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abstract: Stabilizing selection has been predicted to change genetic
variances and covariances so that the orientation of the genetic
variance-covariance matrix (G) becomes aligned with the orientation
of the fitness surface, but it is less clear how directional selection
may change G. Here we develop statistical approaches to the com-
parison of G with vectors of linear and nonlinear selection. We apply
these approaches to a set of male sexually selected cuticular hydro-
carbons (CHCs) of Drosophila serrata. Even though male CHCs dis-
played substantial additive genetic variance, more than 99% of the
genetic variance was orientated 74.9� away from the vector of linear
sexual selection, suggesting that open-ended female preferences may
greatly reduce genetic variation in male display traits. Although the
orientation of G and the fitness surface were found to differ signif-
icantly, the similarity present in eigenstructure was a consequence
of traits under weak linear selection and strong nonlinear (convex)
selection. Associating the eigenstructure of G with vectors of linear
and nonlinear selection may provide a way of determining what long-
term changes in G may be generated by the processes of natural and
sexual selection.

Keywords: genetic variance, fitness surface, sexual selection, genetic
variance-covariance matrix, lek paradox.

The additive genetic variance-covariance matrix (G) is a
fundamental parameter in microevolutionary theory
(Lande 1979; Agrawal et al. 2001). The G matrix will de-
termine the rate and direction in which a population may
respond to a given selection regime on a multivariate suite
of traits (Lande 1979). The predictive equation for the
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change in means, , will hold for more than oneDz p Gb

generation only if the genetic basis of the traits under
selection, represented by G, does not change. However,
selection may change G as a consequence of the generation
of linkage disequilibrium (Bulmer 1980) or as allele fre-
quencies change since genetic variances (Barton and Tur-
elli 1987) and covariances (Bohren et al. 1966; Turelli 1988;
Shaw et al. 1995) are dependent on allele frequency. Al-
though changes in G under selection attributable to linkage
disequilibrium (the Bulmer effect) have been well char-
acterized (Bulmer 1980; Shaw et al. 1995), the problem of
how allele frequency change results in changes in G re-
mains unsolved.

How the genetic variance may change under selection
as a consequence of allele frequency change has eluded a
predictive theory because unknown genetic details such as
the number of loci, the number of alleles at each locus,
and their distribution of effects can have a dramatic in-
fluence on the response of the genetic variance (Barton
and Turelli 1987). The effect of selection on the genetic
basis of traits under selection has usually been described
under two alternative sets of genetic assumptions. First,
the genetic variance of a single trait may be the result of
many loci, each of which have numerous alleles with a
Gaussian distribution of effects (Lande 1980). As the trait
responds to directional selection, allele frequency change
will be minimal, and the change in genetic variance will
be small, perhaps on the order of less than 20% (Reeve
2000). Alternatively, the distribution of allelic effects may
be leptokurtic as a consequence of the variance of new
mutations being far greater than the variance of standing
allelic effects at a locus, resulting in most of the genetic
variance of the trait being a consequence of a few probably
rare alleles (Turelli 1984). Now as the trait responds to
directional selection, the increase in frequency of rare al-
leles may dramatically increase the genetic variance (Bar-
ton and Turelli 1987), perhaps by as much as sixfold for
some traits (Reeve 2000). There is surprisingly little data
on how genetic variances respond to directional selection
(Barton and Turelli 1987; Keightley and Hill 1989), but at
least one experiment has indicated that a change in selec-
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tion under laboratory and field conditions may increase
genetic variance in a manner consistent with the latter set
of assumptions (Blows and Higgie 2003).

When multiple traits are considered, predicting the ef-
fects of selection on G becomes very difficult (Turelli
1988). Under the first set of assumptions above, G may
evolve the same orientation as the fitness surface if a suite
of traits experience a constant pattern of multivariate sta-
bilizing selection (Lande 1980, 1984; Cheverud 1984).
However, with the addition of strong pleiotropic mutation,
the orientation of G could deviate considerably from that
of the fitness surface (Arnold 1992). Under a wide range
of genetic assumptions, genetic correlations will change
under linear selection, particularly as the distribution of
allelic effects becomes more skewed (Slatkin and Frank
1990) or as the strength of linear selection increases (Turelli
1988), although changes in G may be transitory if the
response to selection is based on single genes of major
effect (Agrawal et al. 2001). While experimental studies
have suggested that genetic drift (Phillips et al. 2001) or
selection (Shaw et al. 1995; Blows and Higgie 2003) can
change G relatively quickly, comparative studies suggest
that G may be similar between phenotypically similar pop-
ulations of the same species but progressively more dif-
ferent as divergence increases (Steppan et al. 2002).

Although some studies suggest that G may change as a
consequence of selection, there have been few attempts to
determine the association between how G changes under
selection and the form of selection. Brodie (1992) found
a qualitative association between the sign of correlational
selection for and the genetic correlation between two traits
of a garter snake. However, for cases when more than two
traits are involved, pairwise comparisons of the sign and
magnitude of correlational selection gradients and genetic
correlations are unlikely to reveal how selection changes
G. Ideally, one would like to orientate G with respect to
the directional selection gradient (b) and the fitness surface
defined by the matrix of quadratic and correlational se-
lection gradients (g). Here we develop approaches for the
direct comparison of the orientation of G with vectors of
linear and nonlinear selection. First, we use the projection
of b onto a subspace of G to determine the association
between linear selection and the orientation of G. Second,
we employ the method of Krzanowski (1979) to simul-
taneously determine the critical angles between the prin-
cipal components (PCs) of G and the fitness surface de-
fined by the principal components of g, resulting in a
quantified measure of the similarity of the orientation of
G and the fitness surface.

One area of evolutionary biology in which the effect of
selection on the genetic variance has been particularly con-
troversial is the consequence of sexual selection for levels
of genetic variance in male display traits. If females gain

genetic benefits from choosing among males that use dis-
play traits as indicators of genetic quality, then both natural
and sexual selection may operate in the same direction to
greatly reduce the genetic variance in those male display
traits. If genetic variance is low for male display traits, then
benefits accruing to females for making a choice will also
be low, raising the question of why females continue to
choose (the “lek paradox”; Kirkpatrick and Ryan 1991).
Attempts to resolve the lek paradox have centred on mech-
anisms that may maintain high levels of genetic variance
in male display traits (Pomiankowski and Møller 1995;
Rowe and Houle 1996). Although comparative analyses
across traits suggest that levels of genetic variance in male
sexually selected traits may be high, there have been few
attempts to determine whether genetic variance in multiple
male sexually selected traits actually exists in the direction
of sexual selection.

Drosophila serrata individuals use cuticular hydrocar-
bons (CHCs) for mate recognition (Blows and Allan 1998),
and CHCs have been shown to respond to both natural
selection on mate recognition (Higgie et al. 2000) and
sexual selection (Blows 2002). In particular, female D. ser-
rata have a strong preference for certain combinations of
male CHCs (Hine et al. 2002), and females may gain ge-
netic benefits from exercising choice (Blows 2002; Hine et
al. 2002). The D. serrata mate-recognition system therefore
provides an opportunity to determine how sexual selection
may change the genetic variance in male display traits.
Here, we conduct further analyses on two experiments first
reported in Hine et al. (2002) to determine the orientation
between G and the fitness surface for male CHCs. The
first experiment was a half-sib genetic experiment, which
we use here to estimate G for the set of male CHCs under
sexual selection. The second experiment was a mate choice
experiment, which was used to estimate the strength of
linear sexual selection by Hine et al. (2002). This exper-
iment enabled the estimation of the sexual selection fitness
surface of male CHCs for our current purpose by deter-
mining the quadratic and correlational selection gradients
of the g matrix.

Methods

Genetic Analysis of Cuticular Hydrocarbons

A half-sib experiment (Hine et al. 2002) was used to de-
termine the genetic basis of male CHCs. The CHCs in-
cluded in the analysis have been identified in order of their
retention times as Z,Z-5,9-C24:2, Z,Z-5,9-C25:2, Z-9-C25:1, Z-
9-C26:1, 2-Me-C26, Z,Z-5,9-C27:2, 2-Me-C28, Z,Z-5,9-C24:2,
and 2-Me-C30 (Howard et al. 2003). Briefly, 66 sires were
each mated to three virgin females, and two male progeny
from each of the resulting 198 families had their CHCs
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assayed on the gas chromatograph. The standard nested
ANOVA model for a half-sib breeding design was used to
estimate the additive genetic components of variance of
the logcontrasts of relative concentrations of male CHCs.
When analyzing the multivariate set of Drosophila serrata
CHCs, logcontrasts of the relative concentrations of in-
dividual CHCs have first been taken to break the unit-
sum constraint in this set of proportions (Blows and Allan
1998; Higgie et al. 2000; Hine et al. 2002). Logcontrasts
were calculated by dividing all other proportions by an
arbitrarily chosen proportion, after which the log was
taken of each of these ratios (Aitchison 1986) and were
standardized before analysis. The price one pays by using
this transformation is the loss of one variable (the divisor),
in this case Z,Z-5,9-C24:2, but the choice of divisor does
not affect the outcome of subsequent analyses (Aitchison
1986, p. 78). The resulting log ratio covariance matrix S

is well suited to analyses such as multiple regression used
in the selection analyses below, because it is nonsingular.
This is in contrast to the alternative method of transfor-
mation to log ratios, which maintains all variables in the
analysis but results in the centered log ratio covariance
matrix, which is singular (Aitchison 1986).

Measurement of Sexual Selection on
Cuticular Hydrocarbons

Sexual selection on male CHCs was measured in a mate
choice experiment described in Hine et al. (2002). Briefly,
123 virgin females were each allowed to choose between
two males, and after each female made a choice indicated
by successful intromission, the two males were immedi-
ately prepared for analysis on the gas chromatograph. To
investigate the form of sexual selection on male CHCs, we
estimated the linear selection gradient (b) and the matrix
of quadratic and correlational selection gradients (g) using
multiple regression (Lande and Arnold 1983). Standard-
ized logcontrasts were used in the regressions to allow
standardized selection gradients to be estimated. Linear
and nonlinear selection gradients were estimated in sep-
arate regressions to provide unbiased estimates of the par-
tial linear regression coefficients in b (Brodie et al. 1995).

The g matrix was subjected to two transformations.
First, a canonical analysis of g was conducted to generate
new axes that were aligned with the major axes of the
quadratic response surface (Phillips and Arnold 1989;
Blows and Brooks 2003). The coefficients that related the
new canonical axes back to the original variables are sum-
marized in the M matrix and may be interpreted in the
same fashion as in principal components analysis. The
eigenvalues of these new canonical axes (the eigenvectors
in M) then allowed the shape of the response surface to
be interpreted. Second, the q matrix was calculated by

taking the negative inverse of g (Arnold et al. 2001). This
transformation of the fitness surface reverses the order of
the eigenvalues and their associated eigenvectors. So, for
example, the first principal component of g (gmax) is the
direction on the fitness surface with the greatest curvature,
whereas the first principal component of q (qmax) may be
interpreted as the line of least curvature or selective re-
sistance (Arnold et al. 2001). If stabilizing selection results
in the orientation of G conforming to the fitness surface,
then it is likely that the first few eigenvectors of g will be
associated with the orientation of G. Conversely, the as-
sociation between gmax and qmax has been considered an
important empirical issue, as if the two coincide; evolution
along lines of least genetic resistance (Schluter 1996) and
least selective resistance are confounded explanations for
the divergence between populations (Arnold et al. 2001).

Orientation of the Genetic Variance-Covariance
Matrix and the Fitness Surface

Linear Selection. Although gmax represents the direction of
greatest genetic variance, associating this eigenvector with
directions of divergence, or linear selection as in the pre-
sent case, has limited appeal (Blows and Higgie 2003),
because much of the genetic variance may be excluded
from such a comparison depending on the distribution of
eigenvalues of G. Alternatively, determining the association
between the orientation of G and the direction of linear
selection may be accomplished by determining what is the
closest vector (or projection) of genetic variance to the
vector of linear selection b. A principal components anal-
ysis of G will result in n new orthogonal axes (where

number of traits) that describe a decreasingn p the
amount of the genetic variance. Let a subspace of G be
defined by a subset of principal components of G that
form linearly independent columns of a matrix A. Pro-
jection of b onto the subspace of A is accomplished by
first calculating the projection matrix P (Strang 1998):

T �1 TP p A(AA) A . (1)

The projection (p) that is closest to b is then calculated
as

p p Pb. (2)

It is important to note that not all the principal compo-
nents of G can be included in A. This is because when
there are n dimensions, a set of n linearly independent
vectors will span the space, and every vector in the space
will be a combination of these vectors (Strang 1998).
Therefore, inclusion of the n principal components in A
will produce the identity matrix for the projection matrix
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in equation (1), and b will simply be recovered from equa-
tion (2). The choice of how many of the principaln � 1
components to include in a particular analysis will depend
on the distribution of the eigenvalues of G. The more
principal components included, the greater the number of
directions in multivariate space that will be explored, and
it is likely that the angle between the projection and b will
become smaller. However, if G is nonsingular, the last few
principal components may explain diminishingly small
proportions of the total genetic variance. In many evo-
lutionary studies, it may be of interest to determine how
the direction of linear selection is orientated with respect
to the majority of genetic variance rather than finding
projections of genetic variance that are the consequence
of the inclusion of eigenvectors of G that explain very
small proportions (say, !1%) of the genetic variance (we
note that the multivariate breeders equation is the ideal
tool for associating the entire space of G and b to result
in a predicted response to selection). We include the first
four principal components (of a total of eight) in our
analysis, which together explain 99% of the genetic
variance.

Nonlinear Selection. The matrix G has been predicted
to evolve to become aligned with the fitness surface under
certain conditions (Lande 1980; Cheverud 1984; Arnold
1992), although to our knowledge an explicit test of this
has not been attempted. Arnold et al. (2001) suggested
that the comparison of gmax and qmax would be the first
step in investigating the orientation of G and q. While
this approach has some intuitive appeal, it is not a valid
approach to the comparison of subspaces defined by mul-
tiple principal components (Cohn 1999). The existence of
a large angle between a corresponding pair of principal
components (e.g., PC1 of G and q) does not indicate that
the two sets of principal components describe different k-
dimensional subspaces, where of principalk p number
components that describe the subspace (Krzanowski
1988). For instance, PC1 of G may be perfectly aligned
with PC2 of q while being orthogonal to PC1 of q. Before
such angular comparisons are meaningful, the two sets of
principal components first need to be rotated to find the
best-matching set of orthogonal axes.

Krzanowski (1979) described a method for the com-
parison of two k-dimensional subspaces that calculates the
angles between the best-matched pairs of orthogonal axes.
Let a subset of the principal components of G again be
represented by A as above and those of g be represented
in a matrix B. The eigenvectors in A and B are first nor-
malized by dividing the coefficients of each eigenvector by
the square root of the sums of squares of the coefficients
of the respective eigenvector, as is usual for any angular
comparison of vectors. The two sets of principal com-
ponents can then be compared by defining a matrix S as

T TS p A BB A. (3)

The matrix S effectively finds the minimum (or critical)
angles between an arbitrary set of orthogonal vectors in
the subspace of A and a set of orthogonal vectors closest
to the same directions in the subspace of B. These arbitrary
vectors are termed the principal vectors in the subspaces
of A and B. Note that equation (3) differs from the ex-
pression in theorem 1 of Krzanowski (1979) because the
matrices A and B have the principal components as col-
umns to be consistent with the projection analysis above,
whereas Krzanowski (1979) starts with two matrices con-
taining the principal components as rows.

The eigenvalues of S may then be used to determine
the similarity between the two subspaces. The smallest
angle between any pair of orthogonal axes of A and B is
then defined as , where l1 is the largest eigenvalue�1 �cos l1

of S. The square roots of the inverse cosines of the re-
maining eigenvalues of S will give the remaining set of
angles in increasing order of size. Of particular use here
is that the sum of the eigenvalues of S equals the sum of
squares of the cosines of the angles between the two sets
of orthogonal axes. This sum will lie in the range 0 to k,
as all eigenvalues of S will have values between 0 and 1,
which equate to critical angles between 0� and 90�. The
sum of the eigenvalues of S therefore represents a con-
venient measure of the similarity of the two subspaces
because it is bounded within a range of values that have
a straightforward interpretation (Krzanowski 1979). If the
sum is close to 0, the two subspaces are dissimilar and are
approaching orthogonality, while a sum equal to k would
indicate that two original matrices (G and g in our case)
share the same orientation. Again, it is important to note
that k cannot equal n in this analysis, since including more
than half of the n principal components will constrain the
analysis to recover common dimensions (i.e., angles of 0�),
and if all n principal components are included, the two
subspaces will coincide exactly (W. J. Krzanowski, personal
communication). We again include the first four principal
components of G and g in this analysis, where 199% of
the variation contained in both matrices were explained
by these principal components.

To determine how the original traits contribute to the
similarity between subspaces once two subspaces have
been compared, the eigenvectors of S[ai] that correspond
with each eigenvalue li may be projected onto the subspace
of A by

b p Aa , (4)i i

where bi is a principal vector and may be interpreted in
the same fashion as any principal component with ref-
erence to the coefficients that relate it back to the original
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traits. This expression again differs from that in theorem
2 of Krzanowski (1979), since A has columns of principal
components, not rows. To determine the principal vector
compared in the other subspace of B, BBTbi is used. For
our comparisons of the subspaces of G and g, we report
the principal vectors in the subspace of g because this
allowed a determination of whether the strength of non-
linear selection was associated with the similarity between
G and g.

A number of alternative methods are available to assess
principal component subspaces (Flury 1988; Cohn 1999).
We have chosen the method of Krzanowski (1979) because
it alone among those methods reviewed by Cohn (1999)
offers a readily interpretable scale with which one can
assess the similarity between subspaces. While alternative
methods have a lower bound of 0 in the presence of co-
incident subspaces, these test statistics do not have an
upper bound, making it difficult to determine how dif-
ferent two subspaces might be if the null hypothesis is
rejected. Common principal component (CPC) models
(Flury 1988) in particular have become a popular and
effective tool in evolutionary studies as a method of matrix
comparison (Phillips and Arnold 1999). We have avoided
the use of CPC models in the current context for two
reasons. First, CPC was developed specifically for product-
moment-based covariance matrices, a data structure that
neither G nor g strictly satisfies. The simple geometric
approach of Krzanowski (1979) may be applied to the
comparison of subspaces without regard to this restriction.
Second, although Flury’s (1988, p. 134) approach elegantly
includes all eigenvectors of the two covariance matrices,
the common space hypothesis testable under this model
allows similarity between matrices to be driven by simi-
larity between principal components, with small eigen-
values in one matrix and large eigenvalues in the other.
In our case, we are specifically interested in eigenvectors
of G that account for substantial amounts of the genetic
variance.

The Krzanowski method does come, however, with two
related disadvantages. First, as discussed above, no more
than half of the principal components can be included in
the subspace comparison. Selection of a subset of principal
components is therefore required. Here, we have chosen
that subset of the principal components that explain the
greatest amount of the total variance in each matrix, an
approach that ensures the dominant multivariate relation-
ships in the data will be represented in the analysis (Cohn
1999). In our case, 99% of the total variance in each matrix
is represented in the subspace comparison, but such a
fortuitous distribution of eigenvalues may not always oc-
cur. When substantially less variation is explained by the
half of the eigenvectors with the largest eigenvalues, al-
ternative criteria for selecting principal components might

be considered. For instance, choosing between principal
components that have similar eigenvalues on the basis of
a strong contribution from an original trait of particular
interest might have merit in some cases. Alternatively, orig-
inal variables could be removed from the analysis to
change the distribution of eigenvalues, perhaps after using
a variable selection technique for multiple regression to
determine if some traits are not necessary to explain var-
iation in fitness.

Selection of principal components is also at the center
of the second disadvantage of Krzanowski’s method; the
generation of the bootstrapped distribution of the test sta-
tistic (the sum of the eigenvalues of S) is presented in the
appendix and computer code data are available as down-
loadable files in the online edition of the American Nat-
uralist and from the second author on request. If G, for
instance, has principal components that have eigenvalues
that are close in magnitude (i.e., they explain similar
amounts of the genetic variance), repeated sampling will
tend to produce divergent bootstrap replications, resulting
in highly variable critical angles between principal vectors
and thus values of the test statistic. Such a situation might
commonly arise with principal components that explain
small amounts of the total variance. Some alternative
methods inversely weight the contribution of each angle
to the test statistic by its variance, reducing the effect of
such eigenvector instability. However, weighting is com-
putationally demanding, requiring the inversion of a co-
variance matrix to produce these test statistics. The insta-
bility of the eigenvectors could be addressed again by the
judicious selection of the principal components that enter
the analysis (Cohn 1999).

Results

Genetic Analysis of Cuticular Hydrocarbons

The additive genetic variance-covariance matrix (G) of the
set of eight male CHCs is presented in table 1. Visual
inspection of the genetic correlations given above the di-
agonal in table 1 indicated the three 2-methylalkanes (2-
Me-C26, 2-Me-C28, 2-Me-C30) were almost perfectly posi-
tively genetically correlated with each other, suggesting that
the same genes contributed to the variation in the relative
concentration of these three CHCs. The group of 2-meth-
ylalkanes were weakly genetically correlated with Z,Z-5,9-
C25:2, which is the major component of hydrocarbons on
the cuticle of Drosophila serrata and typically accounts for
about 60% of all hydrocarbon. The other major feature
of G was the strong genetic correlations between Z,Z-5,9-
C29:2 and all but one other CHC (Z-9-C25:1). The degree
of structure in G may be quantified by conducting a prin-
cipal components analysis of the covariance matrix in table
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Table 1: Additive genetic variance-covariance matrix (G) for standardized logcontrasts of eight male cuticular hydrocarbons

h2 Z,Z-5,9-C25:2 Z-9-C25:1 Z-9-C26:1 2-Me-C26 Z,Z-5,9-C27:2 2-Me-C28 Z,Z-5,9-C29:2 2-Me-C30

Z,Z-5,9-C25:2 .242 .06050 .777 .781 .456 .767 .364 .933 .329
Z-9-C25:1 .514 .06846 .12849 .799 .357 .591 .511 .390 .669
Z-9-C26:1 .212 .04429 .06607 .05316 .479 .815 .484 1.133 .383
2-Me-C26 .596 .0432 .04942 .04265 .14902 .499 .999 1.327 1.001
Z,Z-5,9-C27:2 .568 .07115 .07991 .07090 .07266 .14224 .422 .995 .321
2-Me-C28 .262 .02291 .04689 .02854 .09862 .04073 .06544 1.232 1.013
Z,Z-5,9-C29:2 .204 .05204 .03170 .05923 .11609 .08510 .07143 .05138 .943
2-Me-C30 .145 .01542 .04569 .01683 .07362 .02311 .04934 .04071 .03629

Note: Genetic variances and covariances are in boldface below the diagonal, and genetic correlations are displayed above the diagonal. Heritabilities

(h2) are given in the first column.

1. The first principal component of G, gmax (Schluter 1996;
Arnold et al. 2001), accounted for 51.9% of the genetic
variance in the set of eight CHCs. The coefficients of gmax

indicated that the strong positive relationships between
the 2-methylalkanes and Z,Z-5,9-C29:2 contrasted to the
other CHCs was primarily responsible for the dominance
of this major axis.

Measurement of Sexual Selection on
Cuticular Hydrocarbons

The standardized partial regression coefficients comprising
b are given in table 2. Hine et al. (2002) previously esti-
mated the strength of directional sexual selection on male
CHCs using discriminant function analysis (Endler 1986).
The discriminant function provided a univariate descrip-
tion of male CHCs, which best distinguished between cho-
sen and rejected males, and the standardized linear selec-
tion gradient was large ( ) and significant. Theb p 0.756
discriminant function and multiple regression approaches
are closely related, and when there are two groups involved
as in the present case, the discriminant function coeffi-
cients and partial regression coefficients that comprise b

will be proportional (Endler 1986). Here, our goal was
not to retest the partial regression coefficients of each in-
dividual CHC for significance but rather to associate the
orientation of the fitness surface with the genetic basis of
the CHCs. Employing the regression approach of Lande
and Arnold (1983) provided estimates of selection that could
be directly associated with the orientation of the genetic
variance-covariance matrix. The partial regression coeffi-
cients of b (table 2) suggested strong directional selection
on 2-Me-C28 and to a lesser extent on Z,Z-5,9-C29:2 and
linear selection in the opposite direction on 2-Me-C30.

None of the quadratic or cross-product coefficients in
the g matrix were significant (table 2), suggesting at first
glance that there was little nonlinear selection acting on
male CHCs, although some of the correlational selection
gradients are quite large. Quadratic surfaces with large

correlational selection gradients are difficult to interpret
from the g matrix alone (Phillips and Arnold 1989). A
canonical transformation of g provides a more straight-
forward way to interpret the form of selection operating
on male CHCs, because it rotates the axes until the cor-
relational selection gradients are eliminated to find the
major axes of the quadratic response surface (Box and
Draper 1987). Canonical axes and their associated eigen-
values are displayed in table 3. The eigenvector that ac-
counted for the most curvature on the fitness surface, m8,
contrasted 2-Me-C26 with Z,Z-5,9-C25:2 and 2-Me-C28. The
eigenvector with the second largest eigenvalue, m1, had a
strong contribution from 2-Me-C28, which was opposed
by Z,Z-5,9-C25:2. Considerable nonlinear selection was in-
dicated by the size of the eigenvalues for each of these
axes (0.394 and �0.595, respectively), which equate to
standardized quadratic selection gradients (Blows and
Brooks 2003). Significance of nonlinear selection along the
major axes was determined by placing all major axes back
into a quadratic regression (Blows and Brooks 2003). Para-
metric significance testing was appropriate here as the bi-
nomial distribution closely approximates the normal dis-
tribution when the number of observations is large, and
the two outcomes have equal probability under the null
hypothesis, both of which are satisfied here. Significant
quadratic selection was indicated on this set of traits by
the partial F-test considering the contribution of all axes
simultaneously ( , , ); how-F p 3.43 df p 8, 202 P ! .001
ever, nonlinear selection along no single axis reached sig-
nificance in this analysis.

A nonparametric visualization of the sexual selection
surface using a thin-plate spline (fig. 1A) that does not
constrain the visualization of the relationship between the
CHCs and fitness to be quadratic (Blows et al. 2003) sug-
gested that there was little curvature to the surface, which
is instead dominated by the strength of linear selection
(the slope of the plane). The area of high fitness repre-
sented primarily large values of 2-Me-C28 as it is only this
variable that had large coefficients in m1 and m8 with the
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Table 2: Vector of standardized directional selection gradients (b) and the matrix of standardized quadratic and correlational
selection gradients (g)

b Z,Z-5,9-C25:2 Z-9-C25:1 Z-9-C26:1 2-Me-C26 Z,Z-5,9-C27:2 2-Me-C28 Z,Z-5,9-C29:2 2-Me-C30

Z,Z-5,9-C25:2 �.061 �.016
Z-9-C25:1 �.034 .168 �.016
Z-9-C26:1 .082 �.029 .035 .021
2-Me-C26 �.115 .173 .081 .100 �.124
Z,Z-5,9-C27:2 �.082 .061 �.082 �.044 �.314 .04
2-Me-C28 .481 �.536 �.163 �.079 .377 .359 .027
Z,Z-5,9-C29:2 .189 �.043 .115 �.009 .228 �.05 �.164 �.001
2-Me-C30 �.287 .299 .054 .005 �.306 �.112 .085 .011 �.062

Note: Linear and nonlinear selection gradients were estimated in separate regressions.

correct combination of signs (table 3), consistent with the
linear selection analysis (table 2). It should be noted, how-
ever, that the area of extreme high fitness on the predicted
surface is not supported by any individuals with that phe-
notype, probably as a consequence of a strong genetic
constraint that exists between these two variables.

Orientation of the Genetic Variance-Covariance
Matrix and the Fitness Surface

Linear Selection. To investigate the nature of the association
between directional selection and G, we first calculated the
angles and their 95% bootstrapped confidence intervals
(CIs) between the first four principal components of G,
denoted gmax, g2, g3, and g4 in decreasing order of their
eigenvalues, and b. Resampling for the bootstrapped con-
fidence intervals was conducted by resampling with re-
placement sire families from the half-sib experiment for
genetic eigenvectors and mating pairs for the linear selec-
tion gradients. The angles (lower 95% CI, upper 95% CI)
between gmax, g2, g3, g4, and b were 84.3� (74.2�, 94.2�),
79.3� (68.3�, 111.1�), 86.6� (70.8�, 107.6�), and 81.5� (70.5�,
109.7�), respectively. Although these angles suggest a lack
of association between the direction of selection and the
presence of genetic variance, projection of b onto the sub-
space of G defined by these four principal components is
required to identify the direction of genetic variance most
similar to b. The angle between the projection (p) and b

of 74.7� (50.5�, 82.4�) indicated that the direction favored
by sexual selection was considerably divergent from the
directions in which the vast majority of genetic variance
currently lies.

A visual impression of the lack of association between
the direction of sexual selection and the genetic variance
in male CHCs is given in figure 1B, where the fitness
surface represented by the two major canonical axes m1

and m8 is shown as a contour plot and best linear unbiased
predictor estimates of the breeding values of the 66 sires
have been placed on the same surface. The breeding values

for m1 and m8 are strongly negatively correlated, and the
axis of their negative correlation is clearly unaligned in
this two-dimensional space, with the major slope of the
fitness surface representing the direction and strength of
linear selection.

Nonlinear Selection. The comparison of the subspaces
of G and g defined by the first four principal components
resulted in the sum of the eigenvalues of S of 1.41, which
was more extreme (i.e., smaller) than all 1,000 of the boot-
strap replications (appendix and computer code data), in-
dicating that the null hypothesis of coincident subspaces
could be rejected at . After taking the negativeP ! .001
inverse of g to generate the q matrix, principal compo-
nents analysis of q enabled the determination of the line
of least selective resistance of the fitness surface, qmax. The
line of least selective resistance explained 65.6% of the
variance in q. The first principal components from G and
q, gmax and qmax, were compared (Arnold et al. 2001),
which indicated that the two dominant eigenvectors were
at an angle of 54.2�. The subspaces remained quite dif-
ferent when the four principal components of G and q

were compared, resulting in a sum of the eigenvalues of
S of 2.59 ( ). Note how the comparisons of theP p .013
first four principal components of G with the first four
principal components of g and q combine to give a sum
of the eigenvalues of S equal to 4, as this is equivalent to
including all the eigenvectors of g in a single analysis.

To determine which parts of the two subspaces were
more similar and to relate these similarities back to the
original CHC traits, the eigenvectors of S constrained in
the g subspace are presented in table 4. The eigenvector
that was most similar between G and g had the largest
contribution from the traits that experienced the weakest
linear selection, Z-9-C25:1, and a secondary contribution
from the trait that experienced the strongest nonlinear
(convex) selection, 2-Me-C26 (table 2). In contrast, the
eigenvector that was most different between G and g had
the strongest contribution from 2-Me-C28, which experi-
enced the strongest linear selection (table 2).
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Table 3: The M matrix of eigenvectors from the canonical analysis of g

mi li Z,Z-5,9-C25:2 Z-9-C25:1 Z-9-C26:1 2-Me-C26 Z,Z-5,9-C27:2 2-Me-C28 Z,Z-5,9-C29:2 2-Me-C30

m1 .394 .518 .309 .081 �.031 �.358 �.662 .169 .183
m2 .200 �.239 .135 .214 .600 �.481 .142 .391 �.337
m3 .028 .217 .320 �.648 .183 .359 .168 .489 .016
m4 .008 .262 .345 .686 .160 .515 .202 .054 .086
m5 �.016 .165 .113 �.100 .232 �.368 .473 �.282 .676
m6 �.058 �.429 �.026 .188 �.391 �.044 .010 .615 .496
m7 �.094 .405 �.806 .084 .262 .086 .002 .293 .127
m8 �.595 .427 �.021 �.077 �.551 �.318 �.498 �.178 .354

Note: The eigenvalue (li) of each eigenvector (mi) is given in the first column.

Discussion

Genetic Analysis of Cuticular Hydrocarbons

The cuticular hydrocarbons of Drosophila serrata have
been the subject of a number of genetic experiments
(Blows and Allan 1998; Hine et al. 2002; Blows and Higgie
2003), but here we have concentrated on the genetic re-
lationships between individual CHCs for the first time.
Heritabilities of the CHCs varied from low (2-Me-C30) to
moderately high (Z,Z-5,9-C27:2) values, consistent with the
demonstration that heritable variation existed in D. serrata
CHCs through their direct response to selection (Higgie
et al. 2000). Of greater importance was that the pattern
of genetic covariances seemed to reflect developmental re-
lationships between the eight CHCs. In particular, the
block of the 3-methylalkanes that were almost perfectly
positively correlated with each other may be a consequence
of a shared biosynthetic pathway. The 2-methylalkanes
with an even number of backbone carbons are formed by
insects using the amino acid valine as the sole source of
the methyl groups (Nelson 1993).

Measurement of Sexual Selection on
Cuticular Hydrocarbons

Strong linear selection dominated the sexual selection fit-
ness surface of male CHCs, with only limited evidence for
the presence of nonlinear selection. Nonparametric visu-
alization of the two major canonical axes of the quadratic
response surface indicated that the major feature of the
fitness surface was a sloping plane. This orientation of
fitness surface suggests that females have a strong pref-
erence for an extreme male CHC blend and that male
mating success increases in a roughly linear fashion with
increasing levels of those CHCs. The CHC shown to be
under strongest linear selection was 2-Me-C28, which also
was the CHC that contributed most strongly to the fitness
peak revealed by the nonparametric visualization of the
quadratic response surface. Therefore, increasing relative

concentrations of 2-Me-C28 are implicated by both analyses
as being under strong directional sexual selection.

The shape of the fitness surface for male CHCs suggested
that female preference for male CHCs may be open-ended.
Open-ended female preferences occur when a female’s re-
sponse increases with an increase in the male trait (Kirk-
patrick 1987), resulting in preferences for extreme male
traits (Ritchie 1996). Open-ended preferences are impor-
tant in sexual selection theory because they may be more
likely to result in rapid coevolution between male traits
and female preferences since stabilizing selection on the
male trait is weak (Hall et al. 2001). Male and female CHCs
have been observed to respond rapidly to the manipulation
of sexual selection in hybrid populations (Blows 2002),
suggesting that the preferences displayed here may result
in rapid evolutionary change in this system.

Orientation of the Genetic Variance-Covariance
Matrix and the Fitness Surface

We found evidence against the coincidence between the
eigenstructure of G and g that has been predicted by quan-
titative genetic theory (Lande 1980; Cheverud 1984). This
is perhaps not surprising given that strong directional se-
lection rather than stabilizing selection is the predominant
form of sexual selection that operates on male CHCs in
this population. Suggestively, weak linear selection and
strong convex selection seemed to be associated with the
principal vector that was most similar between the two
subspaces. In addition, there was some indication that the
principal vector most different between G and g was as-
sociated with the trait under strongest linear selection.
However, a robust test of the effect of nonlinear selection
on the orientation of G will require a system in which the
fitness surface for the set of traits under consideration
displays much more curvature. In particular, a system in
which a stationary point exists within the sampled space
(i.e., the eigenvalues of g would be all negative in the case
of a stationary peak) would be the ideal system to test
Lande’s (1980) hypothesis. Therefore, the type of selection
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Figure 1: Nonparametric visualization of the fitness surface defined by the canonical axes m1 and m8. The surface has been fitted using a thin-plate
spline, the multivariate generalization of the cubic spline, using the SAS TPSPLINE procedure. The value of the smoothing parameter chosen
minimized the generalized cross-validation score. A, Three-dimensional surface displaying the predicted values of all chosen (filled circles) and
rejected (open circles) males. B, Contour plot of the same surface, with the enlarged section of the contour plot displaying the breeding values for
each sire estimated from the best linear unbiased predictor values from the linear model for a half-sib breeding design. Note how the major axis
of genetic variation (imagine the major axis through an ellipse around the breeding values) is roughly orthogonal to the slope of the fitness surface
running from the bottom corner (low fitness) to the top corner (high fitness). The Pearson’s product-moment correlation between the breeding
values is �0.823 ( ), which is reduced to �0.770 ( ) with the removal of the sire with extreme negative values of m1 and positiveP ! .001 P ! .001
values of m8.
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Table 4: Eigenvectors of S constrained to be in the
subspace of g (the V1 matrix of principal vectors)
that were compared with G

Cuticular
hydrocarbon b1 b2 b3 b4

Z,Z-5,9-C25:2 �.130 .112 .231 �.012
Z-9-C25:1 �.755 �.227 �.053 .008
Z-9-C26:1 .100 �.088 .052 �.004
2-Me-C26 .467 �.341 �.024 .030
Z,Z-5,9-C27:2 .226 .273 �.104 .015
2-Me-C28 .173 �.020 �.104 �.059
Z,Z-5,9-C29:2 .288 �.162 .130 �.009
2-Me-C30 �.001 .194 .028 .033

Note: The bi’s are listed in this table in increasing size of

the angle between the bi and the corresponding vector in the

subspace of G.

operating on the traits of interest should be used as a guide
to determine which analysis is more appropriate for a
particular system under consideration.

Directional selection, however, may have had a sub-
stantial influence on the eigenstructure of G. The vector
of directional selection gradients was unaligned with 99%
of the genetic variance in male CHCs, suggesting that the
strong, open-ended female preferences may have reduced
genetic variance in the direction of sexual selection. Such
a response of genetic variances and covariances to direc-
tional selection would require large changes in allele fre-
quencies, which would need to increase well beyond their
symmetrical frequencies to result in large reductions in
the level of genetic variance and/or covariance. Although
we have observed large increases in genetic variances as a
consequence of natural selection on mate recognition in
populations of D. serrata (Blows and Higgie 2003), we
have yet to directly observe the consequence of sexual
selection on genetic variances. Nevertheless, the genetic
variance in CHCs may be a consequence of a genetic basis
(perhaps a few genes of major effect, for example) that
may result in large changes in allele frequency under
selection.

The maintenance of genetic variance in male sexually
selected traits, particularly when those traits may be in-
dicators of fitness as in this case (Hine et al. 2002), has
been problematic for sexual selection theory (Turner 1995;
Kotiaho et al. 2001). Natural and sexual selection operating
in the same direction would be expected to decrease ge-
netic variance, at least until a cost to the expression of the
male trait causes the process to reach an equilibrium
(Fisher 1930; Kirkpatrick 1987). At least two hypotheses
have been put forward to explain the maintenance of ge-
netic variance in male sexually selected traits that predict
that genetic variance in these traits will actually increase
as a consequence of selection on the variance (Pomian-

kowski and Møller 1995) or as sexually selected traits
evolve to become condition dependent (Rowe and Houle
1996). Indeed, sexually selected traits have been reported
to display larger coefficients of genetic variation than life-
history traits (Pomiankowski and Møller 1995; Kotiaho et
al. 2001).

Our results indicate that simply relying on comparisons
of heritability or coefficients of variation across traits may
be inadequate to assess the effect of selection on levels of
genetic variation in male display traits. Heritabilities in
male CHCs were moderate in most cases (table 1), the
median coefficient of genetic variation for these traits was
13.5% (which is higher than the median level of 8% for
sexually selected traits in other species; Pomiankowski and
Møller 1995), and CHCs respond rapidly to natural se-
lection (Higgie et al. 2000), all of which suggest ample
genetic variation in this set of sexually selected traits. The
point is that virtually none of this genetic variation lies in
the direction of sexual selection. Consequently, the pre-
dicted response of male CHCs to sexual selection using
the equation and the estimates of G and b fromDz p Gb

tables 1 and 2 indicates that all males CHCs would change
by only about 1% of a phenotypic standard deviation per
generation or less. A similarly small predicted response to
sexual selection was reported by Brooks and Endler (2001)
for a set of eight color and body size traits in male guppies
that also had high coefficients of additive genetic variation
(a median of 28%, assuming an autosomal mode of in-
heritance, with a lower limit of 7% if all traits are com-
pletely Y-linked). Projection of b (Brooks and Endler 2001,
their table 6) onto the subspace defined by the first four
principal components of G (Brooks and Endler 2001, their
table 2), which explains 97% of the genetic variance in
male guppy ornaments, results in an angle between b and
the closest direction of genetic variance of 50.7�. Again,
there appears to be little genetic variation in male display
traits left in the direction of sexual selection, in spite of
the male traits displaying high levels of genetic variance.

If G does evolve in response to the form and strength
of selection operating on a set of traits, using G from extant
populations in evolutionary analyses faces at least two
problems. First, using the eigenstructure of G as a tool for
determining whether populations or species have evolved
in a particular direction as a consequence of genetic con-
straint becomes even more difficult when one considers
how G might change under selection (Arnold et al. 2001).
If G and the fitness become aligned as a consequence of
a pattern of multivariate stabilizing selection, then it will
be difficult to distinguish between the effects of G (genetic
constraint) and the fitness surface (the position of an op-
timum) on the direction that a set of populations has
evolved in. Second, many retrospective selection analyses
are interested in predicting past directional selection gra-
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dients based on estimates of G from extant populations.
If the unaligned nature of G eigenstructure and b in our
population was a consequence of past selection as we sug-
gest, a retrospective selection analysis would fail spectac-
ularly using parameters from this population, since G ei-
genstructure is likely to be a consequence of selection
rather than a fixed constraint, as these analyses assume.

The genetic basis of adaptation remains an outstanding
question in evolutionary genetics (Orr and Coyne 1992).
If many genes with equal effects underlie a set of traits,
allele frequency change as a consequence of selection is
likely to be slow because selection on each locus will be
weak compared with selection on the mean (Barton and
Turelli 1989). Alternatively, if numbers of alleles per locus
and loci per trait are moderate and the distribution of
allelic effects is skewed (Turelli 1984) or if genes with major
effects are common (Orr 1998; Agrawal et al. 2001), allele
frequencies are likely to change substantially in response
to natural and sexual selection. It is then not a question
of whether G will change under selection but how. While
direct experimental tests of changes in genetic variances
and covariances under selection can determine changes
over the short term and are still needed (Barton and Turelli
1987; Keightley and Hill 1989), associating the eigenstruc-
ture of G with that of the fitness surface may provide a
way of determining what long-term changes in G may be
generated by the processes of natural and sexual selection.
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