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Abstract—Fault diagnosis has become an important component in intelligent systems, such as intelligent control systems and

intelligent eLearning systems. Reiter’s diagnosis theory, described by first-order sentences, has been attracting much attention in this

field. However, descriptions and observations of most real-world situations are related to fuzziness because of the incompleteness and

the uncertainty of knowledge, e.g., the fault diagnosis of student behaviors in the eLearning processes. In this paper, an extension of

Reiter’s consistency-based diagnosis methodology, Fuzzy Diagnosis, has been proposed, which is able to deal with incomplete or

fuzzy knowledge. A number of important properties of the Fuzzy diagnoses schemes have also been established. The computing of

fuzzy diagnoses is mapped to solving a system of inequalities. Some special cases, abstracted from real-world situations, have been

discussed. In particular, the fuzzy diagnosis problem, in which fuzzy observations are represented by clause-style fuzzy theories, has

been presented and its solving method has also been given. A student fault diagnostic problem abstracted from a simplified real-world

eLearning case is described to demonstrate the application of our diagnostic framework.

Index Terms—Knowledge representation, fuzzy diagnosis, fault diagnosis, uncertainty reasoning, fuzzy truth function logic, clause-

style fuzzy theories.

�

1 INTRODUCTION

THE diagnostic tasks deal with the problems of why a
correctly designed system is not functioning as it should

be, by finding explanations for the faulty behavior. These
explanations state how the system is at variance in some
ways with its original design. The main diagnosis tasks are
to discover the malfunctions in a system, based on the
design and the structure of the system and the observations
(symptoms, evidence), as well as the root causes of such
malfunctions [1], [2], [3].

Fault diagnosis has become an important tool in modern
automatic control theory. During the last three decades, an
immense amount of research has been done in this field,
resulting in a great variety of methods, many of which have
been applied on real-world applications [4], [5]. There has
also been a rapid movement from traditional methods of
signal-based fault diagnosis toward the model-based
approach. The core of the so-called model-based approach
to fault-diagnosis uses analytical and/or knowledge-based
models for residual generation and decision-making meth-
ods from artificial intelligence for residual evaluation. The
analytical approach to fault diagnosis differs from imprac-
tical because it is very difficult to build accurate mathema-
tical models of the target systems. The knowledge about the
target system is often incomplete or uncertain, and residual
evaluation is a complex logical process that requires the use
of intelligent decision-making techniques. A more suitable

solution is to use knowledge-based techniques. Knowledge-
based techniques for fault diagnosis require a suitable
knowledge representation scheme and reasoning facilities.
In the area of artificial intelligence, many researchers have
argued that using logic as knowledge representation is
appropriate for model-based diagnosis. There are two
different points of views about logic-based diagnosis in
the literature. One is the consistency-based approach to
diagnosis, often referred to in literature as diagnosis from
first principles [1], [2], [3]. The other approach is based on
abductive methods [6], [7], [8], [9], [10], [11], [12], [13], [14],
and it often uses heuristic and diagnostic associations
derived from experience. In abduction, the diagnostic
hypotheses entail observations and are computed by back-
ward chaining from the observations, whereas in the
consistency-based approaches, the observations constitute
the disjunction of the diagnoses and are computed by
forward chaining from the observations. A notable example
of the abducitve approach to diagnosis is the MYCIN
system [6], while Reiter presents a precise theoretical
foundation for consistency-based diagnosis [1].

Knowledge-based diagnosis techniques could be symp-
tom-based and qualitative model-based. If the symptoms are
considered in connection with the inputs to the system, the
symptom-based approach is being used where knowledge is
derived from facts and rules of the system’s structure and
behavior (the first principle). However, information is
incomplete or uncertain in many real-world applications. It
is becoming essential to deal with the incomplete knowledge
models [15], [16], [17], [18]. Furthermore, the definition of
diagnosis as a set of faulty components could be too
restrictive since users may want to identify different levels
of faults. Reiter’s diagnosis theory is not based on uncertain
knowledge but is on incomplete knowledge since it is based
on first-order sentences. Usually, normality and faultiness of
components, obtained from instrument measurements,
expert experience, or analysis using probabilistic schemes,
cannot be determined accurately. The research on the
diagnostic problem for such systems with fuzziness is
interesting and important. Zadeh’s fuzzy-set theory [19] is
a solution for the ideas and approaches for handling
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nonstatistical uncertainty. In the early stage, the fuzzy
diagnosis was related to the application of fuzzy set theory
in medical diagnosis, and the classifier used fuzzy set
principles for solving a medical diagnostic problem [20].
However, such an approach was too simple and lacked
theoretical background. Other efforts, such as classical
abductive approaches to diagnosis, often focused on a
fuzzifying modus, based on various nonclassical logics
(fuzzy logic, multiple-valued logic, Lukasiewicz logic, and
those of Godel, Goguen, Rescher, etc.) [21], [22], [23].
Recently, Isermann [24] developed a fuzzy diagnostic model
as a fuzzy symptom faults map, implemented by using a
heuristic knowledge base. The diagnostic reasoning schemes
match the proposed fuzzy diagnostic model with the current
values of symptoms. In this paper, a fuzzy version of Reiter’s
consistency-based diagnosis theory has been proposed. Our
framework uses Reiter’s consistency-based diagnosis meth-
odology and is able to capture the diagnosis problem from
systems with fuzziness.

Taking inspiration from Vojitas’ work on a formal model
of fuzzy logic programming, where notions of a fuzzy theory
and itsmodelwere introduced [25], we can similarlywork on
a truth-functional logic, in a narrow sense, based on Hajec’s
work [28], for building a framework of fuzzy diagnosis. It is
worth noting that Vojitas focused on building a procedural
and declarative semantics for fuzzy logic programming
without negation, proving their soundness and complete-
ness by defining the truth functions of many valued
connections and the soundness of many valued modus
ponens. In particular, negation cannot occur in any formula.
Therefore, this model cannot be applied to fault diagnosis
based on consistency, but to threshold computation, abduc-
tion, and fuzzy unification based on similarity.

In this paper, the authors present a formal model for
fuzzy diagnosis by extending Vojitas’ model (allowing
occurrence of negation) and defining the notions of
consistency and entailability. By comparing with the
classical system description and the observation of a system
in Reiter’s sense, the authors represent their fuzzified
extensions by applying fuzzy theories. A framework of
fuzzy diagnosis and its properties, similar to that in Reiter’s
framework, have also been established in such an extended
way. Under this framework, computing fuzzy diagnoses is
mapped to solving a system of inequalities. Generally, to
solve such a system of inequalities is very complex or even
impossible. Thus, the authors focus on a set of special cases
(e.g., when fuzzy truth values are taken from a finite chain
and some classes of fuzzy theories with special forms). In
particular, a method for computing fuzzy diagnoses is
presented in which the fuzzy system description and the
fuzzy observations are clause-style fuzzy theories. A
student-fault diagnostic example is given to demonstrate
the usefulness of our framework. It is clear that our
framework can support the fault diagnosis, either based
on Reiter’s diagnosis theory with precise knowledge or
based on knowledge with fuzziness.

This paper is organized as follows: Reiter’s diagnosis
theory is introduced and a new characterization of a
diagnosis is proposed in Section 2. The framework of fuzzy
diagnosis and important properties of fuzzy diagnoses are
presented in Section 3. A procedure for finding all
diagnoses for any diagnosis problem and a general method
for solving a clause-style diagnosis problem are given in
Section 4. A student-fault diagnosis problem and its
simplified example are described in Section 5. The last
section is devoted to the summary and conclusions.

2 REITER’S THEORY OF DIAGNOSIS

In order to formalize model-based diagnosis, Reiter
established a precise theoretical foundation for diagnosis
from first principle, using first-order sentences [1]. In this
section, we briefly recall the basic notions and results of
Reiter’s theory of diagnosis, and then present a new
characterization of diagnoses.

2.1 Notions and Results of Reiter’s Diagnosis
Theory

As in [1], a pair (SD, COMPS) of a system has been defined,
where SD, the system description, is a set of first-order
sentences and COMPS, the system components, is a finite
set of constants. In all intended applications, the system
description will mention a specific predicate AB(.), inter-
preted to mean “abnormal.” An observation of a system is a
finite set of first-order sentences. (SD, COMPS, OBS) for a
system (SD, COMPS) with observation, OBS, can be written.
A diagnosis for (SD, COMPS, OBS) is a minimal set � �
COMPS such that

SD [ OBS [ fABðcÞj c 2 �g [ f ABðcÞj c 2 COMPS-�g

is consistent. Reiter gave important properties of a diagnosis
for (SD, COMPS, OBS), which are useful for determining the
existence of a diagnosis and computing this diagnosis if it
exists.

Proposition 2.1 [1]. A diagnosis exists for (SD, COMPS, OBS)
iff (if and only if) SD [OBS is consistent.

Proposition 2.2 [1]. � (the empty set) is a diagnosis (and the
only diagnosis) for (SD, COMPS, OBS) iff SD [OBS [ f 
ABðcÞj c 2 COMPSg is consistent, i.e., if the observation does
not conflict with the system, which should be the case if all its
components behave correctly.

Proposition 2.3 [1]. If � is a diagnosis for (SD, COMPS, OBS),
then for each ci 2 �,

SD [OBS [ f ABðcÞj c 2 COMPS-�g � ABðciÞ:

Here, the notation “� ” is the classical entailability relation.

Proposition 2.4 [1]. � � COMPS is a diagnosis for (SD,
COMPS, OBS) iff � is a minimal set such that SD [OBS [
f ABðcÞj c 2 COMPS-�g is consistent.

Reiter pointed out that Proposition 2.3 is rather interest-
ing since it says that the faulty components � are logically
determined by the normal components COMPS-�.

2.2 A New Characterization of Diagnoses

Note that the properties above are not enough for designing
an algorithm to solve a diagnosis problem since they only
characterize necessary or sufficient conditions of the
existence of a diagnosis. It can be claimed that the converse
of Proposition 2.3 also holds, i.e., it is not only necessary but
also sufficient for a set of components to be a diagnosis.

Proposition 2.5. Let (SD, COMPS) be a system and OBS be
an observation. Given � � COMPS, if SD [OBS [ f 
ABðcÞj c 2 COMPS-�g is consistent, and for any ci 2 �,

SD [OBS [ f ABðcÞj c 2 COMPS-�g � ABðciÞ;

then � is a diagnosis for (SD, COMPS, OBS).
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Combining Propositions 2.3 and 2.5 provides a new
characterization of diagnoses, by which we can determine
whether any set � � COMPS is a diagnosis or not.

Proposition 2.6. � � COMPS is a diagnosis for (SD, COMPS,
OBS) iff SD [OBS [ f ABðcÞj c 2 COMPS-�g is consis-
tent and for any ci 2 �,

SD [OBS [ f ABðcÞj c 2 COMPS-�g � ABðciÞ:

Remark 2.1. As is well-known, the main idea of a diagnosis
by abduction is that users sometimes want the diagnosis
not only to be consistent with the observation, but to also
predict the outputs given the inputs. Proposition 2.6
shows the observations not only to be consistent with the
normal components, but to also explain the faulty
assumptions. Conversely, only the subsets of COMPS
with this property are diagnoses. So, Proposition 2.6
makes it more understandable that the main difference
between the two models of diagnosis is that, in
abduction, the diagnoses entail the observations,
whereas in the consistency-based model, the observa-
tions entail the diagnoses.

Remark 2.2. Proposition 2.6 underlies a new system to
compute all diagnoses and to establish complexity. The
first step checks consistency of SD [OBS. If it is
inconsistent, then there is no diagnosis. If SD [OBS is
consistent, then users may guess a subset of COMPS and
test whether it satisfies the conditions in Proposition 2.6.
Clearly, checking the consistency of each subset of
COMPS takes exponential time. Using a canonical
method, as in [14] and [26], it can be established that
the problem of existence of diagnoses is �P

2 -complete.

3 A FRAMEWORK OF FUZZY DIAGNOSIS

Reiter’s diagnosis theory is not based on uncertain knowl-
edge since it is for systems described by first-order
sentences. Usually, normality and faultiness of components
of a system, which are gotten by instrument measuring,
expert experience, or analyses of probability, are not precise
but with fuzziness. So, an extension of Reiter’s diagnosis
theory in a fuzzy sense is necessary and interesting. In this
section, a framework of fuzzy diagnosis and some proper-
ties of fuzzy diagnoses will be presented, which are
extensions of the corresponding results in [1]. First, some
basic concepts relative to a theory of fuzzy diagnosis will be
formalized. The notions of a fuzzy system and fuzzy
observations are introduced, based on the extended notion
of a fuzzy theory, by allowing the occurrence of negation; a
fuzzy diagnosis is defined by introducing notions of
consistency and entailability for fuzzy systems. Second,
some important consequences of a fuzzy diagnosis, which
are generalizations of Reiter’s corresponding results in
Reiter’s framework [1], are established (detailed derivations
are found in the Appendix). Finally, two special subclasses
of fuzzy diagnosis will be discussed that are interesting and
applicable in many real-life situations.

3.1 Truth-Function Fuzzy Logic in a Narrow Sense

To propose a formal model of fuzzy diagnoses, which is an
extension of Reiter’s diagnosis theory, truth-function logic
in a narrow sense will be outlined in this section.

A multisorted predicate language, with or without
function symbols, is used. Recall that a set S of sentences
is consistent iff S has a (two-valued) model. S entails a

sentence � iff each model of S is also a model of �. If S and �
are expressed in a form of first-order clauses, then we can
restrict our declarative semantics only on Herbrand models.
Since we are interested only in practical diagnoses, we
disregard arbitrary interpretations here and base our
semantics only on Herbrand interpretations. Following
closely Lloyd’s presentation and even notation [27], a
Herbrand universe of sort A, denoted by UA

L , consists of
all ground terms as crisp. As in [25], let BL be the Herbrand
base of the language L. All fuzzy predicates will be
interpreted by a mapping from BL to the unit interval
½0; 1�. We call f: BL ! ½0; 1� a fuzzy interpretation of our
language. For ground atoms p 2 BL, fðpÞ is its truth value.
For arbitrary formula � and an evaluation of all sorts of
variables eA: VaA ! UA

L , the truth value fð�Þ½e� is calculated
along the complexity of formulas using truth functions of
connectives and quantifiers:

fð �Þ ¼ 1� fð�Þ;
fð� _  Þ ¼ maxðfð�Þ; fð ÞÞ;
fð� _  Þ ¼ minðfð�Þ; fð ÞÞ;
fð�!  Þ ¼ maxð1� fð�Þ; fð ÞÞ;

fð8xfð�ÞÞ ¼ infffð�Þ½e0� e0 ¼x eg, where e0 ¼x e means that e0

can differ from e only at x. Finally, let the truth value of a
formula � under an interpretation f be the same as that of its
generalization and not depend on evolution:

fð�Þ ¼ infffð�Þ½e�j e arbitraryg:

Remark 3.1. In Vojitas’ approach, negation  does not
occur in any formula and a many-value modus ponens is
defined (it is needed for application to abduction). So,
this model is not suitable for capturing a fuzzy fault
diagnosis based on consistency. In our framework,
occurrence of a negation  in a formula is allowed
and fuzzified modus ponens is not needed to compute a
fuzzy diagnosis based on consistency. Notions of a
negative AB-literal  ABðcÞ and its fuzzy truth-value
will be defined in Section 3.2.

Remark 3.2. Proofs of all results in Sections 3.2 and 3.3 are
only relevant to the truth of the negation  . To capture
different extensions of classical connectives, as in [25],
we can replace the above truth functions of connectives
_, ^, and ! with the following connectives in this
remark, respectively. In general, the above truth-value
function of connectives is often used since it makes
computation of diagnoses effective. The clause-style
diagnostic problem that we will discuss in Section 4 is
just such an example. Of course, it could sometimes lose
useful information. A difference between computation
and the real-world situation may not just be attributed to
the system itself, but in the description of the real
situation. In this case, either connectives, or fuzzy
predicates, or the rule base can be tuned. So, some of
the following types of connectives based on practice or
experience can be chosen.

The Lukasiewicz connectives:

_L ðx; yÞ ¼ minð1; xþ yÞ;
^L ðx; yÞ ¼ maxð0; xþ y� 1Þ;
 L ðxÞ ¼ 1� x;

!L ðx; yÞ ¼ minð1; 1� xþ yÞ:
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The Godel intuitionistic connectives:

_G ðx; yÞ ¼ maxðx; yÞ;
^G ðx; yÞ ¼ minðx; yÞ;
 G ð0Þ ¼ 1;

 G ðxÞ ¼ 0 for x > 0;

!G ðx; yÞ ¼ y if x > y else 1:

The product logic:

_P ðx; yÞ ¼ xþ y� x:y;

^P ðx; yÞ ¼ x:y;

 P ð0Þ ¼ 1;

 P ðxÞ ¼ 0 for x > 0;

!P ðx; yÞ ¼ minð1; y=xÞ if x > y else 1:

3.2 Fuzzy Diagnosis

In this section, a framework of fuzzy diagnosis is proposed
by developing a fuzzy logic system similar to that in [25].
More specially, notions of a fuzzy theory, consistency,
entailability, and an �-level diagnosis are introduced.

A fuzzy theory is a partial mapping T assigned to
formula numbers from (0, 1]. Here, partiality of the
mapping T is understood as being defined as constantly
zero outside of the domain domðTÞ. A fuzzy interpretation f
is a model of a fuzzy theory T if fð�Þ � Tð�Þ for all formulas
� 2 domðTÞ. This means that the truth value assigned to the
axiom is understood as a lower bound of truth values in
structures which are models.

Definition 3.1. A fuzzy system is a pair ðTSD;COMPSÞ, where
SD is a set of first-order sentences, TSD is a partial mapping
from SD to (0, 1] (a fuzzy theory), and COMPS is a set of
constants. A fuzzy observation TOBS is a partial mapping from
OBS to (0, 1] (a fuzzy theory), where OBS is a finite set of
first-order sentences.

Definition 3.2. A collection of fuzzy theories fTij i � 0g is
consistent if there is an interpretation f such that for each i � 0
and for any � 2 domðTiÞ, fð�Þ � Tið�Þ, that is, f is a common
model of fTij i � 0g.

Definition 3.3. A collection fTij i � 0g of fuzzy theories entails
a fuzzy theory T 0, denoted as fTij i � 0g �F T0, if each model
of fTij i � 0g is also a model of T0.

Notations. Given any� � COMPS, let TNð�Þ and TPð�Þ
be two partial mappings (from negative AB-literals and
positive AB-literals to (0, 1], respectively) such that

domðTNð�ÞÞ ¼ f ABðcÞj c 2 COMPS-�g;

domðTPð�ÞÞ ¼ fABðcÞj c �g:

For any � 2 ð0; 1�, let TNð�; �Þ and TPð�; �Þ be two
partial mappings such that

domðTNð�; �ÞÞ ¼ f ABðcÞj c 2 COMPS-�g

and TNð�; �Þð ABðcÞÞ > 1� � for each c 2 COMPS-�;
domðTPð�; �ÞÞ ¼ fABðcÞ c 2 �g and TPð�ÞðABðcÞÞ � � for
each c 2 �.

Clearly, TNð�; �Þ and TPð�; �Þ are fuzzy theories.

Definition 3.4. Let ðTSD;COMPSÞ be a fuzzy system and TOBS

an observation. For any given � 2 ð0; 1�, � � COMPS is
defined as an �-level diagnosis for ðTSD;COMPS;TOBSÞ if �
satisfies the following conditions:

1. There are some TNð�; �Þ and TPð�; �Þ such that
fTSD;TOBS;TNð�; �Þ;TPð�; �Þg is consistent.

2. For any �0 � �, there is no TNð�0; �Þ and TPð�0; �Þ
such that fTSD;TOBS;TNð�0; �Þ, TPð�0; �Þg is con-
sistent.

That is, an �-level diagnosis for ðTSD;COMPS;TOBSÞ is a
minimal subset � of COMPS such that

fTSD;TOBS;TNð�; �Þ;TPð�; �Þg

is consistent for some TNð�; �Þ and TPð�; �Þ.

Here, a diagnosis of a dynamic system is characterized
by a common model for fTSD;TOBS;TNð�; �Þ;TPð�; �Þg (if
it exists).

To determine the existence of a fuzzy diagnosis and
design a method for computing diagnoses, some important
properties of a fuzzy diagnosis will be discussed in the next
section.

3.2.1 Some Consequences of the Definition

The following important properties corresponding to
results in Section 2 can be derived from the previous
definitions. They characterize the concept of a fuzzy
diagnosis from different points of view.

Theorem 3.1. An �-level diagnosis exists for

ðTSD;COMPS;TOBSÞ

iff fTSD;TOBSg is consistent.

This theorem shows that one can determine if

ðTSD;COMPS;TOBSÞ

has a diagnosis only by fuzzy system description and
observation(s).

Theorem 3.2. A subset of COMPS � is an �-level diagnosis for
ðTSD;COMPS;TOBSÞ iff � is a minimal subset of COMPS
such that fTSD;TOBS;TNð�; �Þg is consistent for some
TNð�; �Þ.

Comparing with Theorem 3.4 in [1], this result shows
that the concept of a fuzzy diagnosis, as a fuzzy version of
Reiter’s concept of a diagnosis, is reasonable. It provides a
simpler characterization of a fuzzy diagnosis than does the
original Definition 3.4.

Corollary 3.3. � is an �-level diagnosis (and the only diagnosis)
iff fTSD;TOBS;TNð�; �Þg is consistent for some TNð�; �Þ.

Theorem 3.4. Let� � COMPS.� is a unique �-level diagnosis
for ðTSD;COMPS;TOBSÞ iff fTSD;TOBSg is consistent and
for any model f of fTSD;TOBSg, c 2 �) fðABðcÞÞ > �.

This theorem gives a simple decision method for a
unique �-level diagnosis.

Theorem 3.5. � � COMPS is an �-level diagnosis for
ðTSD;COMPS;TOBSÞ iff for some T0Nð�; �Þ,
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fTSD;TOBS;T
0
Nð�; �Þg

is consistent and for any TNð�; �Þ,

fTSD;TOBS;TNð�; �Þg �F TPð�;¼; �Þ;

where TPð�;¼; �Þ is a partial mapping from fABðcÞj c 2 �g
to (0,1] such that TPð�;¼; �ÞðABðcÞÞ ¼ � for each c 2 �.

The above result says that the faulty components are
logically determined by the normal components. Based on
it, the methods for solving some special problems of fuzzy
diagnosis can be designed.

3.2.2 Special Cases

In this section, some special cases of fuzzy diagnoses,
abstracted from many real-world situations, will be
discussed. There are two types mainly: One is for precisely
determined fault components, even if the system descrip-
tion and the observation(s) are fuzzy. In particular, Reiter’s
diagnosis theory is a special case where a description and
observation(s) of a system are precise. Another special case
involves computability since infinite truth-values, which
leads to checking infinite number of fuzzy interpretations of
a fuzzy theory, is not considered from the point of view of
computation. Of course, there are real-life situations in
which these would not be appropriate, for example, fuzzy
diagnosis of clause-style fuzzy systems and observations,
where infinite fuzzy truth-value taken in the real unit
interval and diagnoses with arbitrary levels are considered
(see Section 4).

1. 1-level diagnosis—� is a minimal subset of COMPS
such that fTSD;TOBS;T

�
Nð�Þ;T�Pð�Þg is consistent,

where

T�Nð�Þð ABðcÞÞ > 0 for each c 2 COMPS-�;

T�Pð�ÞðABðcÞÞ ¼ 1; for each c 2 �:

In particular, if we restrict ourselves to consider-
ing only the case where fuzzy truth values assigned
to formulas are from f0; 1g, then 1-level diagnoses
produce the same results as Reiter’s.

2. Let L be a finite subset of (0,1] such that u 2 ð0; 1Þ iff
1� u 2 L. Assume that fuzzy-truth values assigned
to formulas are from L.

Clearly, the above formulas hold for any finite
chain L with the complementary operation c such
that

a. ðucÞc ¼ u for any u 2 L,
b. u 	 v) uc � vc, and
c. u 2 L iff uc 2 L.

4 COMPUTING DIAGNOSIS

In this section, the computability, computational complexity
of the fuzzy diagnosis problem and a method for solving a
special type of fuzzy diagnosis problem will be discussed.

To begin with, a procedure for solving a fuzzy diagnosis
problem will be described.

4.1 Procedure

Given a fuzzy system ðTSD;COMPSÞ and a fuzzy observation
setTOBS, it is interesting to note that fTSD;TOBSg is consistent
and that SD and OBS are finite sets. Let SD ¼ f�ij i 	 mg,

OBS ¼ f ij i 	 ng, RanðTSDÞ ¼ fij ri ¼ TSDð�iÞ; i 	 mÞ, and
RanðTOBSÞ ¼ ftij ti ¼ TOBSð iÞ; i 	 ng. Using Theorems 3.2
and 3.5, a procedure for finding an �-level diagnosis is given
in this section. Briefly speaking, starting from the empty set
�, check every subset� ofCOMPS according to the order	
on cardinals of subsets. Solving the following system of
inequalities on an unknown partial mapping f completes the
checking:

fð�iÞ � ri; for each i 	 m; ð4:1Þ

fð iÞ � ti; for each i 	 n; ð4:2Þ

fð ABðcÞÞ 	 1� � for each c 2 �;

or equivalently; fðABðcÞÞ � �:
ð4:3Þ

If the system has a solution, then � is a diagnosis and its
supersets are not checked yet.

Procedure: All Diagnoses

begin Diagnoses �, Candidate �
for n ¼ 0 to jCOMPSj (the cardinal of COMPS) do

for each � � COMPS, j�j ¼ n and there is no

�0 2 Diagnosis such that �0 � � do

begin
for each partial mapping f do

if f satisfies (4.1)-(4.3) then add � to

Diagnosis and go to loop*

loop**

end

loop*

loop

end

4.2 Computability (Decidability) and Computational
Complexity

The procedure in the previous section can never end, which
implies that the fuzzy diagnosis problem is semidecidable
since the number of partial mappings taking values from
(0,1] is infinite, and there is no decision algorithm for
determining the consistency of first-order formulae. Hence,
it is hard to compute diagnoses in most general cases.
Nevertheless, there are many practical settings where
consistency is decidable, e.g., fuzzy-truth values being
taken from a finite chain as in Section 3.2, some class of
fuzzy theories with special forms, etc. Even so, combinator-
ial explosion could be encountered since testing each subset
of COMPS with large numbers of components is NP-hard.

4.3 Diagnosis for Systems and Observations with
Clause-Style Fuzzy Theories

In classical logic, a sentence can be transformed into one
with a conjunctive normal form such that determining for
the consistency of first-order sentences becomes simpler (of
course, this conjunctive transformation problem is still NP-
complete). Similarly, in this section, we restrict ourselves to
a fuzzy diagnosis for systems with clause-style fuzzy
theories, that is, for ðTSD;COMPS TOBSÞ, where TSD and
TOBS are clause-style fuzzy theories (a clause-style fuzzy
theory is a partial mapping T assigned to clause-style
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formulas; here, each sentence in SD [OBS is a conjunction
of clauses). As in [3], an AB-literal is ABðcÞ or  ABðcÞ for
some c 2 COMPS. A literal L is a non-AB-literal if L is not
an AB-literal. Suppose that fL1; . . . ;Lkg is the set of all non-
AB-literals occurring in SD [OBS, and that f is an
undetermined partial mapping such that fðLiÞ ¼ 1� fðLjÞ
for each pair of complementary literals Li and Lj in
fL1; . . . ;Lkg and such that fð ABðcÞÞ ¼ 1� fðABðcÞÞ for
each c 2 COMPS. Note that the fuzzy-truth value of a
conjunction of clauses is not less than some number s from
(0,1) iff the fuzzy-truth value of each clause in the
conjunction is not less than s. With no loss of generality, it
can be assumed that no AB-literals occur in OBS, which
conforms to real applications. In fact, (ab)normality of a
component cannot be observed. Then, computing diagnoses
for systems with clause-style fuzzy theories is translated
into solving the following system of inequalities:

fðLj;1Þ _ . . . _ fðLj;pÞ _ fðABðcj;1ÞÞ _ . . . _ fðABðcj;;lÞÞ
_ fð ABðcj;lþ1ÞÞ _ . . . _ fð ABðcj;qÞÞ � rj

for each j : 1 	 j 	 �1	i	mui ;

ð4:4Þ

fðL�j;1Þ _ . . . _ fðL�j;pÞ � tj; for each j : 1 	 j 	 �1	i	nvi ; ð4:5Þ

fð ABðcÞÞ 	 1� � for each c 2 �;

or equivalently; fðABðcÞÞ � �;
ð4:6Þ

where Lj;1; . . . ;Lj;p,

L�j;1; . . . ;L
�
j;p 2 fL1; . . . ;Lkg;

cj;1; . . . ; cj;;q 2 COMPS, rj 2 fr1; . . . ; rmg, tj 2 ft1; . . . ; tng, ui is
the number of all clauses (conjunction terms) of �i for each
�i 2 SD and vi is the number of all clauses of  i for each
 i 2 OBS, �i,  i have the forms

Lj;1 _ . . . _ Lj;p _ABðcj;1Þ _ . . . _ABðcj;;lÞ
_  ABðcj;lþ1Þ _ . . ._  ABðcj;qÞ and L�j;1 _ . . . _ L�j;p:

To compute all diagnoses, clearly, it is sufficient to solve
the above system of inequalities and then to select all
minimal elements from {�j� ¼ fcjfðABðcÞÞ � � for some f
satisfying (4.4) and (4.5)}. For solving the system of
inequalities (4.4)-(4.6), an enumeration of all candidates
for �-level diagnoses is used. That is, for each subset � of
COMPS, the system of inequalities can be solved. If there is
a partial interpretation f such that the system has a solution,
then � is a candidate for a diagnosis.

Based on properties of operators _, , and relation 	 , a
general method for solving the system of inequalities
constituted by (4.4)-(4.6) is given in this section.

Let � be the set of systems of inequalities, which
contains all inequalities in (4.4) and all equalities with the
form RanðfðLÞÞ ¼ ð0:1� for any literal L occurring in (4.4)-
(4.6). For any (AB or non-AB-) literal L, RanðfðLÞÞ stands
for the complement of RanðfðLÞÞ, i.e., ½a; b� ¼ ½1� b; 1� a�,
½a; bÞ ¼ ð1� b; 1� aÞ, ða; b� ¼ ½1� b; a�, ða; bÞ ¼ ð1� b; 1�
aÞ for any a; b 2 ½0; 1� and a 	 b. The following method
for solving inequalities is similar to successive elimination
by substitution for solving system of linear equalities.

Such successive elimination by substitution is based on

the following feature: an inequality

fðL1Þ _ . . . _ fðLÞ _ fð LÞ _ . . . _ fðLmÞÞ � r

ðwhere L is a ðAB or non-ABÞ literalÞ

is equivalent to the inequality

fðL1Þ _ . . . _ fðLmÞÞ � r when fðLÞ _ fð LÞ < r

or equivalent to theabsolute inequalitywhen fðLÞ _ fð_LÞ � r

(hence, it can be deleted).
Step 1. Delete the disjunction with form fðLÞ _ fð LÞ

occurring in any inequality of (4.4)-(4.5), where L is a (AB or

non-AB) literal. Further, if fðLÞ _ fð LÞ � the right part of

inequality (in which fðLÞ _ fð LÞ occurs), then delete the

inequality.
Step 2. Using (4.6), reduce all occurrence of fðABðcÞÞ and

fð ABðcÞÞ.
Substep 1. Reducing ABðcÞðc 2 �Þ.
For each c 2 � and each inequality in � with form

fðLj;1Þ _ . . . _ fðLj;pÞ _ fðABðcj;1ÞÞ _ . . . _ fðABðcÞÞ _ . . ._
fð ABðcj;qÞÞ � rj;

ð�Þ

set RanðfðABðcÞÞÞ ¼ RanðfðABðcÞÞÞ \ ½�; 1� since c is in the

assumed �-level diagnosis �.
Case 1. If � � rj, then delete the inequality (*) from �.
Case 2. If � < rj, then replace (*) in � with the inequality

(* 1), which is obtained by deleting the disjunction fðABðcÞÞ
from (*),

fðLj;1Þ _ . . . _ fðLj;pÞ _ fðABðcj;1ÞÞ _ . . ._
fð ABðcj;qÞÞ � rj;

ð�1Þ

and set RanðfðABðcÞÞÞ ¼ RanðfðABðcÞÞÞ \ ½�; rj�.
Substep 2. Reducing  ABðcÞðc 2 �Þ.
For each inequality in � with the form

fðLj;1Þ _ . . . _ fðLj;pÞ _ fð ABðcj;1ÞÞ _ . . ._
fð ABðcÞÞ _ . . . _ fð ABðcj;qÞÞ � rj;

ð��Þ

set Ranðfð ABðcÞÞÞ ¼ Ranðfð ABðcÞÞÞ\Þ0; 1� �� since c

is in the assumed �-level diagnosis �.
Case 1. If 1� � < rj, then replace (**) in � with the

following inequality obtained by deleting the disjunction

fð ABðcÞÞ from (**),

fðLj;1Þ _ . . . _ fðLj;pÞ _ fð ABðcj;1ÞÞ
_ . . . _ fð ABðcj;qÞÞ � rj:

Case 2. If 1� � � rj, then � is replaced its variants �1 and

�2. �1 is as in Case 1 except setting

Ranðfð ABðcÞÞÞ ¼ Ranðfð ABðcÞÞÞ \ ð0; rjÞ:

�2 is obtained by deleting (**) from � and setting

Ranðfð ABðcÞÞÞ ¼ Ranðfð ABðcÞÞÞ \ ½rj; 1� ��.
Substep 3. Reducing ABðcÞðc 2 COMPS-�Þ.
For each c 2 COMPS-� and each inequality in � (its

variants) with the form
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fðLj;1Þ _ . . . _ fðLj;pÞ _ fðABðcj;1ÞÞ _ . . . _ fðABðcÞÞ
_ . . . _ fð ABðcj;qÞÞ � rj;

ð� � �Þ

set RanðfðABðcÞÞÞ ¼ RanðfðABðcÞÞÞ \ ð0; �� since c in not in

the assumed �-level diagnosis �.
Case 1. If � � rj, then � replaces its variants �1 and �2. �1

is obtained by deleting the inequality (***) from � and

setting RanðfðABðcÞÞÞ ¼ RanðfðABðcÞÞÞ \ ½rj; ��. �2 is ob-

tained by replacing (***) in � with the following inequality:

fðLj;1Þ _ . . . _ fðLj;pÞ _ fðABðcj;1ÞÞ
_ . . . _ fð ABðcj;qÞÞ � rj

ð� � �1Þ

and setting RanðfðABðcÞÞÞ ¼ RanðfðABðcÞÞÞ \ ð0; rjÞ, where

(*** 1) is obtained by deleting the disjunction fðABðcÞÞ from
(***).

Case 2. If � < rj, then replace (***) in �with the following

inequality obtained by deleting the disjunction fðABðcÞÞ
from (***),

fðLj;1Þ _ . . . _ fðLj;pÞ _ fðABðcj;1ÞÞ
_ . . . _ fð ABðcj;qÞÞ � rj:

Substep 4. Reducing  ABðcÞðc 2 COMPS-�Þ.
For each inequality in � (or its variants) with form

fðLj;1Þ _ . . . _ fðLj;pÞ _ fð ABðcj;1ÞÞ _ . . . _ fð ABðcÞÞ
_ . . . _ fð ABðcj;qÞÞ � rj; ð� � ��Þ

set Ranðfð ABðcÞÞÞ ¼ ð1� �; 1Þ since c is not in the

assumed �-level diagnosis �.
Case 1. If 1� � < rj, then � replaces its variants �1 and

�2. �1 is obtained by deleting (****) from � and setting

Ranðfð ABðcÞÞÞ ¼ Ranðfð ABðcÞÞÞ \ ½rj; 1�. �2 is obtained

by replacing (****) in � with the following inequalities:

fðLj;1Þ _ . . . _ fðLj;pÞ _ fð ABðcj;1ÞÞ
_ . . . _ fð ABðcj;qÞÞ � rj

ð� � � � 1Þ

and setting

Ranðfð ABðcÞÞÞ ¼ Ranðfð ABðcÞÞÞ \ ½1� �; rjÞ:

Case 2. If 1� � � rj, then delete (****) from �.
By the above reduction, no AB-literal occurs in each

system of inequalities in � (its variants). Note that in the

reduction, for � (or its variant), if there is some c 2 COMPS

such that RanðfðABðcÞÞÞ \ Ranðfð ABðcÞÞÞ ¼ �, then de-

lete � (or its variant).
By adding (4.5) to � and its each variant, �� and

corresponding variants can be obtained.
Step 3. For each inequality, e.g.,

fðL1Þ _ . . . _ fðLnÞ _ fðLÞ � rðn � 1Þ;

in �� (corresponding variants), if fðLÞ � s ðr; s 2 ½0; 1�Þ is not
a member of ��, then replace �� with ��1 and ��2: ��1 is

obtained by deleting the inequalit

fðL1Þ _ . . . _ fðLnÞ _ fðLÞ � r

from �� and setting RanðLÞ ¼ RanðLÞ \ ½r; 1�; and ��2 is

obtained by replacing fðL1Þ _ . . . _ fðLnÞ _ fðLÞ � s with

fðL1Þ _ . . . _ fðLnÞ � s and setting RanðLÞ ¼ RanðLÞ \ ð0; r�.

Repeat the above procedure until no inequality with
form fðL1Þ _ . . . _ fðLnÞ � rðn � 2Þ occurs in �� and its each
variant. Then, for each inequality with form fðLÞ � p, set
RanðfðLÞÞ ¼ RanðfðLÞÞ \ ½p; 1�. As in Step 2, ��, its variant, is
deleted, in which there is a pair of complementary literals L
and  L such that RanðfðLÞÞ [Ranðfð LÞÞ ¼ �.

Step 4. If there is some �� 6¼ � (or its variant is not
empty), then the system (4.4)-(4.6) has a solution; otherwise,
it is unsolvable.

Example A. Solve the system of inequalities

fðABðc1ÞÞ _ fðPÞ _ fðQÞ � 0:6;

fðABðc2ÞÞ _ fð PÞ � 0:8;
ð4:4�Þ

fðPÞ _ fð QÞ � 0:55; ð4:5�Þ

fðABðc1ÞÞ < 0:7; fðABðc2ÞÞ < 0:7: ð4:6�Þ

First, set

� ¼ ffðABðc1ÞÞ _ fðPÞ _ fðQÞ � 0:6;

fðABðc2ÞÞ _ fð PÞ � 0:8g and

RanðfðABðc1ÞÞ ¼ RanðfðABðc2ÞÞÞ ¼ ð0; 0:7Þ:

Reducing occurrences of fðABðc1Þ and fðABðc2ÞÞ in �, the
following is obtained:

�1 ¼ffð PÞ � 0:8;RanðfðABðc1ÞÞÞ ¼ ½0:6; 0:7Þ;
RanðfðABðc2ÞÞÞ ¼ ð0; 0:7Þg

�2 ¼ffðPÞ _ fðQÞ � 0:6; fð PÞ � 0:8;

RanðfðABðc1ÞÞÞ ¼ ð0; 0:6Þ;RanðfðABðc2ÞÞÞ ¼ ð0; 0:7Þg:

By adding (4.5*) to �, it can be obtained:

��1 ¼ffð PÞ � 0:8;RanðfðABðc1ÞÞÞ ¼ ½0:6; 0:7Þ;
RanðfðABðc2ÞÞÞ ¼ ½0; 0:7Þ; fðPÞ _ fð QÞ � 0:55g;

��2 ¼ffðPÞ _ fðQÞ � 0:6; fð PÞ � 0:8;

RanðfðABðc1ÞÞÞ ¼ ½0:6; 0:7Þ;RanðfðABðc2ÞÞÞ ¼ ð0; 0:7Þ;
fðPÞ _ fð QÞ � 0:55g:

Considering the inequality fðPÞ _ fð QÞ � 0:55, since
fð QÞ � s is not in ��1 for any s 2 ð0; 1�, we have

���1 ¼ffð PÞ � 0:8;RanðfðABðc1ÞÞÞ ¼ ½0:6; 0:7Þ;
RanðfðABðc2ÞÞÞ ¼ ð0; 0:7Þ;Ranðfð QÞÞ ¼ ð0:55; 1�g
���2 ¼ ffð PÞ � 0:8; fðPÞ � 0:55;

RanðfðABðc1ÞÞÞ ¼ ½0:6; 0:7Þ;RanðfðABðc2ÞÞÞ ¼ ð0; 0:7Þ;
Ranðfð QÞÞ ¼ ð0; 0:55Þg:

Note that a contradiction ðRanðfðP ÞÞ \ Ranðfð PÞÞ ¼
�Þ appears in ���2 , so ���2 ¼ �.

Finally, the solution

f0:6 	 fðABðc1ÞÞ < 0:7;

fðABðc2ÞÞ < 0:7; fðPÞ 	 0:2; fðQÞ 	 0:45g

can be obtained.
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Example B. Solve the system of inequalities obtained by
replacing (4.6*) in the above system with the following:

fðABðc1ÞÞ < 0:6; fðABðc2ÞÞ < 0:6: ð4:6 � �Þ

Similarly, by using (4.6**) to reduce occurrences of
fðABðc1ÞÞ and fðABðc2ÞÞ, it can be obtained:

�� ¼ffðPÞ _ fðQÞ � 0:6; fð PÞ � 0:8; fðPÞ _ fð QÞ � 0:55;

RanðfðABðc1ÞÞÞ ¼ RanðfðABðc1ÞÞÞ ¼ ð0; 0:6Þg:

Finally, by using fð PÞ � 0:8 to reduce all occurrences
of fðPÞ in ��,

�� ¼ffð PÞ � 0:8; fðQÞ � 0:6; ð QÞ � 0:55;

RanðfðABðc1ÞÞÞ ¼ RanðfðABðc1ÞÞÞ ¼ ð0; 0:6Þg

can be obtained, which contains the contradiction
ffðQÞ � 0:6; ð QÞ � 0:55g. So, the system of inequalities
has no solution.

Example C. Solve the system of inequalities obtained by
replacing (4.6*) in the above system with the following:

fðABðc1ÞÞ � 0:6; fðABðc2ÞÞ < 0:6: ð4:6 � ��Þ

Set

� ¼ffðABðc1ÞÞ _ fðPÞ _ fðQÞ � 0:6;

fðABðc2ÞÞ _ fð PÞ � 0:8;

RanðfðABðc1ÞÞ ¼ ½0:6; 1�Þ:

By using fðABðc1ÞÞ � 0:6 to reduce all occurrences of
fðABðc1ÞÞ in �,

� ¼ ffðABðc2ÞÞ _ fð PÞ � 0:8;RanðfðABðc1ÞÞ ¼ ½0:6; 1�Þ

can be obtained. By using fðABðc2ÞÞ < 0:6 to reduce all
occurrences of fðABðc2ÞÞ in �,

� ¼fRanðfðABðc1ÞÞÞ ¼ ½0:6; 1�;
RanðfðABðc2ÞÞÞ ¼ ð0; 0:6Þ; fð PÞ � 0:8g

can be obtained. Adding (4.5*) to � and considering the
inequality fðPÞ _ fð QÞ � 0:55, since fðPÞ � s is in � for
any s 2 ð0; 1�, the following can be obtained:

��1 ¼fRanðfðABðc1ÞÞÞ ¼ ½0:6; 1�;RanðfðABðc2ÞÞÞ ¼ ð0; 0:6Þ;
RanðfðPÞÞ ¼ ½0; 0:55Þ; fð PÞ � 0:8; fð QÞ � 0:55g

and

���1 ¼fRanðfðABðc1ÞÞÞ ¼ ½0:6; 1�;RanðfðABðc2ÞÞÞ ¼ ð0; 0:6Þ;
RanðfðPÞÞ ¼ ½0:55; 1�; fð PÞ � 0:8g:

Note that a contradiction (RanðfðP ÞÞ \ Ranðfð PÞÞ ¼ �)
appears in ���1 , so ���1 ¼ �. Finally, the solution

f0:6 	 fðABðc1ÞÞ; fðABðc2ÞÞ 	 0:6; fðPÞ 	 0:2; fðQÞ 	 0:45g

can be obtained.

The above method is NP-hard since it could encounter a

composition explosion caused by reduction of non-AB-

literals. Some skills for solving a system of inequalities are

suggested as follows: An extended version of strategies for

searching all subsets of COMPS and for dealing with a

composition explosion in solving a system of inequalities

will be discussed in a subsequent paper:

1. Reducing with a pair of complementary literals:
Users simultaneously proceed to reduce a pair of
complementary literals such that an unsolvable
system of inequalities could be pruned as early as
possible.

2. Depth-first: Users always give priority to a system
including an inequalitywith form fðABðcÞÞ < �when
reducing an AB-literal since we are only interested in
a minimal set fcjc 2 COMPS; fðABðcÞÞ � � and f is a
partial interpretation such that (4.4) is satisfied}.

5 AN EXAMPLE

In this section, a substantial application of our approach has

been illustrated, followed by a simplified example for the

computing method.

5.1 Student-Fault Diagnosis Problem

In this section, an eLearning fault diagnosis problem, based

on a student online education system, Intelligent eLearning

System (IeLS) [29], is explained briefly:

1. Language: A set of constants COMP={Under

(short for understanding capability), Creat (crea-
tivity), Intel (intelligence), Lmem (long-term mem-

ory), Smem (short-term memory), Selfl (self-

learning ability), Prereq i (knowledge level of

prerequisites i, 1 	 i 	 n), Seef (
) (self-efficacy),

Caref (carefulness)}, and other sets of constants,

e.g., STUDENT ¼ fst1; . . . ; st mÞ, a distinguished

unary predicate ABð
Þ which domain is COMP

and other predicates, e.g., Sexð
Þ, Ageð
Þ, and
Effortð
Þ which domain is STUDENT and Perð
Þ
(performance), Satisð
Þ (satisfiability), Timejð
Þ
(spent time for j: 1 	 j 	 k) which domain is

COURSE, etc. Clearly, most of the predicates, e.g.,

ABðcÞðc 2 COPMSÞ, Efforttð
Þ, Satisð
Þ, and Seefð
Þ,
etc., are linguistic terms with fuzziness. Hence,

fuzzifying them is a more adequate approach.
2. Fuzzy system description TSD: This describes how

the system components normally behave by appear-
ing to the distinguished predicate AB. Each sentence

in TSD is a given fact on the structure of the system

or an IF-THEN rule based on the pedagogical

models, experts’ experiences, data analysis (data

mining), and axioms for lattice theory over [0,1], etc.

In the problem system description, 23 rules are

included, which are transformed into 51 clauses. For

example, a rule “normally an older student, who has
worse long-term memory and better knowledge on

prerequisites, or a student who studies with average

effort, could slowly or imprecisely take a quiz” can

be represented as the following formula:

ðxÞððOlderðxÞ ^ ðABðLmemÞÞ ^ABðPrereq1Þ
^ . . . ^ABðPrereq3ÞÞ _ aEffortðxÞÞ ! Slow ^ Perf
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with a partial mapping T satisfying the conditions:

TðOlderðxÞÞ � 0:6; 0:5 	 TðABðLmemÞÞ < 0:7;

Tð ABðPrereq1ÞÞ � 0:6;Tð ABðPrereq2ÞÞ � 0:75;

Tð ABðPlereq3ÞÞ � 0:8; 0:5 	 TðaEffortðxÞÞ < 0:7;

TðSlowÞ � 0:6; 0:3 	 TðPerfÞ 	 0:6:

Here, the predicates Older, Effort, and Slow are

determined by Age, Time1 (spent by a quiz), and

Time2 (spent by learning), respectively.
3. Fuzzy Observation TOBS: This is obtained based on

learning profiles of students, performance, spent

time, or questionnaire data analysis, etc. For example,

given a student and a course, his performance,

learning time, spent time, etc., are observable.

Intuitively, for a given student and a course, the

components must be determined, which, when
assumed to be functioning abnormally, will explain

the discrepancy between the observed and correct

system behavior. In the eLearning student-fault

diagnosis problem, there are 8þ n (usually, n � 3)

components (depending on the number of prerequi-

site courses for different real-world situations) and

more than seven predicates. So, it is necessary to solve

a system of inequalities, constituted from 51 inequal-
ities, for each of 28þn subsets of COMPS. From the

general method in Section 4, it is easy to see that

reducing non-AB-literals also can lead to combination

explosion. Hence, in general, computing diagnoses

could lead to exponential complexity; an extension

version of strategies searching through subsets of

COMPS and non-AB-literals will be presented in a

subsequent paper.

5.2 A Simplified Example

As a simplified example of the student diagnosis problem,

assume there is an eLearning system (SD, COMPS), where

system description SD contains two rules:

1. “Normally, an intelligent student can precisely or
speedily answer questions.”

2. “Normally, a negligent student cannot precisely
answer questions.”

The system components are intelligence and negligence,

denoted as c1 and c2, respectively. Now, assume it is

observed that someone could precisely or slowly answer

questions. Preciseness and speediness of answering ques-

tions are represented by the propositions P and Q,

respectively. In the classical logic, the system (SD,

COMPS) and the observation OBS are obtained, where

SD ¼ f ABðc1Þ ! P _Q,  ABðc2Þ ! Pg (its clause-

style description is SD ¼ fABðc1Þ _ P _Q;ABðc2ÞÞ_  Pg),
COMPS ¼ fc1; c2g and OBS ¼ fP_  Qg.

By fuzzifying the linguistic terms with fuzziness—intel-

ligence, negligence, preciseness, and speediness, a fuzzy

system ðTSD;COMPSÞ and an observation OBS are ob-

tained, where SD, COMPS, and OBS are as previous, and

the mappings TSD (the fuzzy system description) and TOBS

(the fuzzy observation) are as follows:

TSDðPÞ ¼ 0:2;TSDðQÞ ¼ 0:6;TSDðABðc1ÞÞ ¼ 0:3;

TSDðABðc2ÞÞ ¼ 0:25; TSDðABðc1Þ _ P _QÞ ¼ 0:6;

TSDðABðc2ÞÞ_  PÞ ¼ 0:8; TOBSðPÞ ¼ 0:55;

TOBSðQÞ ¼ 0:8;TOBSðP_  QÞ ¼ 0:55:

In general, a literal is used to characterize a property

enjoyed by an object. A partial mapping f evaluates a

number fðLÞ in ð0; 1� to a (AB or non-AB) literal L. The value

of fðLÞ represents the truth level of L. For example, the

meanings of fðLÞ are as follows:

. 1—completely to be normal,

. 0.8—very likely to be normal,

. 0.7—likely to be normal,

. 0.6—little bit to be normal,

. 0.5—neutral,

. 0.4—little bit to be abnormal.

. 0.3—likely to be abnormal, and

. 0.2—very likely to be abnormal.

In real world applications, such values can be deter-

mined using statistical sampling methods or data mining

techniques.

5.2.1 Application of a General Method

Given � ¼ 0:7, �-level fuzzy diagnoses is obtained. That is, it

is necessary to find a partial interpretation f such that

fðABðc1ÞÞ _ fðPÞ _ fðQÞ � 0:6;

fðABðc2ÞÞ _ fð PÞ � 0:8; fðPÞ _ fð QÞ � 0:55
ðIÞ

and such that the set fcjc 2 COMPS; fðABðcÞÞ � 0:7g is

minimal.
At first, assume that � ¼ �, we get the following system

of inequalities:

ðABðc1ÞÞ _ fðPÞ _ fðQÞ � 0:6; fðABðc2ÞÞ _ fð PÞ � 0:8;

fðPÞ _ fð QÞ � 0:55; fðABðc1ÞÞ < 0:7; fðABðc2ÞÞ < 0:7:

From the Example A, it can be known that � is a unique
0.7-level diagnosis. This result shows that for the observed
student, both of his/her foolish level (the negation of
intelligent) and his/her careful level (the negation of
negligent) are lower than 0.7.

For an �-level diagnosis fc2g and fc1g, the selection of

the value � is important. The 0.7-level diagnosis means that

users want the diagnosis to be “likely true.” If users choose

� < 0:6, it means that users want the diagnosis to be “a litter

bit likely true” or even more uncertainly.
In conclusion, such diagnoses are very useful for

improving teaching quality. For instance, based on the
example above, teachers can help the student to avoid the
negligence, based on the diagnosis fc1g. Note that if c2 is in
an �-level diagnosis, it means that the level of carefulness is
at least �, i.e., the level of negligence is at most 1� �.

5.2.2 Skills for Solving System (I)

As stated in Section 4.3.2, by reducing pairs of complemen-

tary literals fP; Pg and fQ; Qg in (I), two systems of

inequalities can be obtained:

fð PÞ � 0:8; fðABðc1Þ _QÞ � 0:6; fð QÞ � 0:55; ðI; 1Þ
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fð PÞ < 0:8; fðABðc1Þ _ P _QÞ � 0:6;

fðABðc2ÞÞ � 0:8; fðP_  QÞ � 0:55:
ðI; 2Þ

Further, five systems of inequalities will be obtained:

fð PÞ � 0:8; fð QÞ � 0:55; fðABðc1ÞÞ � 0:6; ðI; 1; 1Þ

fðPÞ � 0:55; fðQÞ � 0:6; fðABðc2ÞÞ � 0:8; ðI; 2; 1Þ

fðPÞ � 0:6; fðABðc2ÞÞ � 0:8; ðI; 2; 2Þ

fðPÞ � 0:55; fðABðc1ÞÞ � 0:6; fðABðc2Þ � 0:8; ðI; 2; 3Þ

0:2 < fðPÞ < 0:45; fðQÞ 	 0:55; fðABðc1ÞÞ � 0:6; fðABðc2Þ
� 0:8:

ðI; 2; 4Þ

So, system ðTSD;COMPS;TOBSÞ has �-level diagnoses fc2g
and fc1g when � 	 0:6, while it has the �-level diagnosis �
when � > 0:6. As a faulty component, c2 (i.e., negligence) is
more certain than c1 (intelligence).

From the above, one can see that computing diagnoses

without resorting to solving the inequalities for each subset

of COMPS is possible in certain situations, which will be

discussed in a subsequent paper. For example, it is suitable

when at most four AB-literals with distinct components

occur in each clause of TSD since reducing three AB-literals

will generate 23 systems of inequalities with occurrence of

at most one AB-literal. And, solving a system without

constraint on �-level can give more information than that in

Section 5.2.1, e.g., ðTSD;COMPS;TOBSÞ has �-levelð� 	 0:6Þ
diagnosis fc1g when TOBSðPÞ 	 0:2 and TOBSðQÞ < 0:6; it

has �-level ð� 	 0:8Þ diagnosis fc2g for TOBSðPÞ close to 1; it

has �-level ð� 	 0:6Þ diagnosis fc1g for both TOBSðPÞ and
TOBSðQÞ close to 0, and has the diagnosis � for TOBSðPÞ
close to 0 and TOBS ðQÞ close to 1. Based on such

information, one can immediately derive a diagnosis from

observation(s) and verify validity of the system description.

6 CONCLUSIONS AND FURTHER WORK

Considering most real-world situations where description
and observations are with fuzziness, an extension of Reiter’s
theory of diagnosis from first principle is important and
necessary. In this paper, such a framework has been
proposed and some of its important properties have been
established. To accomplish this, a truth-functional fuzzy
logic (based on [25]) without any logical axiom has been
studied, which is able to satisfy very general situations with
almost arbitrary connectives [25]. Based on this approach,
the notions of consistency and entailability for a fuzzy
theory are given. Then, Reiter’s framework of diagnosis to
fuzzy diagnosis are extended. The notion of �-level fuzzy
diagnosis is introduced, and its properties similar to that in
[1] are obtained. Further, computing diagnoses is mapped
to solving a system of inequalities. In general, to solve such
a system of inequalities is very complex or even impossible.
Some special important cases are discussed. In particular,
we focus on the case where TSD and TOBS are clause-style
fuzzy theories, that is, each sentence in SD [OBS is a

conjunction of clauses. A generic method for computing

diagnoses is derived when TSD and TOBS are clause-style

fuzzy theories. Some problem-solving strategies are also

given. A real-world case about the student fault diagnosis

in eLearning processes is described to demonstrate the

usefulness of our framework.
Reiter and de Kleer et al. characterized diagnosis by

conflict set, implicate, and prime implicate, respectively [1],
[3]. A corresponding fuzzy version will be explored in the
future. A new special case for effectively computing
diagnosis and strategies of searching through subsets of
COMPS will also be discussed in a subsequent paper. The
authors are also considering applying the framework on
real-world applications.

APPENDIX

Proposition 2.5. Let ðSD;COMPSÞ be a system and OBS an

observation. Given a � � COMPS if SD [OBS [ f 
ABðcÞjc 2 COMPS-�g is consistent and for any ci 2 �,

SD [OBS [ f ABðcÞjc 2 COMPS-�g � ABðciÞ;

then � is a diagnosis for ðSD;COMPS;OBSÞ. Here, the

notation “� ” is the classical entailability relation.

Proof. Thecasewhere� ¼ � isobvioususingProposition2.2.

Assume that� 6¼ �. It is clear that

SD [OBS [ f ABðcÞjc 2 COMPS-�g [ fABðcÞjc 2 �g

is consistent since

SD [OBS [ f ABðcÞjc 2 COMPS-�g

is consistent and SD [OBSf ABðcÞjc 2 COMPS-�g �
ABðciÞ for any ci 2 �. We show minimality of �. If there

is a proper subset �0 of � such that �0 satisfies the

conditions of the proposition, then

SD OBS [ f ABðcÞjc 2 COMPS-�g
[ f ABðcÞjc 2 ���0g

is consistent. This contradicts the hypothesis that for any

ci 2 �,

SD [OBS [ f ABðcÞjc 2 COMPS-�g � ABðciÞ:

So, � is a minimal set of COMPS such that SD [OBS [
f ABðcÞjc 2 COMPS-�g is consistent. Using Proposi-

tion 2.4, � is a diagnosis for (SD, COMPS, OBS). tu

Theorem 3.1. An �-level diagnosis exists for

ðTSD;COMPS;TOBSÞ

iff fTSD;TOBSg is consistent.
Proof. “) ” The proof is obvious by Definitions 3.2 and 3.4.

“( ” Assume that fTSD;TOBSg is consistent. Then,
there is an interpretation f such that fð�Þ � TSDð�Þ for
any � 2 SD, and that fð Þ � TOBSð Þ for any  2 OBS.
Let

�f ¼ fc 2 COMPSjfðABðcÞÞ � �g: ð3:1Þ
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Clearly, f is a model of fTSD;TOBS;TNð�f ; �Þ;TPð�f ; �Þg,
where

. TNð�f ; �Þð ABðcÞÞ ¼ fð ABðcÞ for each

c 2 COMPS-�f ;

and
. TPð�f ; �ÞðABðcÞÞ ¼ fðABðcÞÞ for each c 2 �f .

If �f ¼ � (empty set), then it is clear that � is an
�-level diagnosis. Assume that �f 6¼ �. Set Sð�Þ ¼ f�f jf
is a model of fTSD;TOBSg and �f is defined as in (3.1)}.
Using Zorn’s lemma, Sð�Þ has a minimal element under
inclusion of sets. We claim that each of such minimal
elements is just an �-level diagnosis for

ðTSD;COMPS;TOBSÞ

and vice versa. In fact, if �� is a minimal element, then
its corresponding model f� is also a model of
fTSD;TOBS;TNð�f� ; �Þ;TPð�f� ; �Þg. If there is �0 [��
such that fTSD;TOBS;TNð�0; �Þ;TPð�0; �Þg is consistent
for some TNð�0; �Þ and TPð�0; �Þ, then any model f 0 of
fTSD;TOBS;TNð�0; �Þ;TPð�0; �Þg is also a model of
fTSD;TOBSg. It is easy to verify that �0f 0 ¼ �0, where
�0f0 is defined as in (3.1). In fact, we have that �0 � �f 0

since fðABðcÞÞ > � for each c 2 �0. Conversely, if there
is some c 2 �0f 0 ��0, then we have that 1) f 0ðABðcÞÞ �
� by the definition of �0f0 and 2) f 0ð ABðcÞÞ > 1� �,
i.e., f 0ðABðcÞÞ < �, since f 0 is a model of

fTSD;TOBS;TNð�0; �Þ;TPð�0; �Þg:

This contradiction shows that �0f0 � �0. Hence, �0f 0 ¼ �0.
Therefore,�0 2 Sð�Þ. But, this contradicts the minimality
of ��. So, �� is an �-level diagnosis. Similarly, we have
that if �� is an �-level diagnosis, then �� is a minimal
element of Sð�Þ. tu

Theorem 3.2. A subset of COMPS � is an �-level diagnosis for

ðTSD;COMPS;TOBSÞ iff � is a minimal subset of COMPS

such that fTSD;TOBS;TNð�; �Þg is consistent for some

TNð�; �Þ.
Proof. “) ” If � is an �-level diagnosis for

ðTSD;COMPS;TOBSÞ;

then there is some TNð�; �Þ and TPð�; �Þ such that
fTSD;TOBS;TNð�; �Þ;TPð�; �Þg is consistent. So is
fTSD;TOBS;TNð�; �Þg. Now, we show that � is minimal.
If there is �0 � � such that fTSD;TOBS;TNð�0; �Þg is
consistent for some TNð�0; �Þg, then

fTSD;TOBS;TNð�0; �Þg

has a model f. So, fð ABðcÞÞ > 1� � for each
c 2 COMPS��0. In particular, fð ABðcÞÞ > 1� � for
each c 2 ���0. On the other hand, Let

�0f ¼ fc 2 COMPSjfðABðcÞÞ � �g:

It is easy to check that �0f � �0 and f is also a model of
fTSD;TOBS;TNð�0f ; �Þ;TPð�0f ; �Þg. So, �0f � � is a subset
of COMPS such that fTSD;TOBS;TNð�0f ; �Þ;TPð�0f ; �Þg is

consistent—a contradiction. Thus, minimality of � is
proven.

“( ” If � is a minimal subset of COMPS such that
fTSD;TOBS;TNð�; �Þg is consistent for some TNð�; �Þ,
then, in a way similar to the above, we have that a
model f of fTSD;TOBS;TNð�; �Þg is also one of
fTSD;TOBS;TNð�0f ; �Þ;TPð�0f ; �Þg, i.e.,

fTSD;TOBS;TNð�0f ; �Þ;TPð�0f ; �Þg

is consistent. We claim that � is a minimal set with this
property. In fact, if there is a set �� � � and some
TNð��f ; �Þ and TPð��f ; �Þ such that

fTSD;TOBS;TNð��; �Þ;TPð��; �Þg

is consistent, then so is fTSD;TOBS;TNð��; �Þg. This
contradicts the minimality of �. So, � is an �-level
diagnosis. tu

Theorem 3.4. Let � � COMPS. � is a unique �-level diagnosis
for ðTSD;COMPS;TOBSÞ iff fTSD;TOBSg is consistent and
for any model f of fTSD;TOBSg; c 2 �) fðABðcÞÞ > �.

Proof. “Only If” Consistency of fTSD;TOBSg is clear. From
the proof of Theorem 3.1, it is immediately apparent that
� � �f for any model f of fTSD;TOBSg since � is a
unique �-level diagnosis. So, c 2 �) fðABðcÞÞ � �.

“IF” Assume that �f and Sð�Þ are defined as in the
proof of Theorem 3.1.

Since fTSD;TOBSg is consistent and with the hypoth-
esis that c 2 �) fðABðcÞÞ � �, then � � �f for any
model f of fTSD;TOBSg. So, � is a unique minimal
element of Sð�Þ and is also a unique �-level diagnosis for
ðTSD;COMPS;TOBSÞ. tu

Theorem 3.5. � � COMPS is an �-level diagnosis for
ðTSD;COMPS;TOBSÞ iff for some

T0Nð�; �Þ; fTSD;TOBS;T
0
Nð�; �Þg

is consistent and for any

TNð�; �Þ; fTSD;TOBS;TNð�; �Þg �F TPð�;¼; �Þ;

where TPð�;¼; �Þ is a partial mapping from fABðcÞjc 2 �g
to ð0; 1� such that TPð�;¼; �ÞðABðcÞÞ ¼ � for each c 2 �.

Proof. “) ” The case where � ¼ � is true vacuously.
Suppose that � 6¼ �. There is some T0Nð�; �Þ such that
fTSD;TOBS;T

0
Nð�; �Þg is consistent since � is an �-level

diagnosis. For any partial mapping TNð�; �Þ, if f is a
model of fTSD;TOBS;TNð�; �Þg, then fð ABðcÞÞ >
1� � for each c 2 COMPS��. By applying the minim-
ality of �, fð ðABðcÞÞ 	 1� � for each c 2 �. So,
fðABðcÞÞ � � for each c 2 �, which implies that f is a
model of TPð�;¼; �Þ.

“( ” It is sufficient to show minimality of � by
Definition 3.4. If, on the contrary, � is not an �-level
diagnosis, then there is �� � � and �� is an �-level
diagnosis. So, there is some T�Nð��; �Þ such that
fTSD;TOBS;T

�
Nð��; �Þg is consistent. Assume that f is a

model of

fTSD;TOBS;T
�
Nð��; �Þg:
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Then, fð ABðcÞÞ > 1� �, i.e., fðABðcÞÞ < �, for each

c 2 ����. On the other hand, f is also a model of

fTSD;TOBS;T
�
Nð�; �Þg, where T�Nð�; �Þ is the restriction

to f ABðcÞjc 2 �g. Based on hypothesis fðABðcÞÞ � �
for each c 2 ����, a contradiction occurs. tu
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