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Experimental characterization of continuous-variable entanglement
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We present an experimental analysis of quadrature entanglement produced from a pair of amplitude
squeezed beams. The correlation matrix of the state is characterized within a set of reasonable assumptions,
and the strength of the entanglement is gauged using measures of the degree of inseparability and the degree
of Einstein-Podolsky-Rosen~EPR! paradox. We introduce controlled decoherence in the form of optical loss to
the entangled state, and demonstrate qualitative differences in the response of the degrees of inseparability and
EPR paradox to this loss. The entanglement is represented on a photon number diagram that provides an
intuitive and physically relevant description of the state. We calculate efficacy contours for several quantum
information protocols on this diagram, and use them to predict the effectiveness of our entanglement in those
protocols.
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I. INTRODUCTION

Entanglementis one of the most intriguing features o
quantum mechanics. It was first discussed by Einstein, P
olsky, and Rosen in 1935@1# who used the concept to pro
pose that either quantum mechanics was incomplete or l
realism was false. Since that seminal paper experiments
shown entanglement to be a real property of the phys
world @2#. Interest in entanglement has grown recently due
its apparent usefulness as an enabling technology in quan
information and communication protocols such as quan
teleportation@3#, dense coding@4,5#, and quantum computa
tion @6#. The specific properties of the entangled state utiliz
in each of these protocols play a highly significant role in
success of the protocol. It is therefore important to be abl
perform complete and accurate characterizations of an a
able entanglement resource, which is the topic of this pa

We report the generation and characterization of Gaus
continuous-variable entanglement between the amplitude
phase quadratures of a pair of light beams; henceforth ter
quadrature entanglement. This entanglement has been r
ported previously@7#; the purpose of this paper is to prese
further experimental results, to more fully characterize
entanglement, and to elaborate on the results presente
that paper. It is well known that Gaussian entanglement
be fully characterized by the coherent amplitudes of the
tangled beams, and a matrix containing the correlations
tween each of the variables of interest~in our case the am
plitude and phase quadratures of both entangled bea!,
termed thecorrelation matrix. To our knowledge, although
previously there have been a number of experiments
continuous-variable entanglement@8–12#, none performed
this characterization. Given some reasonable assump
about our entanglement, we do so here.

*Present address: the Institut fu¨r Atom-und Molekülphysik, Uni-
versität Hannover, 30167 Hannover, Germany.
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Although the coherent amplitudes of the entangled bea
and the correlation matrix together provide a complete ch
acterization of quadrature entanglement, they do not dire
yield a measure for the strength of the entanglement. In p
experiments the strength of an entangled resource has
characterized in the spirit of either the Schro¨dinger @10–12#
or Heisenberg pictures@8,9,11#, and the characterization
lead to qualitatively different results. In the Schro¨dinger pic-
ture, a necessary and sufficient criterion for the entanglem
of a pair of subsystems is that the state describing the en
system isinseparable. That is, it is not possible to factor th
wavefunction of the entire system into a product of separ
contributions from each subsystem. Given that an observ
signature of the mathematical criterion for wave-function
separability can be identified, one can define thedegree of
inseparability for the state, and use it to characterize t
strength of the entanglement. In the Heisenberg picture
sufficient criterion for entanglement is that correlations b
tween conjugate observables of two subsystems allow
statistical inference of either observable in one subsyst
upon a measurement in the other, to be smaller than
standard quantum limit, that is, the presence of nonclass
correlations. This approach was originally proposed by E
stein, Podolsky, and Rosen@1# and has since been termed th
EPR paradox. Similarly to the Schro¨dinger picture we can
define thedegree of EPR paradoxfor a given entangled state
and use it to characterize the strength of the entanglem
For pure states the Schro¨dinger and Heisenberg approach
return qualitatively equivalent results suggesting consiste
of the two methods. However, when decoherence is pres
causing the state to be mixed, differences can occur.
quadrature entanglement wave-function inseparability m
be identified using theinseparability criterionproposed by
Duanet al. @13,14#. We use this criterion to define the degre
of inseparability of our entanglement. To define the degree
EPR paradox we use the criterion for demonstration of
EPR paradox as quantified by Reid and Drummond@15#, and
refer to this as the EPR paradox criterion. By introduci
©2004 The American Physical Society04-1

https://core.ac.uk/display/15007146?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


n
e
do
o

nd
: t
gl
tu
u
th
e
b
e

lti
th
t
n
io
w
nt
ig
u

us
a
an

t
or

-
e
th
n

al
m
na
d
e
t

at

an

ra

of a
ec.
ed
tter.
ally
eam

f
-

p-
t
g
ent
our

rom
ing
rm
lac-
le

our
ver
ary
ec-

zed

d
fre-
out-

ches
-

BOWEN et al. PHYSICAL REVIEW A 69, 012304 ~2004!
decoherence in the form of optical loss to both of our e
tangled beams we observe qualitative differences betw
the degree of inseparability and the degree of EPR para

Finally, we characterize our entanglement in terms
mean sideband photon numbers@7#. We find that the mean
number of photons per bandwidth per time in the sideba
of an entangled state can be broken into four categories
mean number of photons required to maintain the entan
ment, to produce any bias that exists between the ampli
and phase quadratures of the beams, to produce the imp
of the state, and to produce any impurity bias between
amplitude and phase quadratures. For our entanglem
these four mean photon numbers provide an equivalent
more intuitive characterization to the correlation matrix. W
attach less significance to the mean photon numbers resu
from impurity than those required to maintain and bias
entanglement, and sum them to give the total mean pho
number per bandwidth per time due to impurity. Our e
tanglement could then be represented on a three-dimens
photon number diagram. On a plane of this diagram,
directly assessed the level of success achievable for qua
teleportation, demonstration of the EPR paradox, and h
and low photon number dense coding when utilizing o
entanglement. The photon number diagram can also be
to assess the effect of techniques such as distillation
purification, which can be used to improve the quality of
entangled state.

II. PRODUCTION OF CONTINUOUS-VARIABLE
ENTANGLEMENT

In the time domain, a single mode of the electromagne
field can be fully defined by its field annihilation operat
ã(t), which has the commutation relation@ ã(t),ã†(t)#51.
ã(t) is non-Hermitian but can be expanded as

ã~ t !5a~ t !1
dX̃1~ t !1 idX̃2~ t !

2
, ~1!

wheredX̃6(t) are the time domain Hermitian amplitude~su-
perscript1) and phase~superscript2) quadrature noise op
erators, anda(t)5^ã(t)& is the coherent amplitude of th
field which we define to be real throughout this paper wi
out loss of generality. The commutation relatio

@X̃1(t),X̃2(t)#52i follows directly from the commutation
relation ofã(t) andã†(t). This relation places a fundament
limitation on how well one quadrature of an optical bea
can be known, given some knowledge of the orthogo
quadrature. This can be expressed as the uncertainty pro
D2X̃1(t)D2X̃2(t).1, where the operator variances are d
noted byD2X̃5^(dX̃)2&. It is this uncertainty product tha
makes quadrature entanglement possible.

Several techniques may be used to generate quadr
entanglement. It was first generated by Ouet al. in 1992
@8,9# using a nondegenerate optical parametric amplifier,
more recently using the Kerr nonlinearity in fibers@11#, and
interfering the outputs of two below threshold optical pa
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metric amplifiers @16,12,7#. Ultimately all of these tech-
niques yield Gaussian continuous-variable entanglement
form that can be modeled simply and, as we will see in S
III, quite generally, by combining two quadrature squeez
beams with orthogonal squeezing on a 50-50 beam spli
Indeed, it is this technique that we adopted to experiment
generate quadrature entanglement. In general, the two b
splitter outputsãx(t) and ãy(t) are of the form

ãx~ t !5
eifx

A2
@ ãsqz,1~ t !1eiuãsqz,2~ t !#, ~2!

ãy~ t !5
eify

A2
@ ãsqz,1~ t !2eiuãsqz,2~ t !#, ~3!

whereãsqz,1(t) and ãsqz,2(t) are the annihilation operators o
the input squeezed beams,u defines the relative phase be
tween them,fx and fy are phase shifts that rotate the o
erators such thatax(t) and ay(t) are real, and throughou
this paper the subscriptsx and y denote the beams bein
interrogated for entanglement. To avoid frequency-depend
noise sources present on our optical fields we examine
entangled states in the frequency domain. The transfer f
time to frequency domain can be achieved simply by tak
a Fourier transform. Henceforth, we perform this transfo
and distinguish operators in the frequency domain by rep
ing the symbol̃ with a ˆ. For conciseness where possib
we omit the frequency domain functionality (v). We have
already taken the time domain coherent amplitude of the
optical fields to be real, but this property does not carry o
to the frequency domain. We denote the real and imagin
parts of the frequency domain coherent amplitude, resp
tively, as a15Re$a(v)%52^X̂1& and a25Im$a(v)%
52^X̂2&. We take the input beams to be amplitude squee
states (D2X̂sqz,1

1 ,1 andD2X̂sqz,2
1 ,1) with equal intensities

@asqz,1(t)5asqz,2(t)#, and setu5p/2 so that the squeeze
quadratures are orthogonal at the beam splitter. The
quency domain amplitude and phase quadratures of the
put beamsx andy can then be expressed as

X̂x
65 1

2 ~6X̂sqz,1
1 1X̂sqz,2

1 1X̂sqz,1
2 7X̂sqz,2

2 !, ~4!

X̂y
65 1

2 ~X̂sqz,1
1 6X̂sqz,2

1 7X̂sqz,1
2 1X̂sqz,2

2 !. ~5!

We see that as the squeezing of the input beams approa
perfect ($D2X̂sqz,1

1 ,D2X̂sqz,2
1 %→0) the quadrature noise opera

tors of beamsx andy approach

dX̂x
6→ 1

2 ~dX̂sqz,1
2 7dX̂sqz,2

2 !, ~6!

dX̂y
6→7 1

2 ~dX̂sqz,1
2 7dX̂sqz,2

2 !, ~7!

so that

^~dX̂x
11dX̂y

1!2&→0, ~8!
4-2
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^~dX̂x
22dX̂y

2!2&→0. ~9!

Therefore in this limit an amplitude quadrature measurem
on beamx would provide an exact prediction of the amp
tude quadrature of beamy; and similarly a phase quadratu
measurement on beamx would provide an exact predictio
of the phase quadrature of beamy. This is a demonstration o
the EPR paradox in exactly the manner proposed in the s
nal paper of Einsteinet al. @1#. Analysis of the entanglemen
in the physically realistic regime where$D2X̂sqz,1

1 ,D2X̂sqz,2
1 %

Þ0 is more complex, and is the topic of the following se
tion.

III. CHARACTERIZATION OF CONTINUOUS-VARIABLE
ENTANGLEMENT

Characterization of continuous-variable entanglement
in many ways, a more complex enterprise than its discr
variable counterpart. Discrete-variable entanglement can
fully characterized by a density matrix of finite dimensio
~usually 434). In contrast, complete characterization
continuous-variable entanglement requires a density ma
of infinite size. This problem has received considerable
terest in the quantum optics community with, as of now,
consensus on the most appropriate characterization me
@17#. However, experimental realizations of continuou
variable entanglement have, to date, been limited to a s
class of states—those with Gaussian statistics—for wh
well-defined characterization techniques do exist. In this s
tion we introduce the characterization techniques used
our entanglement, and discuss an interpretation separa
the mean number of photons per bandwidth per time in
entangled state into components required to maintain
bias the entangled state, and to produce and bias the imp
present in the state@7,18#.

A. Gaussian entanglement and the correlation matrix

Any Gaussian continuous-variable bipartite state can
fully characterized by its amplitude and phase quadra
coherent amplitudesax

6 , ay
6 , and the correlation~or cova-

riance! matrix. In generalax
6 and ay

6 are easily character
ized, and do not contribute to the strength of entanglem
exhibited by the state. In our experiment the entangled s
was produced from two squeezed vacuum states, so tha
amplitude and phase quadrature coherent amplitudes
beamsx andy were all zero,ax

65ay
650. We will therefore

focus on the correlation matrix here. The correlation ma
MC is given by

MC5S Cxx
11 Cxx

12 Cxy
11 Cxy

12

Cxx
21 Cxx

22 Cxy
21 Cxy

22

Cyx
11 Cyx

12 Cyy
11 Cyy

12

Cyx
21 Cyx

22 Cyy
21 Cyy

22

D . ~10!

Each term in this matrix is the correlation coefficient b
tween two of the variablesX̂x

1 , X̂x
2 , X̂y

1 , andX̂y
2 ; defined

as
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Cmn
kl 5 1

2 ^X̂m
k X̂n

l 1Xn
l X̂m

k &2^X̂m
k &^X̂n

l & ~11!

5 1
2 ^dX̂m

k dX̂n
l 1dX̂n

l dX̂m
k &, ~12!

with $k,l %P$1,2%, $m,n%P$x,y%. The symmetry in the
form of Cmn

kl dictates that in generalCmn
kl 5Cnm

lk . The corre-
lation matrix is therefore fully specified by ten independe
coefficients.

The entangled beams analyzed in this paper were ge
ated in a symmetric manner by interfering two amplitu
squeezed beams withp/2 phase shift on a 50-50 beam spl
ter ~as discussed in the preceding section!, and encountered
identical loss before detection. Furthermore, the squee
beams themselves were produced in an identical manne
identical optical parametric amplifiers~OPAs!, with no cross
quadrature correlations present either within each beam i
vidually or between the beams. When applied to Eqs.~4! and
~5! these symmetries dictate that the amplitude~phase!
quadrature variances of beamsx and y are equal,D2X̂6

5D2X̂x
65D2X̂y

6 , so thatCmm
665D2X̂6; and that the beams

exhibit no cross-quadrature correlations, that is, thatCmn
67

50. The correlation matrix is then given by

MC5S Cxx
11 0 Cxy

11 0

0 Cxx
22 0 Cxy

22

Cxy
11 0 Cxx

11 0

0 Cxy
22 0 Cxx

22

D , ~13!

where complete specification now only requires character
tion of D2X̂1, D2X̂2, ^dX̂x

1dX̂y
11dX̂y

1dX̂x
1&, and

^dX̂x
2dX̂y

21dX̂y
2dX̂x

2&. Specification of these four param
eters is equivalent to characterization of the variance of
squeezed and antisqueezed quadratures of the pai
squeezed beams produced by recombining the entan
beams losslessly and inphase on a 50-50 beam splitter.

B. The inseparability criterion

Specification of the correlation matrix, although it do
offer a complete description of the entanglement, does
immediately provide a measure of whether beamsx andy are
entangled, or how strongly they are entangled. We use
criteria, both of which can be inferred from the correlatio
matrix, to measure those properties. In this section we
cuss the inseparability criterion recently proposed by Du
et al. @13,14# which provides a necessary and sufficient co
dition for Gaussian entanglement; and in the section follo
ing we introduce the EPR paradox criterion proposed
Reid and Drummond@15# which has been used to characte
ize entanglement in past experiments. It should be noted
strictly speaking, a good measure of entanglement sho
satisfy the conditions given in Refs.@19,20#, and stated ex-
plicitly later in this paper. Neither the inseparability nor EP
criteria have been shown to satisfy these conditions, and
deed, to our knowledge no such measure exists presentl
continuous-variable entanglement. However, both crite
considered here have strong physical significance, hav
4-3
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straightforward dependence on the strength of the quan
resources used to generate the entanglement, and are
monly used to gauge the strength of entanglement in exp
ments. Throughout this paper we, therefore, refer to b
criteria as measures of the strength of entanglement.

The inseparability criterion relies on the identification
separability with positivity of theP-representation distribu
tion of the state. Duanet al. @13# showed that through loca
linear unitary Bogoliubov operations any bipartite Gauss
state can be transformed so that its correlation matrix has
standard form

MC
s 5S Cxx

11 0 Cxy
11 0

0 Cxx
22 0 Cxy

22

Cxy
11 0 Cyy

11 0

0 Cxy
22 0 Cyy

22

D , ~14!

where the values ofCnm
66 are restricted by the conditions

Cxx
1121

Cyy
1121

5
Cxx

2221

Cyy
2221

, ~15!

and

A~Cxx
1121!~Cyy

1121!2uCxy
11u5A~Cxx

2221!~Cyy
2221!

2uCxy
22u. ~16!

Given that the state is in this form, they showed that
inseparability criterion

D2X̂I
11D2X̂I

2,2S k21
1

k2D ~17!

is a necessary and sufficient condition for the presence
entanglement@13#, whereD2X̂I

6 are the measurable correla
tions

D2X̂I
65K S kdX̂x

62
Cxy

66

uCxy
66u

dX̂y
6

k D 2L , ~18!

andk is a parameter that compensates for bias between
systemsx andy and is given by

k5S Cyy
1121

Cxx
1121

D 1/4

5S Cyy
2221

Cxx
2221

D 1/4

. ~19!

In fact, Duanet al. showed that if the state under interrog
tion is separable satisfaction of criterion~17! is impossible
for any arbitraryk. From an experimental perspectivek can
then be thought of as a variable parameter. Satisfaction o
criterion for anyk is a sufficient condition for entanglemen

A comparison of the form of the correlation matrix d
scribing our entanglement@Eq. ~13!# with the standard form
of Duan et al. @Eqs. ~14!–~16!# reveals that, in general, w
cannot directly apply the inseparability criterion of Eq.~17!.
Of course, after a complete characterization of the corr
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tion matrix it can be taken into the standard form, and
inseparability criterion can then be applied. However,
will see in the following analysis that if a product form of th
criterion is taken, it becomes valid for a wider range of c
relation matrices and indeed is then directly applicable to
entanglement. Let us consider the effect that restrictions~15!

and ~16! have onD2X̂I
6 . ExpandingD2X̂I

6 we find

D2X̂I
65k2D2Xx

61
D2Xy

6

k2
22

Cxy
66

uCxy
66u

^dXx
6dXy

6&

5ACyy
6621

Cxx
6621

Cxx
661ACxx

6621

Cyy
6621

Cyy
6622uCxy

66u

~20!

52@A~Cxx
6621!~Cyy

6621!2uCxy
66u#

1ACxx
6621

Cyy
6621

1ACyy
6621

Cxx
6621

. ~21!

A comparison of Eqs.~21! with restrictions~15! and ~16!
reveals that transforming a general bipartite Gaussian s
into the standard form for which the inseparability criterio
of Eq. ~17! is valid equatesD2X̂I

1 and D2X̂I
2 (D2X̂I

1

5D2X̂I
2). The inseparability criteria can therefore b

equivalently written in the product form

AD2X̂I
1D2X̂I

2,S k21
1

k2D . ~22!

In this form however, the criterion is insensitive to equ
local squeezing operations on beamsx and y. This was not
the case for the sum criterion, where it was necessary
restrictions~15! and ~16! forbid those operations. The prod
uct form of the inseparability criterion is therefore valid for
wider set of correlation matrices. Indeed we find that valid
of the product form only requires one restriction on the fo
of the correlation matrix, rather than the two in Eqs.~15! and
~16!. This restriction can be shown to be

Cyy
11Cxx

222Cxx
11Cyy

225AD2X̂I
2

D2X̂I
1

~Cyy
112Cxx

11!

1AD2X̂I
1

D2X̂I
2

~Cxx
222Cyy

22!.

~23!

Since for our entanglementCxx
115Cyy

11 and Cxx
225Cyy

22

@see Eq.~13!#, we see that this less stringent restriction
satisfied. The correlation matrix describing our entanglem
given in Eq. ~13! is of the same form as that in Eq.~14!,
therefore the product form of the inseparability criterion
4-4
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directly valid for our entanglement. To provide a direct me
sure of the strength of the entanglement we define the de
of inseparability

I5
AD2X̂I

1D2X̂I
2

k211/k2
, ~24!

normalized such that beamsx andy are entangled ifI,1.
For entanglement produced as described in Sec. II

expression forI becomes considerably simpler. The e
tangled beams are produced on a 50-50 beam splitter,
thermore, prior to detection they encounter only linear op
and incur equal loss. There is, therefore, symmetry betw
the quadratures of beamsx and y, so thatCxx

665Cyy
66 . In

this case we see from Eq.~19! that k51. Equation~24! can
then be written

I5AD2X̂x6y
1 D2X̂x6y

2 , ~25!

whereD2Ôx6y is the minimum of the variance of the sum
difference of the operatorÔ between beamsx andy normal-
ized to the two-beam shot noise,D2Ôx6y5min^(dÔx

6dÔy)
2&/2. This measure of entanglement in terms of t

product of sum and difference variances between the be
has been used previously in the literature@21#.

We are interested in the effect of decoherence in the fo
of optical loss on the EPR paradox and inseparability cr
ria, and the photon number diagram. It can be shown fr
Eqs.~4!, ~5!, and~25! that for entanglement generated from
pair of uncorrelated squeezed beams as detailed in Se
and with equal optical loss for beamsx and y, I can be
expressed as a function of the overall detection efficiench
as

I5hD2X̂sqz, ave
1 1~12h!, ~26!

where we define the average of the input beam squeezin
D2X̂sqz, ave

1 5(D2X̂sqz,1
1 1D2X̂sqz,2

1 )/2. We see that so long a
the average squeezing of the two beams used to genera
entanglement is below one (D2X̂sqz, ave

1 ,1), thenI,1. So
beamsx andy are entangled for any level of input squeezin
Notice that even ash approaches zero, for any level o
squeezingI remains below unity. We see that the entang
ment is robust against losses at least in the sense that
alone cannot transform an inseparable state to a sepa
one.

C. The EPR paradox criterion

The concept of entanglement was first introduced by E
stein, Podolsky, and Rosen in 1935@1#. They demonstrated
than an apparent violation of the Heisenberg uncerta
principle could be achieved between the position and m
mentum observables of a pair of particles@22#. This apparent
violation has since been termed theEPR paradox. Demon-
stration of the EPR paradox relies on quantum correlati
between a pair of non-commuting observables, so that m
surement of either observable in sub-systemx allows the
01230
-
ee

e
-
r-
s
en

e
ms

m
-

II,

as

the

.

-
ss

ble

-

ty
-

s
a-

inference of that variable in sub-systemy to better than the
standard quantum limit. Between the amplitude and ph
quadratures of a pair of optical beams this is quantified
the product of conditional variances@15#, we therefore define
the degree of EPR paradoxE,

E5D2X̂xuy
1 D2X̂xuy

2 , ~27!

where the EPR paradox is demonstrated forE,1 and the
quadrature conditional variancesD2X̂xuy

6 are given by

D2X̂xuy
6 5D2X̂x

62
u^dXx

6dXy
6&u2

D2X̂y
6

~28!

5Cxx
662

uCxy
66u2

Cxx
66

~29!

5min
g6

^~dXx
62g6dXy

6!2&, ~30!

whereg6 are experimentally adjustable variables. Satisf
tion of the EPR paradox criterion between two beams i
sufficient but not necessary condition for their entangleme
This criterion has been used to characterize the strengt
entanglement in several previous experiments@8–11#.

It is relatively easy to show that for pure input squeez
states ($D2X̂sqz,1

1 D2X̂sqz,1
2 ,D2X̂sqz,2

1 D2X̂sqz,2
2 %51) and equal

optical loss for beamsx and y, the dependence ofE on de-
tection efficiency is given by

E54S 12h1
2h21

h~D2X̂sqz, ave
1 11/D2X̂sqz,ave

1 22!12
D 2

.

~31!

Notice that whenh50.5, E51, independent of the level o
squeezing. This defines a boundary such that ifh.0.5 the
EPR paradox criterion is satisfied for any level of squeezi
and if h,0.5 it can never be satisfied. This is a strikin
contrast to the inseparability criterion which, as we show
earlier, is satisfied for any level of squeezing and any de
tion efficiency. The reason for this difference is that the
separability criterion is independent of the purity of the e
tanglement ~i.e., independent of D2X̂sqz,1

1 D2X̂sqz,1
2 and

D2X̂sqz,2
1 D2X̂sqz,2

2 ), a property that the EPR paradox criterio
is very sensitive to. Optical loss changes the purity of
entanglement and therefore affects the EPR paradox an
separability criteria differently. However, ifh51 the mea-
sured entangled state is pure, and both criteria are mono
cally increasing functions ofD2X̂sqz, ave

1 in the range 0

,D2X̂sqz, ave
1 ,1, with E5I51 at D2X̂sqz, ave

1 51. Therefore,
in the limit of pure measured entanglement, the insepara
ity and EPR paradox criteria become qualitatively equiv
lent.
4-5
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D. The photon number diagram

Applications have been proposed for quadrature entan
ment in the field of quantum information@23,24#. For almost
all of these applications, a pure entangled state is des
@25#. Due to the unavoidable losses in any real system h
ever, a perfectly pure entangled state is unachievable.
therefore essential to characterize the effect of impurity
the outcome of any application of entanglement. We h
seen already that impurity has different effects on the deg
of inseparability and EPR paradox. It may not be such
surprise therefore, that the effect of impurity varies fro
application to application. To illustrate the point we consid
two well-known potential applications related to quantu
information, unity gain quantum teleportation@16,26–28#,
and dense coding@5,29#. We analyze the performance o
these applications as a function of the purity of the entan
ment, and its strength inferred from the inseparability cri
rion.

A nice feature of some discrete-variable measures o
entanglement resource, such as von Neumann entropy@19#
and relative entropy@30#, is that they vary proportionally
with the size of the resource, that is, if the number of e
tangled photon pairs doubles the value of the meas
doubles. This is not the case for the inseparability criteri
In fact, as the strength of the entanglement increases,
inseparability criterion approaches zero. Alternatively, in
manner analogous to discrete-variable entanglement m
sures, we can examine the average number of photons
bandwidth per time required to generate the entanglem
resource@18#. The average number of photons per bandwi
per time in the sidebandv of an optical beam is given by

n̄~v!5^â†~v!â~v!&

5 1
4 ^~X̂12 iX̂2!~X̂11 iX̂2!&

5 1
4 @^~X̂1!2&1^~X̂2!2&1 i ^X̂1X̂22X̂2X̂1&#

5ua1u21ua2u21 1
4 ~D2X̂11D2X̂222!. ~32!

We see that with only vacuum in the sidebandD2X̂1

5D2X̂251 and a650, so no photons are present. If th
state is squeezed, however, thenD2X̂11D2X̂2.2 always,
and thereforen̄.0. As the squeezing improves the avera
number of photons in the state increases. Since entangle
may be generated by interfering a pair of squeezed beam
can see that to maintain an entangled resource of a g
strength~or a givenI) will also require some nonzero ave
age number of photons. The mean number of photons in
entangled staten̄total is just the sum of the number in beam
x andy,

n̄total5n̄x1n̄y ~33!

5 1
4 ~D2X̂x

11D2X̂x
21D2X̂y

11D2X̂y
2!21, ~34!

where since the coherent amplitudesax
6 and ay

6 have no
relevance to the correlation matrix characterizing our
tanglement, and are easily accounted for, we have negle
contributions from them settingax

65ay
650. As stated ear-
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lier, some fraction of n̄total is required to maintain the
strength of the entanglement. A contribution is also made
the impurity of the squeezed beams used to generate
entanglement; and by the decoherence experienced by
state after production. Of course, the photons in a quadra
entangled state are indistinguishable from one another so
a definite separation of photons into distinct categories is
possible. This separation is possible however, when only
average number of photons within a quadrature entang
state per bandwidth per time is considered. The strengt
the entanglement (I) dictates a minimum average number
photons n̄min per bandwidth per time that are required
maintain the entanglement. The remaining photons can~on
average! be separated into photons that are present du
bias between the amplitude and phase quadratures of the
tangled beamsn̄bias, and excess photons that are the result
the impurity of the entanglementn̄excess.

For entanglement that is symmetric between beamsx and
y such as is analyzed in this paper, the average numbe
excess photons per bandwidth per timen̄excesscan be found
by considering the lossless interference of the two entang
beams in phase on a 50-50 beam splitter. In this case
output beams~labeled with the subscripts ‘‘out1’’ and ‘‘out2’’
here! would exhibit squeezing with squeezed quadrat
variances of D2X̂sqz, out1

1 5D2X̂x6y
1 and D2X̂sqz, out2

2

5D2X̂x6y
2 , respectively. From Eq.~25! we see that the

strength of our entanglementI depends only on the squee
ing of these output beams. Any impurity in the entanglem
causes the output beams to be nonminimum uncerta
($D2X̂sqz, out1

1 D2X̂sqz, out1
2 ,D2X̂sqz, out2

1 D2X̂sqz, out2
2 %.1). To de-

termine the average number of photons in the entangled s
due to impurity,n̄excess, we can simply compare the mea
number of photons in the entangled staten̄total to the number
that would be in the state if it was perfectly pure,n̄pure,

n̄excess5n̄total2n̄pure ~35!

5n̄x1n̄y2n̄pure. ~36!

n̄pure can be thought of as the average number of photons
bandwidth per time required to generate two pure squee
beams with the same level of squeezing as the two ou
beams. WhenI>1 no entanglement is present betwe
beamsx and y, and no squeezing is required. We therefo
find n̄min50 and n̄total5n̄excess1n̄bias. For the remainder of
this paper we only consider the more interesting situat
when entanglement is present, restricting ourselves tI
,1. In this case since the two output beams have squee
quadrature variances ofD2X̂x6y

1 and D2X̂x6y
2 , respectively,

n̄pure is given by

n̄pure5
1

4 S D2X̂x6y
1 1

1

D2X̂x6y
1

1D2X̂x6y
2 1

1

D2X̂x6y
2 D 21.

~37!
4-6



th
he

le
p

a
o
p

la

er
of

n
in

p
r
e

an
m
be

n
a

m
e
ri
ge
tu
hi

x-
the
ding
f the

of
ber

opy
ent
n a
gle-
is-
of
n-

oc-
us-

tates
ite
he

no

en-

.
re-

nd

ix

ree-
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n̄excesscan then be directly obtained from Eq.~36!.
n̄pure can be separated into a component due to bias in

entanglementn̄bias and a component required to maintain t
entanglementn̄min ,

n̄pure5n̄min1n̄bias. ~38!

n̄min is directly dependent on the strength of the entang
mentI, and is therefore independent of local reversible o
erations performed individually on beamsx andy. The pho-
tons resulting from bias between the amplitude and ph
quadratures of the entangled state, however, may be c
pletely eliminated by performing equal local squeezing o
erations on beamsx and y @18#. After performing these op-
erationsn̄pure becomes

n̄pure8 5 1
4 S g2D2X̂x6y

1 1
1

g2D2X̂x6y
1

1
D2X̂x6y

2

g2
1

g2

D2X̂x6y
2 D 21,

~39!

whereg is the gain of the squeezing operations. It is re
tively easy to show thatn̄pure8 is minimized, and therefore

n̄bias is eliminated, wheng25AD2X̂x6y
2 /D2X̂x6y

1 , and we
find that

n̄min5
1

2 S AD2X̂x6y
1 D2X̂x6y

2 1
1

AD2X̂x6y
1 D2X̂x6y

2
D 21

5
1

2
S I1

1

ID 21, ~40!

where n̄min is the minimum mean number of photons p
bandwidth per time required to generate entanglement
given strengthI. We see thatn̄min is completely determined
by I and is monotonically increasing asI→0. The average
number of photons present in the entanglement per ba
width per time as a result of bias can then also be determ
as n̄bias5n̄pure2n̄min .

We can now separate the average photon number
bandwidth per time in a quadrature entangled state into th
categories; photons required to maintain the entanglem
n̄min , photons produced by bias between the amplitude
phase quadraturesn̄bias, and excess photons resulting fro
impurity n̄excess. All three average photon numbers can
calculated from measurements ofD2X̂x

6 , D2X̂y
6 , and

D2X̂x6y
6 . An entangled state can then be conveniently a

intuitively analyzed on a three-dimensional diagram
shown in Fig. 1, withn̄min , n̄bias, andn̄excessforming each of
the axes. Note that, in a manner analogous to that perfor
for n̄pure above, n̄excessmay be broken into two parts: th
average number of photons required to produce the impu
of the entanglement, and the average number of photons
erated by bias between the amplitude and phase quadra
caused by the impurity of the state. We do not perform t
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separation explicitly here, since the exact distribution of e
cess photons is of much less significance than that for
photons necessary to generate the entanglement. Inclu
this extra parameter, and assuming the entanglement is o
same form as is discussed earlier, the correlation matrix
Sec. III A can be fully characterized by these photon num
parameters.

An analogy can be made between then̄min2n̄excessplane
of the photon number diagram and the tangle-linear entr
analysis often performed for discrete-variable entanglem
@31#. In both cases the entanglement is represented o
plane with one axis representing the strength of the entan
ment (n̄min for continuous variables, and the tangle for d
crete variables!, and the other axis representing the purity
the state (n̄excessfor continuous variables and the linear e
tropy for discrete variables!. Unlike the discrete-variable
case where the region of the tangle-linear entropy plane
cupied by physical states is bounded, the set of continuo
variable entangled states spans the entiren̄min2n̄excessplane.
The difference occurs because the discrete quantum s
analyzed on the tangle-linear entropy plane involve a fin
and fixed number of photons. This restriction limits both t
strength of the entanglement~the tangle! and the purity~the
linear entropy!. Continuous-variable entangled states have
such limitation.

It is interesting to consider whethern̄min is a good mea-
sure of entanglement. Formally, a good measure of the
tanglement of the stater, E(r), must satisfy the following
criteria @19,20#:

~1! E(r)50 if and only if r is separable.
~2! E(r) is left invariant under local unitary operations
~3! E(r) is nonincreasing under local general measu

ments and classical communication.
~4! Given two separate entangled statesr1 and r2 such

that r5r1^ r2 , E(r)5E(r1)1E(r2).
Duanet al.demonstrated thatI51 if and only if the state

under interrogation is separable. It is clear then thatn̄min50
if and only if the state under interrogation is separable, a
therefore criterion~1! is true for n̄min . Furthermore, since
characterization ofI requires that the state correlation matr
be taken into a standard form, bothI and n̄min are invariant
under local unitary operations so that criterion~2! is true. As
yet we have no conclusion about the validity of criterion~3!

FIG. 1. An entangled state can be represented on a th
dimensional photon number diagram.
4-7
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BOWEN et al. PHYSICAL REVIEW A 69, 012304 ~2004!
for n̄min . It seems likely that it is valid since an increase
n̄min is equivalent to an increase in the quantum correlat
between fieldsx andy, which should not be possible throug
local general measurements and classical communication
nally, given two separate entangled states the minimum
erage number of photons per bandwidth per time require
generate both states is simply the sum of the minimum
erage number of photons per bandwidth per time require
generate each state,n̄min5n̄min,11n̄min,2, so that criterion~4!

is valid. We see therefore thatn̄min satisfies three of the fou
criteria for a good entanglement measure, and although
have not shown so here, we believe it is likely to satisfy
remaining criterion.n̄min is a particularly elegant measure
entanglement due to its physical significance.

1. Entanglement criteria and the photon number diagram

We can represent the inseparability and EPR paradox
teria on the photon number diagram. As can be seen from
~40!, for entanglement symmetric between beamsx andy the
degree of inseparability can be expressed solely as a func
of n̄min ,

I5n̄min112A~ n̄min11!221. ~41!

The same is not true for the EPR paradox criterion. T
result is unsurprising; we have already found that the E
paradox is sensitive to the impurity of the entangled st
which can be expressed in terms ofn̄excess. The degree of
EPR paradox can be obtained from the amplitude and ph
quadrature conditional variances between beamsx andy @see
Eq. ~27!#. We see from Eq.~28! that the amplitude and phas
quadrature conditional variances are defined byD2X̂x

6 ,

D2X̂y
6 , andu^dXx

6dXy
6&u. For simplicity here we assume th

entanglement is symmetric between amplitude and ph
quadratures. This assumption is true for the entanglem
analyzed in this paper at sideband frequencies above ar
5 MHz, and has the consequence that there are no photo
the entangled state due to biasn̄bias50. We then find that

D2X̂5D2X̂x
15D2X̂x

25D2X̂y
15D2X̂y

25n̄total11, ~42!

and can expressu^dXx
6dXy

6&u in terms ofn̄min and n̄excessas

u^dXx
6dXy

6&u5n̄excess1A~ n̄min!
221. ~43!

The degree of EPR paradox can then also be written in te
of n̄min and n̄excess,

E5S 2n̄excess@ n̄min112A~ n̄min11!221#11

n̄excess1n̄min11
D 2

. ~44!

Since we have assumed thatn̄bias50, the degree of EPR
paradox can be represented as contours on then̄min2n̄excess
plane of the photon number diagram. This representatio
shown in Fig. 15~a!; the curvature of the contours demo
strates again the sensitivity of the EPR paradox to impur
01230
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It is interesting to note that in the extrema ofn̄excess→0
andn̄excess→`, the degree of EPR paradox becomes a fu
tion of only n̄min , and can be written in terms of the degre
of inseparability as

En̄excess→05
4I 2

~I 211!2
, ~45!

En̄excess→`54I 2. ~46!

We see again that for pure entanglement (n̄excess50) I,1
implies E,1. In contrast, for extremely impure entangl
ment (n̄excess→`), we see that to observe the EPR parad
requiresI,0.5. This result has the consequence that if
squeezed beams used to generate the entanglement
squeezed variances$D2X̂sqz,1

1 ,D2X̂sqz,2
1 %,0.5, then no matter

how large the antisqueezed variances, the EPR paradox
be demonstrated.

2. Quantum teleportation and the photon number diagram

Quantum information protocols are also representable
the photon number diagram. In this paper we consider
well-known examples, quantum teleportation and dense c
ing.

The uncertainty principle of quantum mechanics fund
mentally limits both the ability to measure and to reconstr
quantum states. Since teleportation requires both meas
ment of the original state, and then reconstruction at a dis
location, it was therefore thought that teleportation was a
fundamentally limited by the uncertainty principle. In 199
however, Bennettet al. @3# discovered that by using en
tangled photon pairs in the measurement and reconstruc
processes perfect teleportation could be facilitated. Th
proposal has been generalized to the continuous-variable
gime @26,28#, and a schematic of the continuous-variab
scheme is shown in Fig. 2. A number of methods exist
characterize the success of continuous-variable teleporta
~for a summary see Ref.@33#!; in this paper we consider th
most well-known measure, the fidelity of teleportation. F
delity measures the state overlap between the teleporter i
uc in& and outputr̂out states, and is given by

F5^c inur̂outuc in&. ~47!

F51 implies perfect overlap between the input and out
states and therefore perfect teleportation, without entan
ment the fidelity is limited toF<0.5, andF50 if the input
and output states are orthogonal. Again assuming that
entanglement is unbiased (n̄bias50), the fidelity of unity
gain coherent-state teleportation using quadrature entan
ment @26,28# may be expressed as

F5
1

11I . ~48!

We see that the success of the teleportation protocol dep
only on the degree of inseparability. This results in vertic
4-8
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efficacy contours for teleportation when represented on
photon number diagram, as can be seen in Fig. 15~b!. The
shading in Fig. 15~b! indicates the area of the photon numb
diagram for which the more stringentno cloning teleporta-
tion limit is not satisfied@32#. Note that, if the teleportation
protocol was operated at nonunity gain, the protocol wo
become sensitive to impurity and the teleportation effica
contours would be curved. Although the nonunity gain
gime is significant for quantum information protocols su
as optimum entanglement swapping@33#, we will not con-
sider it here.

3. Dense coding and the photon number diagram

Dense coding was first proposed by Bennettet al. @34# in
1992, when they showed that by utilizing shared entang
ment between the sending~Alice! and receiving~Bob! sta-
tions, a single communication channel can achieve a hig
information transfer rate than is physically possible using
same resources~i.e., the same number of photons! but with-
out entanglement.

An upper bound to the information transfer rate of a ba
width limited Gaussian information channel is given by t
Shannon capacityC @35#,

C5
log2~11R!

2
, ~49!

whereR5D2Ŝ/D2N̂ is the signal-to-noise ratio of the chan
nel, with D2Ŝ andD2N̂ being the variance of the signal an
noise, respectively. Dense coding in the continuous-varia
regime was first proposed by Braunstein and Kimble in 20
@29#, and a detailed discussion may be found in Ref.@5#. A
schematic diagram of the proposal of Braunstein and Kim
is given in Fig. 3.

In this paper we restrict ourselves to the comparison
the channel capacities achievable using a squeezed stat
using a dense-coding protocol based on quadrature enta
ment. To obtain a fair comparison of the two schemes
define the total average number of photons allowed in

FIG. 2. Schematic of a quantum teleportation experiment;
tectors labeled with the symbols1 and2 are amplitude and phas
detectors, respectively. BS, beam splitter; AM, amplitude modu
tor; PM, phase modulator; LO, local oscillator.
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beam encoded with informationn̄encoding. In both the
squeezed state and entangled state based dense-c
schemes some of these photons must be used to genera
quantum state, and the remaining photons can be use
encode signals. For the squeezed state scheme the numb
photons in the squeezed state is given by

n̄sqz5
1

4 S D2X̂sqz1
1

D2X̂sqz

22D , ~50!

whereD2X̂sqz is the variance of the squeezed quadrature. T
remainingn̄encoding2n̄sqz photons are used to encode signa
on the squeezed quadrature of the beam. This results
channel with signal variance given byD2Ŝsqz54(n̄encoding

2n̄sqz), and noise variance given byD2N̂sqz5D2X̂sqz. The
squeezed state channel capacity is then

Csqz5 log2S 11
4~ n̄encoding2n̄sqz!

D2X̂sqz
D . ~51!

Optimizing the ratio of the mean number of photons p
bandwidth per time used to generate squeezing and the m
number of photons per bandwidth per time used to enc
the signal we arrive at the optimum squeezed state cha
capacity@5#

Csqz, opt5 log2~112n̄encoding!. ~52!

Let us now consider the dense-coding scheme. Again,
make the assumption that the entanglement is symmetric
tween the amplitude and phase quadratures. In this cas
can use the amplitude and phase quadratures as indepe
channels, and find that the noise variance of each chann
given by D2N̂EPR5I5D2X̂x6y

1 5D2X̂x6y
2 . n̄total as defined

previously is the average number of photons per bandw
per time in the entangled state before encoding of any
nals. These photons are split evenly between the two
tangled beams, therefore on averagen̄encoding2n̄total/2 pho-
tons per bandwidth per time are available for encoding. T
amplitude and phase quadrature signal variances are
then given byD2ŜEPR5n̄encoding2n̄total/2, which is attenuated
by a factor of 4 when compared to the squeezed state si
variance. This attenuation is the result of two effects, a fac
of 2 arises because the signal photons must be shared

-

-

FIG. 3. Schematic of a dense-coding experiment. BS, be
splitter; AM, amplitude modulator; PM, phase modulator.
4-9
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BOWEN et al. PHYSICAL REVIEW A 69, 012304 ~2004!
tween the amplitude and phase quadratures of the entan
beam, and another factor of 2 is due to the 50-50 be
splitter required before measurement. We then obtain the
tangled state channel capacity

CEPR5 log2S 11
D2ŜEPR

I D ~53!

5 log2S 11
n̄encoding2~ n̄min1n̄excess!/2

n̄min112A~ n̄min11!221
D . ~54!

When the average number of photons available to
dense-coding protocol is large (n̄encoding→`), the dense-
coding channel capacity becomes independent of the num
of photons present due to impurity in the entanglement. T
is shown in Fig. 15~d! which plots contours of the ratio
CEPR/Csqz for large n̄encoding. We see that in this limit the
dense-coding channel capacity exceeds the optimum ach
able squeezed state channel capacity forn̄min.0.25. When
the average number of photons available to the dense-co
protocol is small however, the dense-coding channel capa
can be extremely sensitive to impurity. This is perhaps no
surprise, since every photon that exists in the entangled s
is one less that may be used to encode signals. Clearly, in
limit that n̄encoding5(n̄min1n̄excess)/2, no photons remain to
encode signals, and thereforeCEPR50. The ratioCEPR/Csqz

for small n̄encodingis shown as a function ofn̄min andn̄excessin
Fig. 15~c!, and indeed the contours are strongly curved.

IV. EXPERIMENT

The preceding section described methods presently a
able to characterize continuous-variable entangled state
particular we discussed the correlation matrix which can
used to fully characterize Gaussian entanglement, the ins
rability and EPR paradox criteria, and a representation
entanglement in terms of sideband photon numbers. In
section we describe the methods used in our experimen
generate a pair of entangled beams. We then present ex
mental results for each entanglement characterization t
nique over the frequency range from 2.5 to 10 MHz. W
examine the effect of loss on the inseparability and E
paradox criteria demonstrating qualitative differences, a
use the photon number diagram to predict the efficacy of
entanglement in the quantum information protocols int
duced earlier.

A. Generation of quadrature squeezing

The laser source for our experiment was a 1.5-W mo
lithic nonplanar ring Nd:YAG~yttrium aluminum garnet! la-
ser at 1064 nm. Its output was split into two beams as sho
in Fig. 4; one of these beams was mode matched int
second-harmonic generator~SHG! to produce 532-nm light
to pump a pair of OPAs, and the other was used to seed
OPAs and for homodyne detection of our entangled bea
The SHG consisted of a 7.5-mm-long hemilith
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MgO:LiNbO3 crystal and an output coupler. One end of t
MgO:LiNbO3 crystal had a 10 mm radius of curvature a
was coated for high reflection at 1064 and 532 nm. The ot
end was flat and antireflection coated at both 1064 and
nm. The output coupler had a radius of curvature of 25 m
it was antireflection coated for 532 nm (R532'7%), and had
92% reflection of 1064 nm; 23 mm separated t
MgO:LiNbO3 crystal and the output coupler, this created
cavity mode for the resonant 1064-nm light with a 27-mm
waist at the center of the MgO:LiNbO3 crystal. A 29.7-MHz
electro-optic modulation was applied to the MgO:LiNbO3
crystal, detecting and demodulating the transmitted light
tensity at 29.7 MHz provided a Pound-Drever-Hall~PDH!-
type error signal@36# which was then used to control th
length of the SHG resonator. The SHG provided 370 mW
532-nm light with 50% conversion efficiency.

The remaining 1064-nm beam was transmitted throug
high finesse ring cavity to reduce its spectral noise. T
cavity was based on a LIGO advanced gravitational wa
mode cleaner design@37#. It consisted of two closely space
flat 45° angled input/output coupling mirrors, and a 1 m
radius of curvature mirror coated for high reflection at no
mal incidence, and had a total cavity length of roughly
cm. All three mirrors were coated by Research-Elect
Optics with part-per-million tolerances. Since the reflectiv
of the angled input/output couplers depended on the po
ization of the input field, the mode cleaner had two modes
operation, high finesse and low finesse, which had appr
mate finesses of 2000 and 170, and corresponding linewi
of 300 kHz and 3 MHz, respectively. Above these linewidt
spectral noise from the laser is significantly attenuated
transmission. In our experiment we utilized the low fines
mode to maximize the power transmitted through the cav
and found that the output was quantum noise limited a
MHz. The laser frequency was locked to the mode clea

FIG. 4. Experimental schematic.x andy, respectively, label the
entangled beams. BS~PBS!, 50-50~polarizing! beam splitter;l/2,
half-wave plate;f andu, phase shift.
4-10
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EXPERIMENTAL CHARACTERIZATION OF CONTINUOUS- . . . PHYSICAL REVIEW A69, 012304 ~2004!
using tilt locking @38#, a phase-sensitive spatial mode inte
ference technique analogous to PDH locking. Unlike PD
locking this technique introduces no modulation sideban
an advantage in our case since modulation sidebands
transfer power into the squeezing spectrum produced by
OPAs.

The mode cleaner output beam was split to provide se
for our two OPAs, as well as homodyne local oscillators
interrogation of the two entangled beams. The OPAs w
identical in design to the SHG, except that the output c
pling mirrors were 96% reflective at 1064 nm. They we
each seeded through the high reflective surface of
MgO:LiNbO3 crystal. A 30.5-MHz electro-optic modulatio
was applied to each crystal which allowed the length of b
OPA resonators to be actively controlled. The 532-nm lig
was split into two parts and used to pump the OPAs. T
results in either amplification or deamplification of the se
depending on the relative phase between the pump and s
The 29.7-MHz modulation on the SHG crystal produced
29.7-MHz phase modulation on both 532-nm pump bea
This caused a modulation of the amplification of the OP
that could be used to control the relative phase between
pump and seed. By detecting the reflected light from e
OPA, and demodulating at 29.7 MHz we generated e
signals to lock each OPA to either amplification or deamp
fication. When locked to amplification, the 1064-nm outp
exhibited phase squeezing, and when locked to deampli
tion it exhibited amplitude squeezing. Pickup across the c
per plates used to electro-optically modulate our OP
couples noise directly into the phase quadrature of the ou
beams. We therefore chose to lock to amplitude squeez
We balanced the power in the squeezed beams by adju
the OPA seed powers and analyzed the squeezing using
modyne detection with roughly 84% efficiency. The hom
dyne detector could be locked to detect either the amplit
or phase quadrature of the input beam. Throughout this
per, locking to the amplitude quadrature was enabled thro
a phase modulation on the input beam, and locking to
phase quadrature was achieved when the power spli
within the detector was balanced. All of the spectra presen
in this paper were obtained from homodyne detector ou
photocurrents analyzed in a Hewlett-Packard E4405B sp
trum analyzer with 300-kHz resolution bandwidth a
300-Hz video bandwidth over the frequency range from
to 10 MHz. Each spectrum was at least 4.5 dB above
detection dark noise which was taken into account. Typ
amplitude squeezing spectra for each of our OPAs are sh
in Fig. 5. The OPAs produced near identical spectra with
optimum of 3.7 dB of squeezing at 6.5 MHz. Both spec
are degraded at low frequencies due to the resonant re
ation oscillation of our laser, and at high frequencies due
the bandwidth of the OPAs.

B. Generation and measurement of entanglement

We generated quadrature entanglement by combining
two amplitude squeezed beams with relative phase ofp/2 on
a 50-50 beam splitter as discussed in Sec. II. A visibility
(98.760.3)% was observed for the process, and the rela
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phase was controlled atp/2 by actively balancing the powe
in the two entangled beams. Each entangled beam was i
rogated in a balanced homodyne detector that could
locked to detect either its phase or amplitude quadrature.
efficiency of the detection process was'86%, with loss
contributed equally by the homodyne visibility and the ph
todetector efficiency. Measured spectra of the amplitude
phase quadrature variances of the two entangled beam
shown in Fig. 6. Both spectra are greater that the quan
noise limit over the entire range of measurement, a neces
prerequisite for entanglement. Due to the symmetric arran
ment of our experiment the spectra are identical, so that
assumption of symmetry made in Secs. III D 1, III D 2, a
III D 3 seems reasonable.

We analyzed the correlations between beamsx and y by
measuring the amplitude and phase quadrature sum and
ference variancesD2X̂x6y

6 . The gain between the two homo
dyne detectors was verified to be unity by encoding la
correlated phase modulations on beamsx andy, throughout
the experiment these modulations were suppressed on
traction by greater than 30 dB. Spectra forD2X̂x6y

6 were then
obtained by taking the minimum of the sum and differen
variances between homodynesx andy with both homodynes
locked to either the amplitude or phase quadratures. Th
spectra were normalized to the vacuum noise scaled by
combined power of the two homodyne local oscillators a
the two entangled beams, and are shown in Fig. 7. At
quencies above 5 MHz both the amplitude and phase qua
ture sum and difference variances are identical and well
low the level expected between a pair of coherent state

FIG. 5. Squeezing spectra observed from the two OPAs, norm
ized to the quantum noise limit.

FIG. 6. Frequency spectra of the average amplitude (D2X̂1) and

phase (D2X̂2) quadrature variances of the individual entangl
beams normalized to the quantum noise limit.
4-11
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BOWEN et al. PHYSICAL REVIEW A 69, 012304 ~2004!
the same power. At lower frequencies however, the sym
try between the amplitude and phase quadratures is bro
This effect is due to the relaxation oscillation of the las
which is common mode, and therefore correlated, betw
the entangled beams. As shown in Sec. II the amplit
quadratures of our entangled beams were anticorrelated
the phase quadratures were correlated.D2X̂x6y

1 was therefore
obtained by summing the amplitude quadrature photoc
rents from homodynesx andy, and the contribution from the
relaxation oscillation was therefore also summed.D2X̂x6y

2 on
the other hand was obtained by subtracting the phase qua
ture photocurrents from the homodynes, and so the contr
tions from the relaxation oscillation canceled. We see th
that with decreasing frequencyD2X̂x6y

1 degrades quickly,

whereasD2X̂x6y
2 remains roughly constant. The slight de

radation ofD2X̂x6y
2 at frequencies below 4 MHz can be a

tributed to small differences in the response of the two
modyne detectors so that the relaxation oscillation was
quite perfectly canceled.

C. Characterization of the correlation matrix

As discussed in Sec. III A, the correlation matrix provid
a complete characterization of Gaussian entanglement. G
the assumptions that entangled beamsx and y are inter-
changeable and that there are no cross-quadrature co
tions the correlation matrix is completely specified throu
measurements ofCxx

665D2X̂6 and Cxy
665 1

2 ^dX̂x
6dX̂y

6

1dX̂y
6dX̂x

6&. Measurements ofCxx
66 for our entanglemen

are presented in Fig. 6. To obtainCxy
66 we expandD2X̂x6y

6 ,

D2X̂x6y
6 5

^~dX̂x
66dX̂y

6!2&
2

~55!

5
D2X̂x

61D2X̂y
6

2
6^dX̂x

6dX̂y
6& ~56!

5D2X̂66 1
2 ^dX̂x

6dX̂y
61dX̂y

6dX̂x
6& ~57!

5Cxx
666Cxy

66 . ~58!

FIG. 7. Frequency spectra of the amplitude and phase qua
ture sum and difference variances between beamsx and y. ~a!

D2X̂x6y
1 and ~b! D2X̂x6y

2 .
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So Cxy
66 can be obtained from our measurements of the

erage amplitude and phase quadrature variances, and the
plitude and phase quadrature sum and difference varian
Cxy

6656D2X̂x6y
6 7D2X̂6. Figure 8 shows the resulting

spectra. We see thatCxy
11 and Cxy

22 are negative and posi
tive, respectively, throughout the range of the measurem
This is a characterization of the correlation and anticorre
tion of the phase and amplitude quadratures, respectiv
between beamsx andy.

For every sideband frequency, assuming that entang
beamsx and y are interchangeable and that there are
cross-quadrature correlations, a correlation matrix describ
our entanglement can be constructed from the curves in F
6 and 8. Here we take two examples, the correlation matr
of the sidebands at 3.5 and 6.5 MHz. Extracting the d
directly from the figures we obtain the correlation matrice

MC
3.5 MHz5S 6.2 ~0! 5.3 ~0!

~0! 6.1 ~0! 5.7

5.3 ~0! 6.2 ~0!

~0! 5.7 ~0! 6.1

D ~59!

and

MC
6.5 MHz5S 3.3 ~0! 2.9 ~0!

~0! 3.3 ~0! 2.9

2.9 ~0! 3.3 ~0!

~0! 2.9 ~0! 3.3

D , ~60!

where all experimentally determined values have an ass
ated statistical error of60.05. The bracketed values a
fixed as a result of the symmetry assumptions made in S
III A and are therefore not experimentally determined. W
can now examine whether the inseparability criterion ori
nally proposed by Duanet al. @Eq. ~17!#, and the product
inseparability criterion of Eq.~24! can be used to directly
analyze the strength of our entanglement. The correla

ra-

FIG. 8. Frequency spectra of the same-quadrature correla
matrix elements between beamsx andy. ~a! Cxy

11 , ~b! Cxy
22 .
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EXPERIMENTAL CHARACTERIZATION OF CONTINUOUS- . . . PHYSICAL REVIEW A69, 012304 ~2004!
matrix given here is of the form required for both criter
@see Eq.~14!#. It remains, solely, to determine whether th
restrictions imposed by each criterion are satisfied. For
original criterion to be valid Eqs.~15! and~16! must be true.
Since our entangled beamsx and y are interchangeable
Cxx

665Cyy
66 , so that Eq.~15! is always true. Equation~16!

on the other hand, is true at 6.5 MHz, but not at the low
frequency of 3.5 MHz. The original inseparability criterio
can therefore be used to characterize the strength of ou
tanglement at 6.5 MHz, but not at 3.5 MHz. For the prod
criterion to be valid, Eq.~24! must be satisfied. SinceCxx

66

5Cyy
66 , for our entanglement at all frequencies, we see t

indeed the product criterion is valid for all sideband freque
cies. Of course, once the correlation matrix describing
entanglement is fully characterized, it can be transform
into the standard form of Duanet al., and subsequently eithe
inseparability criterion can be used. This, however, involv
many more measurements on the entangled state than
required to simply determine the product form of the cri
rion. Therefore, if a characterization of the inseparability
the entanglement is all that is required, the product form
preferable.

D. Characterization of the inseparability
and EPR paradox criteria

A spectrum for the inseparability criterion of Eq.~25! was
obtained from the amplitude and phase quadrature sum
difference variance spectra in Fig. 7. This spectrum is sho
in Fig. 9. We see that beamsx and y were entangled a
frequencies within our measurement range higher than
MHz. As with the other spectra presented in this paper,
strength of the entanglement is degraded at low frequen
as a result of the relaxation oscillation of our laser, and
high frequencies due to the bandwidth of the OPA caviti
The optimum degree of inseparability was achieved at
MHz, where we observedD2X̂x6y

6 50.4460.01 for both the
amplitude and phase quadratures. This resulted in a degr
inseparability ofI50.4460.01.

Characterization of the EPR paradox criterion requi
measurements of the amplitude and phase quadrature c
tional variances between beamsx andy. As can be seen from
Eq. ~29!, these variances can be inferred from the correlat
matrix elementsCxx

66 andCxy
66 . However, since these con

ditional variances were easily measurable from our exp
mental setup, we measured them directly. The conditio
variance measures the uncertainty of one variable (X̂x

1 say!

FIG. 9. Frequency spectrum of the degree of inseparabilitI
between the amplitude and phase quadratures of our entangled
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given knowledge of another variable (X̂y
1 say!. We charac-

terize it here in a similar manner to that used to characte
the sum and difference variances. This time, however, ra
than being fixed to unity, the gain between the two hom
dyne photocurrents was optimized to minimize the measu
variances; and the normalization was performed with resp
to vacuum fluctuations scaled by only one homodyne lo
oscillator and entangled beam. The resulting amplitude
phase quadrature conditional variance spectra are show
Fig. 10. We see that bothD2X̂xuy

6 are below unity for the
majority of our measurement range. This implies that a m
surement performed on beamy will prepare beamx in a
squeezed state, and therefore that nonclassical correla
exist between the two beams. At 6.5 MHz we obtained
conditional variances D2X̂xuy

1 50.7760.01 and D2X̂xuy
2

50.7660.01. Notice that again, the amplitude quadratu
spectrum is strongly degraded at low frequencies due to
relaxation oscillation of our laser, whereas the phase qua
ture is unaffected by it.

Taking the product of the amplitude and phase quadra
conditional variances yields the degree of EPR paradox. F
ure 11 presents the resulting frequency spectrum. We obs
an optimum ofE50.5860.02,1, which is well within the
regime for observation of the EPR paradox.

We know from the discussion in Sec. III that the degree
EPR paradoxE is highly sensitive to entanglement impurit

ate.

FIG. 10. Conditional variance of the amplitude~a! and phase~b!
quadratures of beamx given a measurement on beamy of that
quadrature.

FIG. 11. Frequency spectrum of the degree of EPR para
between the amplitude and phase quadratures of our entangled
4-13
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whereas the degree of inseparabilityI is independent of it.
We interrogate this qualitative difference by introduci
equal loss to the two entangled beams. Each entangled b
was passed through a wave plate and polarizing beam sp
before detection as shown in Fig. 4. Rotating the wave p
allowed us to vary the amount of loss introduced. We ch
acterized both the degree of EPR paradox and the degre
inseparability at 6.5 MHz for a number of loss settings~wave
plate settings!. For each measurement the spectrum analy
was set to zero span and averaged over ten consec
traces. Figure 12 summarizes these measurements. W
that the experimental dependences on loss for bothE andI
agree very well with the theoretical curves obtained fro
Eqs.~26! and~31!. As discussed in Ref.@13#, no matter what
the loss, the inseparability criterion always holds. We fi
however that the EPR paradox criterion fails for loss grea
than 0.48. In fact as observed earlier, it is impossible for
EPR paradox criterion to hold for loss greater than or eq
to 0.5. The error bars on the plots can be attributed to un
tainty in the loss introduced, small fluctuations in the loc
oscillator powers and, for the EPR paradox criterion, erro
the optimization of the electronic gain.

E. Representation of results on the photon number diagram

The photon number diagram introduced in Sec. III D a
Ref. @7# provides a physically intuitive representation
continuous-variable entanglement. The measured spectr
D2X̂6 andD2X̂x6y

6 shown in Figs. 6 and 7 may be translat

into the three axes of this diagram (n̄min , n̄excess, and n̄bias)
using Eqs.~36!–~38! and ~40!. The resulting spectra ar
shown in Fig. 13. At low frequencies there is no entang
ment, and from Fig. 13~a! we see that correspondingly n
photons are required to maintain the entanglement (n̄min
50), with increasing frequency the average number of p

FIG. 12. Comparison of~a! EPR and~b! inseparability criteria
with varied detection efficiency. The symbols1, n, ands label
three separate experimental runs. For1 a systematic error was
introduced by the detection dark noise when optimizing the E
paradox criterion gain. The solid fit in~a! includes this, the dashe
fit is the result expected if the error was eliminated, and agrees
with runs n and s. The solid line in~b! is a theoretical fit, the
dashed line is the result predicted by the fit in~a!. There were four
sources of unavoidable loss in our system: I, Detection loss
Homodyne loss; III, optical loss; IV, OPA escape loss.
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tons required increases, peaking atn̄min50.35 around 6.5
MHz, before dropping off as the frequency moves above
bandwidth of our OPAs. From Fig. 13~b! we see that over the
majority of the measured spectrum on average very few p
tons are present in the entanglement as a result of bias
tween the amplitude and phase quadratures. Photons re
ing from bias only become significant at frequencies below
MHz. This bias is a direct consequence of the sensitivity a
immunity of D2X̂x6y

1 andD2X̂x6y
2 , respectively, to our laser

relaxation oscillation. Figure 13~c! shows that throughout the
spectrum of our measurement the majority of the phot
present in our entanglement are there as a result of impu
In fact from the fit to the degree of EPR paradox in Fig.
we see that at 6.5 MHz the most significant contribution
the impurity of our entangled state is optical loss. Theref
even relatively small levels of loss~such as 33%! facilitate a
significant transfer of mean photons per bandwidth per ti
from n̄min to n̄excess. If additional sources of phase nois
such as guided-acoustic-wave Brillouin scattering for fib
squeezing@41,40#, are present in the process used to gene
squeezing, the average number of photons present du
impurity can become extremely large. The spectra ofn̄min ,
n̄excess, and n̄bias obtained for our entanglement are mapp
onto the photon number diagram in Fig. 14.

The photon number diagram can be used to analyze
efficacy of an entangled state in quantum information pro
cols. As discussed in Sec. III D, Fig. 15 shows efficacy co
tours of the degree of EPR paradox, quantum teleportat
and high and low photon number dense coding, on then̄min

2n̄excessplane of the photon number diagram assuming t
n̄bias50. Sincen̄bias'0 for our entangled state over most
the measured spectrum, we project the curve shown on
14 onto then̄bias50 plane and display it in Fig. 15. We ca
then obtain estimates of the optimum efficacy that could
achieved with our entangled state in various quantum in
mation protocols, and estimates of the frequencies at wh

R

ll

I,

FIG. 13. Frequency spectra of the axes of the photon num

plot. ~a! n̄min , ~b! n̄bias, and~c! n̄excess.
4-14
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EXPERIMENTAL CHARACTERIZATION OF CONTINUOUS- . . . PHYSICAL REVIEW A69, 012304 ~2004!
the optima occur. From Fig. 15~a! we find that the optimum
expected degree of EPR paradox for our entanglemen
roughly E50.68 and occurs around 6.6 MHz. In Sec. IV
we experimentally obtained a value ofE50.5860.02 which
is significantly lower. This difference is evident because
experiment was operating more effectively when the m
surements of the degree of EPR paradox were made. In
this can be seen in Fig. 12, where the degree of inseparab
predicted from our degree of EPR paradox results is so
what better than the result we obtained directly. Due to s
sitivity of the degree of EPR paradox to loss and impur
this difference completely explains the discrepancy. Fr
Fig. 15~b! we see that the optimum teleportation fideli
achievable with our entanglement is approximatelyF
50.695 and would be observed near 6.2 MHz. The
tangled state analyzed here was recently used to per
quantum teleportation; due to nonideal effects such as op
loss and detector dark noise an optimum fidelity ofF
50.6460.02 was observed@39#. The low photon number
efficacy contours for dense coding shown in Fig. 15~c! have
an extremely strong dependence on the average numb
excess photons carried by the entanglement; accordingly
optimum ratio of dense coding to squeezed state cha
capacities would occur at 10 MHz where our entanglemen
most pure, in our case this never exceeds unity. Howeve
discussed in Sec. III D 3, increasing the total average num
of photons allowed in the sidebands (n̄encoding) causes the
dense-coding protocol to become independent ofn̄excess. We
find that when a large number of photons per bandwidth
time are available to encode signals (n̄encoding@n̄excess) the
optimum achievable ratio of channel capacities
CEPR/Csqz'1.02 and occurs near 6.3 MHz, so that in t
large photon number limit dense coding using the entang

FIG. 14. Representation of the entangled state on the ph
number diagram.
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state characterized in this paper could yield a channel ca
ity marginally better than that achievable with optim
squeezed state encoding.

V. CONCLUSION

In conclusion, we have generated a strongly quadra
entangled state from amplitude squeezed beams produc

on

FIG. 15. Two-dimensional slice of the photon number diagr

for n̄bias50. The contours on the plots are~a! the degree of EPR
paradox,~b! the fidelity of quantum teleportation,~c! and ~d! ratio
of dense-coding channel capacity to optimum squeezed channe

pacity for n̄encoding53.375 andn̄encoding5125, respectively.
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two independent OPAs. The correlation matrix of the st
was characterized. We gauged the strength of the entan
ment in the spirit of the Schro¨dinger picture by measuring
the degree of inseparability, and in the spirit of the Heis
berg picture by measuring the degree of EPR paradox, w
optimum results ofI50.4460.01 andE50.5860.02, re-
spectively. Through the introduction of controlled loss
each entangled beam, qualitative differences between the
havior of the degree of inseparability and the degree of E
paradox were demonstrated. We characterized the enta
ment on a photon number diagram which provides an in
tive and physically meaningful representation of the sta
On this diagram the average number of photons per ba
width per time in the entangled state is separated into c
ponents required to maintain the strength of the entan
, a

ys

e

to

ie,

v

.

.J.

P.

,
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ment, the bias between the amplitude and phase quadra
of the state, and the states impurity. We calculated effic
contours for the degree of EPR paradox, quantum telepo
tion, and dense-coding protocols on the photon number
gram, and used them to predict the level of success ach
able for each protocol using our entanglement.
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