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In this paper we investigate the effect of dephasing on proposed quantum gates for the solid-state Kane
quantum computing architecture. Using a simple model of the decoherence, we find that the typical error in a
controlled-NOT gate is 8.3310−5. We also compute the fidelities ofZ, X, swap, and controlledZ operations
under a variety of dephasing rates. We show that these numerical results are comparable with the error
threshold required for fault tolerant quantum computation.
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I. INTRODUCTION

One of the most exciting advances in physics has been the
development of quantum algorithms[1,2] which outperform
their best known classical counterparts. These algorithms are
described in the absence of noise, and decoherence. In ex-
periment this will certainly not be the case. In this paper we
investigate numerically how a simple model of decoherence
affect gates on the Kane quantum computer[3]. The Kane
quantum computer is one of a number of promising silicon
based quantum computer proposals[4–8].

Dephasing in systems similar to the Kane architecture has
been investigated since the introduction of the spin echo
technique[9]. The nuclear spin and electronic spin decoher-
ence times of P donors in Si is relatively long[10–17]. For
example, recently a time of 60 ms was measured for the
electronic dephasing timeT2e

[18]. Although dephasing times
are comparatively long, if left unchecked the accumulated
errors introduced by dephasing will destroy coherence in the
computation.

Using quantum error correction protocols it may be pos-
sible to correct the errors caused by decoherence[19–23]. To
successfully reduce the overall error in the system, we must
correct errors faster than they accumulate, in a fault-tolerant
manner[24]. This consideration leads to an error threshold
[25–28]. Typically such a threshold requires the probability
of introducing an error in each gate to be below 1310−4 to
as low as 1310−6. For the Kane architecture the exact
threshold is still under investigation[29]. In this paper we
ask if it is possible for the Kane architecture to achieve this
error threshold. To do this we must know how much error is
introduced by each of the gates used in the Kane quantum
computing architecture.

This paper shows the results of simulations of gates on the
Kane architecture in the presence of dephasing. Single qubit
gates presented here are similar to those used in nuclear mag-

netic resonance[30,31] for rotations of individual qubits.
Voltage fluctuations on the “A” gate and stochastic modeling
of the system has been investigated analytically in Refs.
[32,33]. The two qubit gates presented here use non-
adiabatic pulse schemes[34].

The analysis given here is a direct analogue to that of
Fowler et al. [35] for the adiabatic controlled-NOT (CNOT)
gate. The gates analyzed in this paper are simpler, faster, and
potentially higher fidelity than the adiabatic gate[34]. These
gates do not rely on complicated pulse shapes, but simply
turning on or off the voltages applied. In contrast to adiabatic
gates, the timing of these gates could easily be run off a
digital clock cycle. In addition, whereas the adiabaticCNOT

operation is required to be applied up to three times to create
an arbitrary two qubit gate, using nonadiabatic schemes it is
possible to create an arbitrary two qubit gate directly. For
example, the swap gate analyzed here would require three
adiabatic CNOT gates to construct. Using nonadiabatic
schemes we are able to construct it in a single pulse sequence
[34], which is much faster, simpler, and higher fidelity than
the corresponding adiabatic scheme.

We compare each of the gates analyzed to the error
threshold for fault tolerant quantum computing. We simulate
the master equation for typical values of spin dephasing ex-
pected in the Kane architecture. We find that the error in the
gates analyzed is less than or comparable to that required for
fault tolerant quantum computation.

This paper is organized as follows. In Sec. II we describe
the simple model of decoherence which we use and present
the master equation for the system. Sec. III presents the re-
sults for one qubit gates, including free evolution in Sec.
III A, Z rotations in Sec. III B andX rotations in Sec. III C.
Two qubit nonadiabatic gates are shown in Sec. IV. These
include theCNOT gate in Sec. IV A, and the swap gate and
controlled Z gates in Sec. IV B. Finally, conclusions are
drawn in Sec. V.

II. THE MASTER EQUATION

A brief introduction to the Kane quantum computing ar-
chitecture[3] is given here. The Kane architecture consists of
P donor atoms embedded in Si. The orientation of the
nuclear spin of each P donor represents one qubit.
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When placed in a magnetic field applied in thez direction,
Zeeman splitting occurs. This is given by the Hamiltonian

HB = − gnmnBZn + mBBZe, s1d

whereZ is the Pauli Z matrix, and the subscriptsesnd indi-
cate electronic(nuclear) spin. The magnetic fieldB may be
controlled externally. The application of a resonant rotating
magnetic field adds the following terms to the spin Hamil-
tonian:

Hac= − gnmnBacfXncossvactd+ Yn sinsvactdg

+ mBBacfXe cossvactd+ Ye sinsvactdg. s2d

The electronic spins couple to their corresponding nuclear
spins via the hyperfine interaction

HA = Ase · sn, s3d

whereA is the strength of the interaction. The design of the
Kane quantum computer calls for control of the strength of
the hyperfine interaction externally by applying appropriate
voltages to “A” gates. The electronic spins couple to adjacent
electrons via the exchange interaction

HJ = Jse1
· se2

, s4d

where e1 and e2 are two adjacent electrons, andJ is the
strength of the exchange interaction which may be controlled
externally through the application of voltages to the “J”
gates.

Altogether the spin Hamiltonian of a two donor system is
given by

Hs = o
i=1

2

HBi
+ HAi

+ HJ + Haci
. s5d

The times and fidelities of the gates naturally depend on
exactly which parameters are used to calculate them. For
many of the gates in this paper the typical parameters shown
in Table I were used. These parameters are similar to the
parameters used for the pure state calculations in Ref.[34].

A simple model of decoherence was used for these calcu-
lations. There are many different decoherence mechanisms,
but our model only considers pure dephasing(without energy
relaxation). Whereas dephasing is certainly not the only
source of decoherence, it is likely to be the dominant effect
on a time scale shorter than the energy relaxation(dissipa-

tion) time, T1. For example, Feher and Gere[12] measured
T1n

.10 h for nuclear spin at a temperature ofT=1.25 K,
B=3.2 T, andT1e

<30 h under similar conditions. In con-
trast, experimentally measured times forT2 have been much
shorter. Gordon and Bowers[11] measuredT2e

=520ms for
P:Si at T=1.4 K in isotopically enriched28Si. Chiba and
Harai [16] have also measured the electronic decoherence
times of P:Si, finding a rate ofT2e

=100ms. For the nucleus,
recent results for the nuclear spin of a29Si nucleus show a
maximum value ofT2n

=25 s [36].
Recently Tyryshkinet al. [18] obtained an experimental

measurement ofT2e
=14.2 ms atT=8.1 K andT2e

=62 ms at
T=6.9 K for a donor concentration of 0.8731015 cm−3 in
isotopically pure Si. At milliKelvin temperatures the deco-
herence time is likely to be even longer. Additionally these
measurements were carried out in a bulk doped sample, and
in our case we will be considering a specifically engineered
sample. Interactions such as exchange and dipole-dipole in-
teractions contribute to the coupling between electrons. In
some experiments, such as in Ref.[18], these potentially
beneficial coupling have been treated as sources of decoher-
ence, but in the operation of a quantum computer these in-
teractions can either be decoupled or used to generate en-
tanglement, useful for quantum computation. Hence, it is
expected thatT2e

may even be longer than those reported in
Ref. [18]. Nevertheless, we use the value of 60 ms as a con-
servative estimate for electronic dephasing time. We expect
the nuclear dephasing times to be several orders of magni-
tude bigger than electronic dephasing times. We choose the
following parameters to be typical of P:Si the systems we
are considering

T2e
= 60 ms, s6d

T2n
= 1 s. s7d

The typical errors presented in the tables contained in the
next three sections are evaluated at these typical dephasing
times.

The simple decoherence model we consider corresponds
to the master equation

ṙ = −
i

"
fHs,rg − Lfrg, s8d

where the dephasing terms are given by

Lfrg = o
i=1

2

Ge†Zei
,fZei

,rg‡ + Gn†Zni
,fZni

,rg‡. s9d

Characteristic dephasing rates,G2e
andG2n

, are related to the
dephasing rates by the equations

T2e
=

1

4Ge
, s10d

T2n
=

1

4Gn
. s11d

TABLE I. Typical parameters used for numerical
calculations.

Description Term Value

Unperturbed hyperfine interaction A 0.1211310−3 meV

Hyperfine interaction duringZ rotation Az 0.0606310−3 meV

Hyperfine interaction duringX rotation Ax 0.0606310−3 meV

Constant magnetic field strength B 2.000 T

Rotating magnetic field strength Bac 0.0025 T

Hyperfine interaction during interactionAU 0.1197310−3 meV

Exchange interaction during interactionJU 0.0423 meV

C. D. HILL AND H.-S. GOAN PHYSICAL REVIEW A 70, 022310(2004)

022310-2



We define fidelity(and therefore error) in terms of the
actual state after applying an operationr and the intended
state after that operation,r8. Due to systematic errors and
decoherence these states will not necessarily be the same.
When comparing against a pure stater8, the fidelityF of an
operation is defined as

Fsr,r8d = Trsrr8d. s12d

Error is defined in terms of fidelity

Esr,r8d = 1 −Fsr,r8d. s13d

Typically we would like to know the greatest error pos-
sible for any input state. This is a computationally difficult
problem. In the results that follow, the approach taken is to
calculate the fidelity for each of the computational basis
states, and each of the input states which would ideally gen-
erate a Bell state. This has two main benefits. The first is that
a high fidelity indicates that the gate is successfully creating
or preserving entanglement. The second is that Bell states are
superposition states, which are susceptible to dephasing. We
also calculated the effect of each gate on the four Bell input
states for the CNOT gate. For typical parameters, Bell input
states give similar fidelities to those shown in this paper.

Throughout this paper we will use the statesu0l andu1l to
represent the nuclear spin up and spin down states, respec-
tively. We will use theu↑ l and u↓ l to represent electronic
spin up and spin down states, respectively.

III. ONE QUBIT GATES

A. Free evolution

The spin of an isolated nucleus undergoing Larmor pre-
cession in the presence of a magnetic fieldB [37]. In this
case it is easy to solve the master equation with dephasing
exactly. Considering only the nuclear spin, we have

Hs = gnmnBZn. s14d

The decoherence terms has only the single term

Lfrg = Gn†Zn,fZn,rg‡ s15d

=2GNsr − ZnrZnd. s16d

In the rotating frame, the master equation has the solution

rstd = F r00s0d r01s0de−4GNt

r10s0de−4GNt r11s0d G . s17d

This has the effect of exponentially decaying the off diagonal
terms of the density matrix, but leaves the diagonal compo-
nents unchanged. For a single isolated nuclear spin, the
simple model has no effect on eigenstates ofZn (i.e., there is
no relaxation process for these states). In contrast, it has a
dramatic influence on superposition states whose off diago-

nal terms decay exponentially(i.e., dephasing). Two such
states are

u + l =
1
Î2

su0l + u1ld,

u− l =
1
Î2

su0l − u1ld.

We can easily calculate the expectation value of the PauliX
matrix, kXl, for the u+l state

kXl = TrsXrd, s18d

=exps− 4GNtd. s19d

For a single nuclear spin coupled to an electronic spin via
the hyperfine interaction the Hamiltonian is given by

Hs = HB + HA. s20d

We assume that electron is initially polarized by the large
magnetic fieldB. The evolution of this Hamiltonian was cal-
culated for their typical values[given in Eq.(6), Eq. (7), and
Table I]. The fidelity after different times is shown in Fig. 1.
This figure shows the Bloch sphere radius, given by

r = ÎkXl2 + kYl2 + kZl2. s21d

A pure state has a radius of one, and a radius of less than one
indicates a mixed state. An initial state ofu↓+l was used. The
radius decays at a rate governed by the nuclear decoherence
time, which in this case isT2n

=1 s. As is expected, this de-
cay is the same as the well known solution to the Bloch
equations.

B. Z rotations

Z rotations on the Kane architecture may be performed by
varying the Larmor precession frequency of a single qubit
[34]. Graphs showing the error in theZ gate at different
dephasing rates are shown in Figs. 2 and 3.

FIG. 1. Effect of dephasing on the free evolution of a single
embedded P atom in the Kane architecture.
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Figure 2 shows the error at different rates of decoherence
for both electronsGe and nucleiGn for a single qubit in the
u↓0l state. The calculated error does not significantly depend
on the electronic or nuclear dephasing rate. The pureu↓0l
state is not affected by decoherence terms in the master equa-
tion. Therefore the only effect of dephasing occurs when the
hyperfine interaction rotates this state. The effect of dephas-
ing on this state is negligible.

The error in theZ operation for an initial state ofu↓0l, is
primarily due to systematic error of 3.8310−6. This error is
due to the hyperfine interaction coupling between electrons
and nuclei. This allows a small probability of finding the
electrons in an excited state. At typical rates of decoherence
for the short duration of aZ rotation (approximately 21 ns),
systematic error is the dominant effect. For theu↓0l state, the
typical error is 3.8310−6.

In the previous section we noted that superposition states
u↓+l and u↓−l are affected by dephasing terms more than
eigenstates ofZ. This is illustrated in Fig. 3. Electronic
dephasing times have little effect on the overall fidelity. As

the nuclear dephasing rate increases, the fidelity decreases
with a maximum error of approximately 0.5. This indicates
all quantum coherence was lost and we are in classical mix-
ture of the statesu↓0l andu↓1l. For typical rates of dephasing
[given in Eqs.(6) and (7)], the error is found to be 1.9
310−6 which is largely due to systematic error.

The maximum error, for typical rates of dephasing, of any
of the states tested for theZ gate is 3.8310−6. This error is
largely due to systematic effects rather than dephasing. This
error suggests it is theoretically possible to do aZ rotation
with an error of less than the 1310−4 limit suggested for
fault tolerant quantum computing. The results for theZ gate
are summarized in Table II.

C. X rotations

X rotations are performed using a resonant magnetic field
Bac. The error in theX rotation was found at different rates of
dephasing. This is shown for the two basis states in Figs. 4
and 5. Evident on both of these graphs is a valley which
levels out at a minimum error. This error is primarily due to
systematic error in the gate. For theu↓0l initial state the
systematic error is found to be 2.3310−6, and for theu↓1l
initial state the systematic error is found to be 4.9310−6. As
the nuclear dephasing ratesG2n

increases, the fidelity of the
operation decreases. The fidelity of the operation drops to 0.0
indicating that, in the limit of large dephasing rates, the ro-
tating magnetic field does not have the desired effect of a
resonant magnetic field.

FIG. 2. Error in theZ gate foru↓0l initial state at differing rates
of dephasing.

FIG. 3. Contour plot showing the error in theZ gate for u↓+l
initial state evolving at differing rates of dephasing. Contour lines
connect, and are labeled by points of equal error.

TABLE II. Summary ofZ gate error.

State Systematic error Typical error

u0l 3.8310−6 3.8310−6

u+l 1.9310−6 1.9310−6

Maximum 3.8310−6 3.8310−6

FIG. 4. Contour plot showing the error in theX gate for theu↓0l
initial state evolving at differing rates of dephasing. Contour lines
connect, and are labeled by points of equal error.
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In Figs. 4 and 5, we see that the fidelity of theX rotation
depends weakly on the electronic dephasing rateG2e

. The
solutions to the equations under these conditions show that
the principal cause of error is the electron becoming excited
to a higher energy level.

Under typical conditions, theu↓0l initial state has an error
of 3.8310−6. Theu↓1l state has an error of 6.4310−6. In this
operation dephasing has a much more important role than in
Z rotations. One reason for this is that anX rotation takes
longer, approximately 6.4ms.

The error in theX gate is summarized in Table III. The
maximum error from the two basis states tested for theX
gate was 6.4310−6. The error induced in this operation is
less than a threshold of 1310−4 required for fault tolerant
quantum computing.

IV. TWO QUBIT GATES

A. The CNOT gate

The CNOT gate is specified by

G1X = 3
1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0
4 , s22d

which may be created using the steps specified in Ref.[34].
In the following discussion of two qubit gates, if not explic-

itly stated, all initial electron spin states are assumed to be
u↓↓l.

The error in theCNOT operation in the presence of dephas-
ing was found by numerically solving the master equation
[Eqs. (8) and (9)] for the appropriate pulse sequence[34].
For different rates of dephasing, different fidelities are ob-
tained. Fidelities were calculated for each of the four com-
putational basis states, and for the evolution leading to the
four Bell states. Fidelities for the four computational basis
states are shown in Fig. 6.

Each of the states shows a minimum error when the rates
of electronic and nuclear dephasing are slow. The remaining
error is due to systematic error in the gate. Some sources of
systematic error for theCNOT operation include off-resonant
effects, excitation into higher electronic energy levels, and
imperfections in the pulse sequences(such as the breakdown
of the second order approximations used to derive appropri-
ate times for pulse sequence[34]). Systematic error for each
of the statesu00l, u01l, u10l, and u11l are 4.0310−5, 2.6
310−5, 1.9310−5, and 2.9310−5, respectively. For evolu-
tion starting in an initial Bell state, we find the systematic
error is 3.5310−5, 3.4310−5, 1.9310−5, and 2.6310−5.
Sytematic error, for states resulting in a Bell state are shown
in Table IV.

In each of the four states, as the dephasing rate increases,
the fidelity decreases. In the limit of large dephasing rates,
the computational basis states tend to stay in their original
states. This is particularly evident from the graphs ofu00l
and u01l which have higher fidelity(lower error) at high
dephasing rates. In contrast, statesu10l and u11l have lower
fidelities (higher error) at high rates of dephasing. For ex-
ample, theu00l state stays in theu00l state after theCNOT

operation. At such high rates of dephasing, not even the
single qubit rotations described in Sec. III C apply, which
form part of theCNOT gate operation. For these states quan-
tum coherence has been lost. When we consider, for ex-
ample, the stateucl=1/Î2su00l+ u01ld we find that at a high
dephasing rate ofGn=Ge=543106 s−1 the error of the gate is
0.5. In this case, quantum coherence has been lost between
the two states, and the qubit evolves to a completely mixed
state.

Electronic dephasing rates play a much bigger role in two
qubit gates than in single qubit gates. For the typical dephas-
ing times,T2e

andT2n
[given in Eqs.(6) and(7)], we find the

error for the statesu00l, u01l, u10l, and u11l are 8.3310−5,
6.8310−5, 6.2310−5, and 7.2310−5 respectively. The error
for an initial state of one of the four Bell states is found to be
6.0310−5, 6.0310−5, 4.4310−5, and 5.1310−5. Typical er-
rors for states resulting in a Bell state are shown in Table IV.
This implies that under our very simple decoherence model,
the maximum error in theCNOT gate in any basis state is
8.3310−5. This is only marginally under the threshold of 1
310−4 required for fault tolerant quantum computation.

Errors for each of the computational basis states are
shown in Table IV, and the maximum error of any of the four
computational basis states or states with evolution leading to
a Bell state is plotted in Fig. 7.

These results are directly analogous to calculations made
for the adiabaticCNOT gate [35]. We have used the same
noise model as was used in their numerical simulations. In

FIG. 5. Contour plot showing the error in theX gate for theu↓1l
initial state at differing rates of dephasing. Contour lines connect
and are labeled by points of equal error:(a) u00l initial state,(b) u01l
initial state,(c) u10l initial state, and(d) u11l initial state.

TABLE III. Summary ofX gate error.

State Systematic error Typical error

u0l 2.3310−6 3.8310−6

u1l 4.9310−6 6.4310−6

Maximum 4.9310−6 6.4310−6
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calculations for the adiabaticCNOT gate at decoherence
times, for electronic and nuclear dephasing rates ofT2e
=200ms andT2n

=10 s, respectively, the maximum error of
any of the four basis states for the adiabaticCNOT gate was
found to be ‘just over 10−3’ [35]. In comparison, for the same
conditions, we find that the maximum error in the nonadia-

FIG. 6. Contour plots showing error in theCNOT operation for different rates of electronic and nuclear dephasing. Contour lines connect
and are labeled by points of equal error.

TABLE IV. Summary ofCNOT gate fidelities.

State Systematic error Typical error

u00l 4.0310−5 8.3310−5

u01l 2.6310−5 6.8310−5

u10l 1.9310−5 6.2310−5

u11l 2.9310−5 7.2310−5

u00l+ u11l 2.9310−5 7.0310−5

u00l− u11l 3.2310−5 7.3310−5

u01l+ u10l 3.1310−5 7.2310−5

u01l− u10l 2.3310−5 6.4310−5

Maximum 4.0310−5 8.3310−5

FIG. 7. Contour plot of the maximum error in basis and Bell
output states of theCNOT gate shown as a function of electronic and
nuclear dephasing rates. Contour lines connect and are labeled by
points of equal error.
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batic gate is 7310−3. Under these conditions both nonadia-
batic and adiabatic gates give similar fidelities.

Where does this error come from at the dephasing rate
specified above, for the nonadiabaticCNOT gate? The error in
anX rotation under these conditions is 3310−6 and the error
in the entangling operation of the gateUmsp /4d, is 4
310−3 and therefore it is clear that the two qubit entangling
operation is the major source of error. When electronic de-
coherence times are short, any electron mediated operations
will be affected by this decoherence. By increasing the ex-
change interaction strength, the time required for the electron
mediated operation may be reduced. For example, at a
strength ofJ=0.0529 meV the error decreases to 1310−3

and the maximum error in theCNOT gate is also 1310−3 for
any of the computational basis states.

The advantage of nonadiabatic gates over adiabatic gates
is that the pulse schemes required are much simpler, faster,

and as at the conditions considered in Ref.[35], the two
schemes have approximately the same fidelity. Considering
the electronic decoherence times measured in Ref.[18] it is
likely that electronic dephasing rates are not as large as con-
sidered in Ref.[35]. At lower rates of dephasing, we ap-
proach the systematic error, which may be smaller for nona-
diabatic gates than adiabatic gates[34]. Another distinct
advantage of the nonadiabatic gates is thatany two qubit
gate may be made. This allows us to construct two qubit
gates directly(such as the swap gate), which are faster and
higher fidelity than expressing them as combinations of
CNOT gates and single qubit rotations. If the Kane computer
was being run from a digital clock cycle, nonadiabatic two
qubit gates could be controlled at discrete times, and do not
require the continuous and sophisticated pulse shapes re-
quired for adiabatic gates operating at this speed and fidelity.

B. The swap gate and controlled-Z gate

Similar calculations to those calculated for theCNOT gate
were carried out for the swap gate and the controlled-Z gate.
The swap gate is specified by the matrix

USwap= 3
1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1
4 . s23d

The controlled-Z gate is specified by the matrix

TABLE V. Summary of swap gate error.

State Systematic error Typical error

u00l 3.9310−5 9.0310−5

u01l 1.4310−5 7.9310−5

u10l 1.6310−5 8.0310−5

u11l 3.8310−5 8.9310−5

u00l+ u11l 5.3310−5 1.4310−4

u00l− u11l 7.4310−5 1.6310−4

u01l+ u10l 1.7310−5 1.0310−4

u01l− u10l 1.5310−5 1.0310−4

Maximum 7.4310−5 1.6310−4

TABLE VI. Summary of controlled-Z gate error.

State Systematic error Typical error

u00l 3.0310−5 8.1310−5

u01l 1.5310−5 6.6310−5

u10l 1.1310−5 6.2310−5

u11l 3.8310−5 8.9310−4

u00l+ u11l 3.6310−5 9.4310−5

u00l− u11l 3.3310−5 9.2310−5

u01l+ u10l 1.7310−5 7.5310−5

u01l− u10l 1.1310−5 7.0310−5

Maximum 3.8310−5 9.4310−5

FIG. 8. Contour plot of the maximum error in basis states and
Bell output states of the swap gate shown as a function of electronic
and nuclear dephasing rates. Contour lines connect and are labeled
by points of equal error.

FIG. 9. Contour plot of the maximum error in basis states and
Bell output states of theG1Z gate shown as a function of electronic
and nuclear dephasing rates. Contour lines connect and are labeled
by points of equal error.
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G1Z = 3
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 − 1
4 . s24d

The circuit which may be used to create the swap gate may
be found in Ref.[34].

The master equation was solved numerically for each
pulse sequence. The error in the swap gate was calculated for
each basis state, and each state whose output state is a Bell
state. Note that for these two gates the states which give Bell
states as output are themselves Bell states. A separate simu-
lation was completed for each combination of nuclear and
electronic dephasing times. The maximum error of any of the
basis states has been plotted in Fig. 8 for the swap gate, and
Fig. 9 for the controlZ gate.

Similar features that were evident for theCNOT gate are
visible in these figures. The corresponding errors are shown
in Table V for the swap gate, and Table VI for the control-Z
gate.

V. CONCLUSION

In conclusion, we have investigated the effect of dephas-
ing on the Kane quantum computing architecture. We used a

simple model of decoherence and investigated how this
model affected proposed gate schemes on the Kane quantum
computer. For typical decoherence rates[given in Eqs.(6)
and (7)], these results are summarized in Table VII.

Each of the errors, for typical rates of dephasing, found
here are close to the error threshold required for fault tolerant
quantum computation. If the temperature is lowered, and
coupling between qubits is not considered a decoherence
process as in Ref.[18], it is likely that the typical decoher-
ence times for the Kane architecture may be further reduced,
and therefore unambiguously under the threshold required
for fault tolerant quantum computation.

Construction and operation of the Kane quantum com-
puter is extremely challenging. In the actual physical system
there will undoubtedly be noise and decoherence processes
not considered in our simple physical model. This substantial
effort would never be able to achieve its ultimate goal of a
working quantum computer if there were fundamental rea-
sons why such a computer could not operate. In this paper
we investigated the one such effect on proposed gates for the
Kane quantum computer. Our simulations indicate that errors
due to dephasing, the dominant form of decoherence in the
Kane architecture, do not rule out fault tolerant quantum
computation.
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