coefficient beyond a density of about 1.5 nm23, to
levels well below the Henry’s law region. This is attributed
to the lack of complete monolayer coverage, with successive
methane molecules being staggered in the axial direction, as
depicted in Fig. 4. With an increase in density intermolecular
interactions between neighboring molecules on opposite
sides considerably increase the frequency of wall reflections
and therefore reduce the period of oscillation of the mol-
ecules. This leads to a sharp decline in the transport coeffi-
cient. In this situation the molecules oscillate in a narrow
region near the wall, and the transport can be likened to
creeping of the molecules along the potential minimum sur-
face. This creeping behavior is somewhat reminiscent of the
floating molecule concept first discussed by Derouane
et al.27 and subsequently elaborated by Yashonath and
co-workers28,29with regard to diffusion in zeolites. However,
it is to be noted that in these cases the creeping behavior is
due to the relative strength of the fluid–solid interaction po-
tential compared to the kinetic energy, as opposed to effect of
the fluid–fluid interaction in the present case.

Figures 10~a!–10~c! also depict the results based on Eqs.
~7! and ~23!, shown as the dashed and solid lines, respec-
tively. For the calculations the density profile obtained from
GCMC simulations was used, and the viscosity determined
using the correlation of Chunget al.30 at the locally averaged
density following Eq.~3!. As seen in the figures, the calcu-
lations~solid lines! based on Eq.~23! can represent the den-
sity variation of the transport coefficient very well up to the
maximum, but the subsequent decline is somewhat less

FIG. 8. Theoretically predicted variation of the low-density transport coef-
ficient with temperature for various pore diameters. Symbols represent the-
oretical results and solid lines linear regression on the semilogarithmic co-
ordinates used.

FIG. 9. Variation of activation energy and minimum potential energy in pore
with pore diameter.
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steep. This is largely because use of the Henry’s law trans-
port coefficient in the first term on the right-hand side over-
looks the decline in oscillation period due to intermolecular
interactions at high density. Further refinement of the ap-
proach to consider such interactions is therefore suggested
and will be examined in the future. Nevertheless, it is evident
that the new approach is a considerable improvement over
the earlier one in Eq.~7!, given by the dashed curves in Figs.
10~a!–10~c!, which underpredicts the Henry’s law transport
coefficient. The latter is most likely due to the assumption of
a colliding system of particles at the potential minimum, and
thereby an uncorrelated Maxwellian distribution of veloci-
ties, in invoking the kinetic theory based collision frequency
at this position. At very low densities such intermolecular
collisions are infrequent, and only the wall–fluid interaction
need be considered. A further feature of the dashed curves in
Fig. 10 is that at the smallest diameter of 0.75 nm, where the
potential minimum is at the pore center,r 050, and Eq.~7!
incorrectly yields a vanishing transport coefficient. On the
other hand, Eq.~23! accurately predicts the behavior with a
vanishing viscous part due to the absence of particle cross-
ing.

Figures 11~a!–11~d! depict the simulation and theoretical
results for various pore diameters in the mesopore range. The
symbols and dashed as well as solid lines have the same
significance as in Fig. 10. As expected,11,12 both EMD and
NEMD coefficients match. In performing the computations it
was found that NEMD results had greater scatter at low den-
sities, most likely because of the relatively larger ‘‘noise’’ in
this region where small accelerations must be used to ensure
linear response behavior. At high densities, however, it is the

EMD coefficient that is more affected by the ‘‘noise.’’ As
seen in Fig. 11, the solid line representing the results from
Eq. ~23! can predict the density dependence of the transport
coefficient remarkably well, though at high densities beyond
about 5 nm23 it overpredicts slightly most likely because of
the neglect of the effect of intermolecular interactions on the
oscillation period in the first term on the right-hand side.
Since the coefficientDt0

LD represents a slip contribution, it is
evident that the model does not accurately capture the pro-
cesses, leading to a reduction in surface slip at very high
density, which was also evident in our earlier studies.11,12

Nevertheless, this effect occurs at very large bulk fugacities,
as seen from the isotherms in Fig. 2, and for most practically
significant systems Eq.~23! performs remarkably well. On
the other hand, the model of Eq.~7! somewhat underpredicts
due to underestimation of the low-density transport coeffi-
cient. At high densities, however, the predictions of Eqs.~7!
and ~23! approach each other, because of dominance of the
viscous term in these models. In Eq.~23! the first term on the
right-hand side is independent of density, so the entire den-
sity dependence arises from the viscous term, and the agree-
ment with simulations in the density-dependent region, be-
yond a density of about 0.5 nm23, confirms this to be
adequate. In particular, it is clear that the steep increase in
transport coefficient in this region is due to the rapid onset of
viscous flow.

The effect of temperature on the density variation of the
transport coefficient was also investigated at the pore diam-
eter of 3.01 nm. Figures 12~a!–12~d! depict the results of
simulation and theory, with symbols and lines having the

FIG. 10. Variation of transport coeffi-
cient with adsorbed methane density at
450 K, based on MD simulation and
theory, for micropores of diameter~a!
0.75 nm,~b! 1.05 nm, and~c! 1.57 nm.
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same significance as in Fig. 10. As in Figs. 10 and 11, it is
evident that the solid line, representing calculations based on
Eq. ~23!, predicts the simulation results remarkably well at
all temperatures, while Eq.~7! using the kinetic theory based
friction factor slightly underpredicts. The steep increase in
transport coefficient beyond a density of about 0.5 nm23 is
clearly due to viscous effects arising out of intermolecular
interactions, evident from the good agreement of the theory
in Eq. ~7!, as discussed earlier.

Figure 13~a! depicts the theoretical relative contribution
of viscous flow to the transport coefficient at 450 K, based
on Eq. ~23!, for the various pore sizes in Figs. 10 and 11.
With an increase in pore diameter the viscous contribution at
any density is higher, as expected. In the mesopore range
~.2 nm diameter! the transport coefficient increases mono-
tonically with density, while in micropores~,2 nm diam-
eter! there is a decrease in viscous contribution at a suffi-
ciently high density as discussed earlier. This decrease is
particularly severe for the 1.05-nm-diam pore where com-
plete monolayer coverage cannot be achieved~cf. Fig. 2! and
intermolecular interactions lead to a reduced oscillation pe-
riod. At the smallest pores size of 0.75 nm there is only a
central file of molecules and viscous flow is essentially ab-
sent. Figure 13~b! depicts the effect of temperature on the
fraction of viscous flow for the pore diameter of 3.01 nm,
indicating only weak dependency at a given density. There is
a modest increase in fraction of viscous flow with tempera-
ture, suggesting a strong decrease in viscosity with increase
in temperature in comparison to the effect on the low-density
transport coefficient.

It is clear that the new theory offers an attractive option
for the accurate prediction of low-density transport coeffi-
cients in nanopores from first principles and also the density
dependence of the transport coefficient using the LADM,
overcoming the empiricism in existing approaches.4 At low
densities, where fluid–fluid interactions are insignificant, the
self- and transport diffusivities are identical and are exactly
determined from the present theory. As seen above, this
transport diffusivity is constant over a range of densities of
practical importance~less than about 1 nm23! under super-
critical conditions. This holds even for single-file diffusion,
as shown in Fig. 10~a! for methane transport at 450 K in a
0.75-nm-diam silica pore, in which only one layer can be
accommodated. In this case it was noted that this transport
diffusivity, obtained using NEMD as well as EMD, is con-
stant at the low density value predicted remarkably well by
the theory. The density variation of the transport coefficient
is predominantly due to viscous effects, which are absent in
single-file diffusion where particle crossings are rare. For the
single-component case it is easily seen that intermolecular
‘‘collisions’’ cannot affect the collective transport coefficient
in true single-file diffusion, where the interaction force is
purely in the axial direction. As a result, the lateral oscilla-
tion period is not affected and, because intermolecular inter-
actions exert nonet force on the system, the center-of-mass
motion is also unaffected. Consequently, the transport diffu-
sivity will be independent of density, which is confirmed by
Fig. 10~a!. On the other hand, it is known31–33 that self-
diffusion is nonclassical with mean-squared displacement

FIG. 11. Variation of transport coeffi-
cient with adsorbed methane density at
450 K, based on MD simulation and
theory, for mesopores of diameter~a!
2.39 nm,~b! 3.01 nm,~c! 4.25 nm, and
~d! 5.39 nm.
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^z2&}At when intermolecular ‘‘collisions’’ dominate. The
classical nature of the transport diffusivity~i.e., following the
Einstein relation! is evident in Fig. 14~a!, illustrating linear-
ity of the mean-squared displacement of the center of mass,
^z2&cm , with time, at long time, obtained using EMD, at low
(831025 nm23) and high~3.84 nm23! density. However, for
^z2& the long-time slope is unity at the low density and ap-
proaches 0.7 at high density, as seen in Fig. 14~b!, indicating
a transition to nonclassical behavior for the self-diffusion
when intermolecular interactions become important. Thus
the value of the present theory in predicting the correct trans-
port diffusivity pertaining to the collective motion, which is
consistent with the classical Einstein relation, is clearly evi-
dent.

The above results are consistent with recent findings
with regard to transport in silicalite and shed much light on
the well-known problem of diffusion in narrow-pore zeolites
where single-file motion predominates. Concentration-
independent diffusivities of methane in silicalite have indeed
been observed experimentally as well as by MD
simulation34,35 and are now readily explained as above. It
should be noted that in these studies the applicability of the
Darken equation has been verified for the Fickian transport
diffusivity based on a concentration gradient driving force,
showing that the corrected diffusivity based on a chemical
potential driving force~which is equivalent to our transport
coefficientDt0) is concentration independent. On the other
hand, there are also contrary observations, such as those of

CF4 transport in silicalite,34 in which the corrected diffusiv-
ity is not concentration independent. However, such results
are most likely a reflection of significant intermolecular in-
teractions among molecules in neighboring pores of the
three-dimensional silicalite pore network. While not signifi-
cant for methane such interactions may be important for
heavier molecules such as CF4, but are not considered in our
analysis, which is currently based on a single one-
dimensional cylindrical pore. Indeed, the existence of such
interpore interactions is also suggested in earlier work show-
ing differences in calculated neutron diffraction spectra for
methane adsorbed in AlPO5, between calculations based on
one and 16 pores in a unit cell.36 Similarly, there are also
observations of differences between self- and transport dif-
fusivities at low densities due to geometric heterogeneities in
rough pores,37 which are not predicted here because the mo-
menta of different molecules are uncorrelated in the absence
of fluid–solid interactions for the smooth pores considered.
Nevertheless, our theory is quite flexible and can be ex-
tended to consider more complex pore topologies as well as
potentials, albeit with greater computational burden. Bound-
ary conditions other than that of diffuse reflection employed
here can also be investigated. In the future we hope to ad-
dress such problems.

V. CONCLUSIONS

The results of this work demonstrate that at low densities
the molecular trajectories in nanopores can be conveniently

FIG. 12. Variation of transport coeffi-
cient with adsorbed methane density
for mesopore of diameter 3.01 nm,
based on MD simulation and theory, at
temperature of~a! 300 K, ~b! 350 K,
~c! 400 K, and~d! 500 K.
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analyzed as oscillatory motion between diffuse wall reflec-
tions to yield an axial transport coefficient based on the av-
erage momentum gained in a single oscillation. Although we
have considered only diffusely reflecting walls, other bound-
ary conditions, such as partially specular reflections or those
arising from atomically detailed surfaces,15–17 can also be
utilized instead, albeit at increased computational burden.
Nevertheless, the success of the theory now obviates the
need for MD calculations of transport coefficients for LJ flu-
ids in nanopores at low density, at least with diffusely re-
flecting walls. Besides the elimination of statistical noise in-
herent to MD simulations, the theory provides immense
computational advantage, reducing CPU time from several
days for the 107 time steps used in the MD the simulations to
only about 20–45 min for the theory. The latter also accu-
rately predicts the collective Fickian-transport-coefficient for
single-file transport pertinent to actual applications, as op-
posed to the more conventionally studied self-diffusion coef-
ficient that is non-Fickian. In addition, the theory can be
readily extended for other pore shapes, such as slit pores.14

While proving accurate and essentially exact at low den-
sity at all pore sizes, the theory contradicts commonly used
empirical representations relating activation energy to the
minimum potential energy or isosteric heat of adsorption in
the pore. Instead, it appears that the activation energy is more

closely related to the excess of a suitably averaged Hamil-
tonian over the average potential energy in the pore and is
better represented as a pore-size-dependent function of tem-
perature. Further, with an increase in density the transport
coefficient increases as intermolecular interactions become
significant. These interactions can be conveniently incorpo-
rated in terms of an additional viscous flow term, using the
recently developed refinement11,12 of the LADM, which pro-
vides accurate predictions of the transport coefficient over a
wide range of densities. In micropores and mesopores, how-
ever, the procedure somewhat overpredicts at very high bulk
fugacity, due to the large reduction in oscillation period not
represented by the present approach. Further studies along
these lines are underway and will be reported in due course.
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