
The Transform Likelihood Ratio Method forRare Event Simulation with Heavy TailsD.P. KroeseDept. of Mathematis, University of Queensland, Brisbane 4072, Australia.R.Y. RubinsteinFaulty of Industrial Engineering and Management, Tehnion, Haifa, Israel.AbstratWe present a novel method, alled the transform likelihood ratio (TLR) method,for estimation of rare event probabilities with heavy-tailed distributions. Via asimple transformation (hange of variables) tehnique the TLR method reduesthe original rare event probability estimation with heavy tail distributions to anequivalent one with light tail distribution, suh as the uniform or exponentialdistribution. One this transformation has been established we estimate therare event probability via importane sampling, using the lassial exponen-tial hange of measure or the standard likelihood ratio hange of measure. Inthe latter ase the importane sampling distribution is hosen from the sameparametri family as the transformed distribution. We estimate the optimal pa-rameter vetor of the importane sampling distribution using the ross-entropymethod. We prove the polynomial omplexity of the TLR method for ertainheavy-tailed models and demonstrate numerially its high eÆieny for vari-ous heavy-tailed models previously thought to be intratable. We also showthat the TLR method an be viewed as a universal tool in the sense that notonly it provides a uni�ed view for heavy-tailed simulation but also an be eÆ-iently used in simulation with light-tailed distributions. We present extensivesimulation results whih support the eÆieny of the TLR method.Keywords. Cross-Entropy, Heavy Tail Distributions, Rare Events, Simulation,Importane Sampling, Likelihood Ratio
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1 IntrodutionThe performane of modern systems, suh as oherent reliability systems, inven-tory systems, insurane risk, storage systems, omputer networks and teleom-muniations networks, is often haraterized by probabilities of rare events andis frequently studied through simulation. However, estimation of rare eventprobabilities with rude Monte Carlo tehniques requires a prohibitively largenumbers of trials. Two methods, alled splitting/RESTART and importanesampling (IS), have been extensively investigated by the simulation ommunityin the last deade.The basi idea of splitting proposed by Kahn and Harris [20℄ is to partitionthe state-spae of the system into a series of nested subsets and to onsiderthe rare event as the intersetion of a nested sequene of events. When agiven subset is entered by a sample trajetory during the simulation, numerousrandom re-trials are generated with the initial state for eah re trial being thestate of the system at the entry point. Thus, by doing so, the system trajetoryis split into a number of new sub-trajetories, hene the name \splitting". Asimilar idea has been developed by Villen-Altamarino and Villen-Altamarino[31, 32℄ into a re�ned simulation tehnique under the name RESTART whihhas been extended by di�erent authors [9, 10, 11, 12, 13, 16, 15, 17, 27, 28℄ tothe multiple threshold ase.The main idea of IS [30, 14℄ is to make the ourrene of rare events morefrequent by arrying out the simulation under a di�erent probability distribu-tion { the so-alled hange of measure (CM) { and to estimate the probabilityof interest via a orresponding likelihood ratio (LR) estimator. The aim is toselet a CM that minimizes the variane of the LR estimator. It is well-knownthat, in theory, there exists a CM that yields a zero-variane LR estimator.However, in pratie suh an optimal CM annot be omputed sine it dependson the underlying quantity/quantities being estimated.Prominent among the CMs is the exponential hange of measure (ECM).Here, instead of the original pdf f(x), the simulation is arried out under an\exponentially twisted" pdf f�(x) =  e�xf(x), where � is alled the twisting ortilting parameter and  is a normalizing onstant. ECM often yields eÆient andsometimes \optimal" IS estimates, see for example Sadowsky [26℄ and Asmussenand Rubinstein [5℄, but is usually feasible only for relative simple models, seealso [18, 21, 29℄.An alternative approah to ECM is to use an IS pdf, say f(x;v), whihbelongs to the same parametri family as the original distribution (also alledthe nominal distribution), say f(x;u). We shall all suh an approah thestandard likelihood ratio (SLR) approah. Similar to ECM, the SLR approahtypially does not lead to the optimal zero-variane estimator, but yields signif-iant variane redution, see for instane [24℄ and below. The advantage of suhan approah is that (a) it an be applied to rather general stati and dynamimodels, and (b) the optimal referene parameter v� of the IS density f(x;v)an be derived with standard optimization tehniques.We show in this paper that the SLR approah is readily appliable to bothlight- and heavy-tailed distributions. Reall that a random variable X with2



distribution funtion F is said to have a light-tail distribution ifE esX <1; for some s > 0 :By Markov's inequality, we have E esX � E esXIfX>xg � esxP(X > x); so thatP(X > x) � e�sx  ; x � 0 ;for some onstant . In other words, X has a \tail" �F (x) = 1 � F (x) whihdeays at an exponential rate or faster. Examples of the light-tailed distribu-tions are the exponential, normal, geometri, Poisson and any distribution withbounded support. Also the Weibull distribution with inreasing failure rate,that is �F (x) = e�xa with a � 1, is a light-tail distribution.When E esX = 1 for all s > 0, X is said to have a heavy-tail distribu-tion. Examples of heavy-tail distributions are the log-normal, Rayleigh and theWeibull distribution with dereasing failure rate, that is �F (x) = e�xa ; a <1. Also any regularly varying distribution, that is �F (x) = L(x)=x�, withL(tx)=L(x) ! 1 as x ! 1 for all t > 0, is heavy-tail. A typial exampleis the Pareto distribution, whih has a tail �F (x) = (1 + x)�a; x � 0; (a;  > 0).We write X � Pareto(a; ) to indiate that X has the above distribution.A partiularly important lass of heavy-tailed distributions is that of thesub-exponential distributions. A distribution with df F on (0;1) is said to besub-exponential if, with X1;X2; : : : ;Xn a random sample from F , we havelim!1 P(X1 + � � �+Xn > )P(X1 > ) = n ; (1)for all n. Examples are the Pareto and log-normal distributions and the Weibulldistribution with dereasing failure rate. See [8℄ for additional properties of thislass of distributions.Beause by de�nition the exponential moments do not exist for heavy-taileddistributions, the exponential hange of measure is intrinsially impossible forheavy-tailed distributions when a positive twisting parameter is required. Soan alternative method must be used. Asmussen, Binswanger and H�jgaardin their landmark paper [3℄ onsider various estimators for rare events of theform fSN > xg, where SN is the random or deterministi sum of i.i.d. positiverandom variables with sub-exponential pdf, f(x) say. Two asymptoti eÆientestimators are given. The �rst one, based on Asmussen and Binswanger [2℄ usesonditional Monte Carlo [24℄ in ombination with order statistis. The seondestimator uses importane sampling, where the IS density, h(x) say, onsists oftwo parts: for small values of x, g(x) is proportional to f(x) and for large valuesof x, g(x) is muh larger than f(x), dereasing slightly faster than 1=x. Junejaand Shahabuddin [19℄ onsider a similar problem as in [3℄ and their approahis to estimate fSN > xg via IS using a density h(x) whih is obtained from theoriginal f(x) by \twisting" the hazard rate. Several variations of this idea areonsidered. Note that all the above heavy tail methods have limited appliationsine they deal basially only with the estimation of probabilities of the aboveevents fSN > xg. 3



The e�etiveness of the SLR method to rare event simulation dependsstrongly on (a) the seletion of a proper lass of IS distributions ff(�;v)g and(b) an eÆient method for determining the optimal referene parameter v�.We address (b), in this paper by using the ross-entropy (CE) method to es-timate the optimal referene parameter in any SLR proedure. The CE methodwas proposed in [22℄ an adaptive IS algorithm for rare events simulation, inwhih the referene parameter v� is estimated by minimizing the sample vari-ane of the SLR estimator. The proposed algorithm is alled the variane min-imization (VM) algorithm. In [23℄ this IS algorithm was further modi�ed tominimize, instead of the sample variane, the sample Kullbak-Leibler distane,or ross-entropy (CE) distane, between the theoretial zero-variane hange ofmeasure and the importane sampling distribution. The estimation methodthus obtained is alled the simulated ross-entropy or just the ross-entropy(CE) method.We address (a), by presenting a novel method, alled the transform like-lihood ratio (TLR) method, for onstruting eÆient IS estimators that areappliable for both light- and heavy-tail distributions. The idea is to transformthe random variables and to apply a hange of measure to the distribution ofthe transformed random variables. This simple \hange of variable" tehniqueallows us to transform an original rare event probability with heavy tail distri-butions to an equivalent (auxiliary) one with an arbitrary tail distribution, suhas the uniform or exponential distribution, and then we apply a hange of mea-sure to the new (auxiliary) distribution. We typially transform to light-taileddistributions, and then apply the ECM or the SLR method to obtain a onve-nient lass of IS distributions. Reall that in the latter ase, the IS distributionbelongs to the same parametri family as the original auxiliary one. As men-tioned before we shall use the CE method to estimate the optimal parametervetor of the (parametri) IS distribution.The goal of this paper is to show that the SLR and TLR methods broadensubstantially the appliation sope of rare event simulation, and to demon-strate their high eÆieny numerially for various heavy-tailed models previ-ously thought to be intratable. We also show that the TLR method an beviewed as an universal tool in the sense that it an be eÆiently used in light-tailed simulation as well. In a forthoming paper [4℄ the fous will be more onthe omplexity of the estimators. In partiular we will prove the polynomialomplexity of the TLR method for various sums of heavy-tailed random vari-ables and explore in more detail the asymptoti optimality of various queueingmodels, when using the SLR or TLR method. In the appendix of the presentpaper we give a diret proof of polynomial omplexity of the TLR method forthe sum of n = 2 heavy tail Weibull random variables, and we onjeture thatsimilar results hold for general n.The theoretial framework in whih one typially examines rare-event prob-ability estimation is based on omplexity theory aording to whih the ISestimators are lassi�ed either as polynomial-time or as exponential-time. Itis shown in [5, 24℄ that for an (unbiased) IS estimator, b̀(x) of `(x), to bepolynomial-time as a funtion of some x, it suÆes that its squared oeÆient4



of variation (SCV), �2(x) = Var(b̀(x))`2(x) : (2)or its relative error, �(x), be bounded in x by some polynomial funtion, p(x):For suh polynomial-time estimators, the required sample size to ahieve a�xed relative error does not grow too fast as the event beomes rarer. Beausepolynomial omplexity is not always easy to ahieve or to prove, the weakernotion of asymptoti optimality is often used, meaninglimx!1 ln E(b̀)2ln `2(x) = 1 : (3)For a detailed disussion on omplexity, see [5℄.The remainder of this paper is organized as follows. In Setion 2 we desribethe main ideas behind the SLR method. Here we also present a general adap-tive CE proedure for estimating the optimal referene parameters for the SLRmethod. It an be readily implemented if the underlying distributions have�nite support or if they belong to a natural exponential family, sine in thoseases there are analytial solutions to those optimization problems. In Setion 3we present the TLR method and its appliation to heavy-tail distributions. Weprovide several enlightening examples on the standard SLR method and itsTLR modi�ation and demonstrate analytially how the latter an outperformthe former. In Setion 4 we illustrate that seemingly di�erent implementationsof SLR and TLR may in fat be ompletely equivalent. Setion 5 deals withthe estimation of tail probabilities for the waiting time in a GI/G/1 queue withheavy-tailed servie time and/or inter-arrival time distributions. In Setion 6we demonstrate numerially the eÆieny of the TLR method for fast estima-tion of rare events for various simulation models involving light and heavy taildistributions. In the Appendix we derive the asymptoti form of the minimalvariane parameter for the TLR estimator for sum of two i.i.d. Weibull randomvariables with heavy tails, and prove polynomial omplexity.2 The SLR Method via Importane Sampling andCross EntropyIn this setion we disuss the main ideas behind the CE algorithm for rare eventsimulation following losely [7℄.Let S be a real funtion taking values in some spae X , and let X be a ran-dom element in X with pdf f(�;u) in some parametri family F = ff(�;v); v 2Vg, with respet to a ertain base measure �. Typially, X is some subset ofRn and X is a random vetor (X1; : : : ;Xn). Suppose we are interested in theprobability that S(X) is greater than or equal to some real number  { whihwe will refer to as level { under f(�;u). This probability an be expressed as` = Pu(S(X) � ) = Eu IfS(X)�g = Z IfS(x)�g f(x;v)�(dx) ;5



If this probability is very small, we all fS(X) � g a rare event.The naive way to estimate ` is to use rude Monte-Carlo (CMC) simulation:Draw a random sample X1; : : : ;XN from f(� ;u); then1N NXi=1 IfS(Xi)�gis an unbiased estimator of `. However this poses serious problems whenfS(X) � g is a rare event sine a large simulation e�ort is required in or-der to estimate ` aurately.An alternative approah is based on importane sampling: take a randomsample X1; : : : ;XN from an importane sampling (IS) density g on X , andestimate ` using the following unbiased estimatorb̀= 1N NXi=1 IfS(Xi)�gW (Xi) ; (4)where W (X) = f(X;u)=g(X) is the likelihood ratio (LR). The estimator in(4) is alled the likelihood ratio estimator.It is well known [24℄ that the optimal way to estimate ` is to use the hangeof measure with density g�(x) = IfS(x)�gf(x;u)` : (5)Namely, by using this hange of measure we have in (4)IfS(Xi)�g f(Xi;u)g�(X i) = `;for all i. Sine ` is a onstant, the estimator (4) has zero variane, and we needto produe only N = 1 sample.But, of ourse, ` in (5) is unknown, and sampling from the optimal im-portane sampling density g� is therefore problemati. Instead, onsider thesituation where the hoie of IS densities g is restrited to the same parametrifamily F ; so g di�ers from the original density f(�;u) by a single parameter(vetor) v, whih we will all the referene parameter. We will write the likeli-hood ratio in (4), with g(x) = f(x;v), asW (X;u;v) = f(X;u)f(X;v) : (6)In this ase the LR estimator b̀ in (4) beomesb̀= 1N NXi=1 IfS(Xi)�gW (Xi;u;v); (7)where X1; : : : ;XN is a random sample from f(�;v). We will all (7) the SLRestimator, in ontrast to the (non-parametri) LR estimator (4). To �nd an6



optimal v in the SLR estimator b̀ one typially onsiders [24℄ the followingvariane minimization programminv VarvIfS(X)�gW (X;u;v) : (8)Sine under f(�;v) the expetation ` = Ev IfS(X)�gW (X;u;v) is onstant,the optimal solution of (8) oinides with that ofminv V (v) = minv Ev IfS(X)�gW 2(X ;u;v) : (9)The above optimization problem an still be diÆult to solve, sine the densitywith respet to whih the expetation is omputed depends on the deisionvariable v. To overome this obstale, we rewrite (9) asminv V (v) = minv Ew IfS(X)�gW (X;u;v)W (X;u;w) : (10)Note that (10) is obtained from (9) by multiplying and dividing the integrand byf(x;w) where w is an arbitrary referene parameter. Note also that in (9) and(10) the expetation is taken with respet to the densities f(�;v) and f(�;w),respetively. Moreover, W (X;u;w) = f(X;u)=f(X ;w), and X � f(x;w).Note �nally that for the partiular ase w = u we obtain from (10)minv V (v) = minv EuIfS(X)�gW (X;u;v) : (11)We shall all eah of the equivalent problems (8) { (11), the variane minimiza-tion (VM) problem ; and we all the parameter vetor �v, that minimizes theprograms (8) { (11) the optimal VM referene parameter vetor.An alternative way to �nd a good referene parameter vetor for b̀is based onKullbak-Leibler ross-entropy method. Aording to the ross-entropy methodone an hoose the tilting parameter vetor v suh that the \distane" betweeng� above and the density f(�;v) is minimal. The Kullbak-Leibler distanebetween g and h is de�ned as:D(g; h) = Eg ln g(X)h(X) = Z g(x) ln g(x)�(dx)� Z g(x) lnh(x)�(dx) : (12)So, minimizing the Kullbak-Leibler distane between g� in (5) and f(�;v)is equivalent to hoosing v suh that � R g�(x) ln f(x;v)�(dx) is minimized,or equivalently, that R g�(x) ln f(x;v)�(dx) is maximized. Formally we writemaxv D(v) = maxv Z g�(x) ln f(x;v)�(dx) : (13)Substituting g� from (5) into (13) we obtain the following optimization programmaxv D(v) = maxv Z IfS(x)�gf(x;u)` ln f(x;v)�(dx)= maxv Eu IfS(X)�g ln f(X;v) : (14)7



Using again importane sampling, with a hange of measure f(�;w), we anrewrite (14) asmaxv D(v) = maxv Ew IfS(X)�gW (X;u;w) ln f(X;v); (15)for any tilting parameter w. The optimal solution of (15) an be written asv� = argmaxv Ew IfS(X)�gW (X;u;w) ln f(X;v): (16)We may estimate v� by solving the following stohasti program (also alledstohasti ounterpart of (15))maxv bD(v) = maxv 1N NXi=1 IfS(Xi)�gW (Xi;u;w) ln f(Xi;v) ; (17)where X1; : : : ;XN is a random sample from f(�;w). The solution of (17)may be readily obtained by solving (with respet to v) the following system ofequations: 1N NXi=1 IfS(Xi)�gW (X i;u;w)r ln f(Xi;v) = 0; (18)where the gradient is with respet to v. This, of ourse, provided that theexpetation and di�erentiation operators an be interhanged (see [25℄) andthe funtion bD in (17) is onvex and di�erentiable with respet to v. We notethat for any �xed x the funtionv 7! r ln f(x;v) (19)is the so-alled sore funtion. The random variable r ln f(X;v) with X �f(�;v) is alled the eÆient sore.The advantage of this approah is that the solution of (18) an often bealulated analytially. In partiular, this happens if the distributions of therandom variables has a disrete distribution or belong to a natural exponentialfamily (NEF). For further details see [7℄. It is shown in [7℄ that asymptotiallyin  the optimal tilting parameter vetors obtained from VM and CE programseither oinide or di�er very little. So, if not stated otherwise we shall useheneforth the CE program only.Note that the CE program (17) is useful only in the ase where the prob-ability of the \target event" fS(X) � g is not too small, say ` � 10�5. Insuh ases, the above program might be useful in terms of determining iter-atively a potentially more aurate estimator. In rare-event ontext, however(say, ` � 10�6), the program (17) is useless, sine owing to the rarity of theevents fS(X i) � g, the random variables IfS(Xi)�g; i = 1; : : : ; N and theassoiated derivatives of bD(v), as given in the right-hand side of (18), vanishwith high probability for reasonable sizes of N .8



To overome this diÆulty, we desribe now a multi-level algorithm. Theidea is to introdue a sequene of referene parameters fvt; t � 0g and a se-quene of levels ft; t � 1g, and iterate in both t and vt (see Algorithm 2.1below).We initialize by hoosing a not very small �, say � = 10�2 and by de�ningv0 = u. Next, we let 1 (1 < ) be suh that, under the original densityf(x;u), the probability `1 = EuIfS(X)�1g is at least �. We then let v1 be theoptimal CE referene parameter for estimating `1, and repeat the last two stepsiteratively with the goal of estimating the pair f`;v�g. In other words, eahiteration of the algorithm onsists of two main phases.In the �rst phase t is updated, in the seond vt is updated. Spei�ally,starting with v0 = u we obtain the subsequent t and vt as follows:1. Adaptive updating of t. For a �xed vt�1, let t be a (1� �)-quantileof S(X) under vt�1. That is, t satis�esPvt�1(S(X) � t) � �; (20)Pvt�1(S(X) � t) � 1� �; (21)where X � f(�;vt�1).A simple estimator bt of t an be obtained by drawing a random sampleX1; : : : ;XN from f(�;vt�1), alulating the performanes S(X i) for alli, ordering them from smallest to biggest: S(1) � : : : � S(N) and �nally,evaluating the (1� �) sample quantile asbt = S(d(1��)Ne): (22)Note that S(j) is alled the j-th order-statisti of the sequene S(X1),: : : ; S(XN ). Note also that bt is hosen suh that the event fS(X) � btgis not too rare (it has a probability of around �), and therefore updat-ing the referene parameter via a proedure suh as (22) is not void ofmeaning.2. Adaptive updating of vt. For �xed t and vt�1, derive vt from thesolution of the following CE programmaxv D(v) = maxv Ev t�1IfS(X)�tgW (x;u;vt�1) ln f(X;v) : (23)The stohasti ounterpart of (23) is as follows: for �xed bt and bvt�1,derive bvt from the solution of following programmaxv bD(v) = maxv 1N NXi=1 IfS(Xi)�btgW (Xi;u; bvt�1) ln f(Xi;v) : (24)Thus, at the �rst iteration, starting with bv0 = u, to get a good estimate forbv1, the target event is arti�ially made less rare by (temporarily) using a levelb1 whih is hosen smaller than . The value for bv1 obtained in this way will(hopefully) make the event fS(X) � g less rare in the next iteration, so in the9



next iteration a value b2 an be used whih is loser to  itself. The algorithmterminates when at some iteration t = T a level is reahed whih is at least and thus the original value of  an be used without getting too few samples.As mentioned before, the optimal solutions of (23) and (24) an often beobtained analytially, in partiular when f(x;v) belongs to a NEF.The above rationale results in the following algorithm (see [7℄):Algorithm 2.1 (Main CE Algorithm for Rare Event Simulation)1. De�ne bv0 = u. Set t = 1 (iteration = level ounter).2. Generate a sample X1; : : : ;XN from the density f(�;vt�1) and omputethe sample (1� �)-quantile bt aording to (22), provided bt is less than. Otherwise set bt = .3. Use the same sample X1; : : : ;XN to solve the stohasti program (24).Denote the solution by bvt.4. If bt < , set t = t+ 1 and reiterate from step 2. Else proeed with step5.5. Estimate the rare-event probability ` using the SLR estimateb̀= 1N NXi=1 IfS(Xi)�gW (Xi;u; bvT ); (25)where T denotes the �nal number of iterations (= number of levels used).Remark 2.1 In typial appliations the sample size N in step 2 an be hosenmuh smaller than the �nal sample size in step 5. When we need to distin-guish between the two sample sizes, in partiular when reporting numerialexperiments, we will use the notation N and N1 for step 2 and 5, respetively.Remark 2.2 To obtain a more aurate estimate of v� it is sometimes useful,espeially when the sample size is relatively small, to repeat steps 2{4 for anumber of additional iterations after level  has been reahed.We shall all Algorithm 2.1 the CE algorithm with the standard likelihoodratio (SLR). The onvergene of Algorithm 2.1 is given in [7℄.Example 2.1 ((Natural) Exponential Family) LetX be a random vetorwith density f(�;�), where � = (�1; : : : ; �m)0 is an m-dimensional parameterolumn vetor. X is said to belong to an m-parameter exponential familyif there exist real-valued funtions ti(x) and h(x) > 0 and a (normalizing)funtion (�) > 0, suh thatf(x;�) = (�) e��t(x) h(x) ; (26)10



where t(x) = (t1(y); : : : ; tm(y))0 and � � t(x) denotes the inner produt. Theorresponding sore funtion (19) is given byr ln f(x;�) = r(�)(�) + t(x) ;so that the solution to the CE program (23) (with � instead of u, and � insteadof v) follows fromE� t�1IfS(X)�tgW (X;u;�t�1)�r(�)(�) + t(X)� = 0; (27)where the likelihood ratio is given byW (X;�;�) = (�)(�) e(���)�t(X) :Equation (27) an often be solved analytially. It is interesting to note thatseond moment of eah term I(X)W (X) = IfS(X)�gW (X;�;�) of the SLRestimator (7) an be expressed (see for example (5.3.33) of [24℄) asE� (I(X)W (X))2 = E� I(X)W (X)= Z I(x) (�)(�) e(���)�t(X) (�)e��t(x) h(x)�(dx)= 2(�)(�) Z I(x)e(2���)�t(X) h(x)�(dx)= 2(�)(�)(2� � �)E2���I(X)= E�W 2 E 2���I(X) : (28)
Now let us turn to an important speial one-dimensional ase. Spei�ally,let X be a random variable from an exponential family (26) with t(x) = x. Xis said to belong to a natural exponential family (NEF) that is parameterizedby the mean if the density of X belongs a lass ff(x; v)g withf(x; v) = ex�(v)��(�(v)) h(x) ;where v is the mean (expetation) orresponding to f(�; v). Note that if h(x)is a pdf, then � is the orresponding umulant funtion:�(s) = lnZ esxh(x);and f(�; v) is obtained from h by an exponential hange of measure with twistingparameter �(v). Let X � f(x;u) for some nominal referene parameter u. Then[7℄, the maximizer v� of (23) is given byv� = EuIfS(X)�gXEu IfS(X)�g = EwW (X;u;w) IfS(X)�g XEwIfS(X)�gW (X;u;w) ; (29)11



for any referene parameter w.The estimator bv of v� in (29) an be obtained analytially from the solutionof the stohasti program (23), that is,bv = PNi=1 IfS(Xi)�gW (Xi;u;w)XiPNi=1 IfS(Xi)�gW (Xi;u;w) (30)where X1; : : : ;XN is a random sample from the density f(�;w).A similar expliit formula an be found for the ase where X = (X1; : : : ;Xn) is a vetor of independent random variables suh that eah omponent Xjbelongs to a NEF parameterized by the mean. In partiular, if u = (u1; : : : ; un)is the nominal referene parameter, then for eah j = 1; : : : ; n the density ofXj is given by fj(x;uj) = ex�(uj )��(�(uj )) hj(x):It is not diÆult to see that under independene assumption the problem (23)beomes \separable", that is, it redues to n subproblems. Thus, the optimalreferene parameter vetor v� = (v�1 ; : : : ; v�n) is given byv�j = EuIfS(X)�gXjEu IfS(X)�g = EwIfS(X)�gW (X;u;w)XjEwIfS(X)�gW (X ;u;w) : (31)Moreover, we an estimate the jth omponent of v� asbvj = PNi=1 IfS(X)�gW (Xi;u;w)XijPNi=1 IfS(X)�gW (Xi;u;w) ; (32)whereX1; : : : ;XN is a random sample from the density f(�;w), and Xij is thejth omponent of X i.2.1 ExamplesFor better insight we present now two examples with both light and heavytails while using Algorithm 2.1 with the standard likelihood ratio. Althoughthe quantities of interest an be omputed analytially, we present them toillustrate the Algorithm 2.1. It is important to realize that in both exampleswe obtain the optimal referene parameter for the SLR estimator via the ross-entropy optimization, via expliit formulas suh as (29). On the other hand, inorder to study the omplexity properties of the SLR estimator we derive theSCV of the estimator via formulas of type (28) for exponential families.Example 2.2 Suppose we are interested in estimating ` = `() = P(S(X) �); where S(X) = min(X1; : : : ;Xn) (33)
12



and the random variables X1; : : : ;Xn are exponentially identially distributedwith mean u; thus eah Xi has density f(�;u) = u�1 exp(�xu�1); x � 0. Obvi-ously, ` = nYi=1 P(Xi � ) = e�nu�1 : (34)For large , the squared oeÆient of variation (SCV) of the rude Monte Carlo(CMC) estimator (see (2)) is �2() � 1N enu�1 :Hene the CMC estimator has exponential omplexity in . It is easy to verifyfrom (28) that for i.i.d. and exponentially distributed random variables Xi, wehave that EuIfS(X)�gW (X;u; v) = � v2u(2v � u)�n E uv2v�u IfS(X)�g : (35)It follows that the variane of the estimator (25) isVar(b̀) = 1N �EuIfmin(X1;::: ;Xn)�gW (X;u; v) � `2	= 1N �� v2u(2v � u)�n E uv2v�u Ifmin(X1;::: ;Xn)�g � `2�= 1N �� v2u(2v � u)�n e�n(2u�1�v�1) � `2�= 1N ( v2ev�1)u(2v � u)!n `2 � `2) :Consequently, the SCV of b̀ is given by�2(v; ) = 1N ( v2ev�1)u(2v � u)!n � 1)Sine the exponential distribution belongs to a NEF whih is parameterizedby the mean, we an apply formula (29) diretly and obtain that the optimalreferene parameter is given by v� = u+  :For large  � u we have that v� � , and the SCV beomes�2() � 1N nen(2u)�n; (36)where N is the sample size. That is, for large ; the SCV �2() of the CMCand of the SLR estimators (with the CE optimal parameter v� � ) inrease in exponentially and polynomially, respetively. In other words, the CMC andthe SLR estimators an be viewed as exponential and polynomial ones.13



Example 2.3 (Heavy tails) As mentioned earlier, unlike the ECM the SLRestimate (25) is not limited to light-tail distributions but an also be applied toheavy-tail distributions. To illustrate this, we generalize Example 2.2 for n = 1to the Weibull ase. Spei�ally, onsider the estimation of ` = P(X � ) withX �Weib(a; u�1), that is, X has densityf(x;u) = au�1 �u�1 x�a�1 e� (u�1 x)a ; x > 0 : (37)To estimate ` via the CE method we shall use the family of distributionsfWeib(a; v�1); v > 0g, where a is kept �xed. Note that for a = 1 we havethe exponential lass of distributions.Using the CE approah, we �nd the optimal CE referene parameter bysolving maxv D(v) = maxv Z 1 f(x;u) ln f(x; v) dx;or, equivalently, by solvingZ 1 f(x;u) ddv ln f(x; v) dx = 0 : (38)Substituting (37) into (38) yields the following simple expression for the optimalCE referene parameter v�: v� = (ua + a)1=a : (39)This is true for any a > 0. Note that fWeib(a; v�1); v > 0g is an exponentialfamily of the form (26), with t(x) = xa, � = �v�a, (�) = �� and h(x) = axa�1.So we an obtain (39) also via (27) as the solution toE �IfX�g�1� +Xa� = 0 ; (40)with � = �u�a.Similar to Example 2.2 and (28) the variane of the SLR estimator b̀for anyreferene parameter v is found (after some algebra) to beVar(b̀) = 1N �EuIfX�gW (X;u; v) � `2	= 1N ( e(=v)a(u=v)a[2� (u=v)a℄ `2 � `2) ;where we have used the fat that ` = e�(=u)a . If we substitute v above with v�and divide by `2, we �nd that the SCV �2 of b̀ is given by1N 8<:exp� (=u)a1+(=u)a� (1 + (=u)a)22(=u)a + 1 9=; :14



It follows that for large =u �2 � 1N e2 �u�a :In other words, the SLR estimator b̀has polynomial omplexity in , for anya > 0, inluding the heavy-tail ase 0 < a < 1. It is a ommon misunderstand-ing that IS only works for light-tail distributions. In this example we saw thatpolynomial omplexity an be easily obtained by using the CE method. Butwe an do even better! In Setion 3 we will see how with the TLR method wean in fat ahieve an SLR estimator with bounded relative error, meaning thatthe �2 is bounded by =N for some onstant  whih does not depend on .Remark 2.1 Consider (24). Assume that the Xi's are independent and Xi �Weib(ai; u�1i ); i = 1; : : : ; n. It is readily seen that for �xed ai; i = 1; : : : ; n,program (24) an be solved analytially, and the omponents of bv = (bv1; : : : ; bvn)in Weibull pdf an be updated asbvt;j =  PNk=1 IfS(Xk)�btgW (Xk;u; bvt�1;j)XakPNk=1 IfS(Xk)�btgW (Xk;u; bvt�1;j) !1=a : (41)A di�erent parameterization of the Weibull distribution gives an even sim-pler formula. Namely, if we use the hange of measureXn �Weib(a; u�1=a) �!Weib(a; v�1=a) ; v � u ;thus, f(x; v) = a v�1 xa�1 e�v�1xa :Then the v-parameters are updated asbvt;j = PNk=1 IfS(Xk)�btgW (Xk;u; bvt�1;j)XakPNk=1 IfS(Xk)�btgW (Xk;u; bvt�1;j) : (42)Remark 2.2 (Two-parameter update) For the Weibull distribution it isnot diÆult to formulate a two-parameter updating proedure in whih bothsale and shape parameter are updated. Spei�ally, onsider the hange ofmeasure Xi �Weib(ai; u�1=aii ) �!Weib(bi; v�1=bii ); vi > 0; bi > 0 :The updating formula for the vi is given in (42), but an analyti updating ofthe parameter vetor b = (b1; : : : ; bn) is not available from (23). However, thegradient of bD(b;v) with respet to b an be easily obtained from the gradientrb ln f(X; b;v). It is readily seen that the ith omponent of rb ln f(X; b;v)15



for the random vetor X with independent omponents Xi � Weib(bi; bv�1=bii );i = 1; : : : ; n equals b�1i + lnXi � Xbiibvi lnXi: (43)Consequently, the i-th omponent of b an be obtained from the numerialsolution of the following nonlinear equation1N NXk=1 IkWk(b�1i + lnXki � Xbikibvi lnXki) = 0: (44)Substituting bvi from (42), into (44) we obtainb�1i + PNk=1 IkWk lnXkiPNk=1 IkWk � PNk=1 IkWkXbiki lnXkiPNk=1 IkWkXbiki = 0: (45)One might solve (45) using the bisetion method, say.Remark 2.3 (Hazard rate twisting) It is interesting to note that hazardrate twisting [19℄ often amounts to SLR. In hazard rate twisting the hangeof measure for some distribution with pdf f (with support in R+) and taildistribution funtion �F is suh that the hazard rate (or failure rate) �(x) =f(x)= �F (x) is hanged to (1 � �)�(x), for some 0 � � < 1. The pdf of thehanged measure is nowf�(x) = �(x)(1 � �) e�(1��)�(x);where �(x) = R x0 �(y) dy. In partiular, for the Weib(a; u�1) distribution wehave �(x) = au�1(u�1x)a and �(x) = (u�1x)a, so thatf�(x) = (1� �)au�1(u�1x)a�1e�(1��)(u�1x)a ;whih orresponds to the SLR hange of measureWeib(a; u�1) �!Weib(a; v�1),with v�1 = (1 � �)1=au�1. Similarly, for the Pareto(a; u�1) distribution, with�F (x) = (1 + x=u)�(a+1), we have �(x) = au�1(1 + u�1x)�1 and �(x) =a ln(1 + u�1x), so thatf�(x) = (1� �)au�1(1 + u�1x)�((1��)a+1);so that hazard rate twisting with parameter � orresponds to the SLR hangeof measure Pareto(a; u�1) �! Pareto(b; u�1) with b = (1 � �)a. Note that inthe Weibull ase the the sale parameter u�1 is hanged whereas in the seondase the shape parameter a is hanged.3 The TLR MethodIn this setion we present the transform likelihood ratio (TLR) method as asimple, onvenient and unifying way of onstruting eÆient IS estimators thatare appliable for both light- and heavy-tailed distributions.16



Let X be a random vetor. Suppose we wish to estimate` = EIfS(X )�g :The TLR method omprises two steps. The �rst is a simple hange of variablestep. That is, we writeX as a funtion of another random vetor Z, for exampleX = H(Z) : (46)If we de�ne eS(Z) = S(H(Z));then ` = EIfeS (Z)�g :Suppose Z has density h(�;�) in some lass of densities fh(�;�)g. Then we anseek to estimate ` eÆiently via IS using either the SLR method (staying in thesame parametri lass) or ECM. The parameter updating an again be donevia the CE method. In partiular, when using the SLR method we obtain inanalogy to (25) the estimatorb̀= 1N NXi=1 IfeS(Zi;�)�gfW (Zi;�;�); (47)where fW (Zi;�;�) = h(Zi;�)h(Zi;�)and Zi � h(z;�). We shall all the SLR estimate (47) based on the transfor-mation (46), the transform LR (TLR) estimate.To �nd the optimal parameter vetor �� of the TLR estimator (47) we ansolve in analogy to (23) the following CE programmax� D(�) = max� E� t�1IfeS(Z;�t�1)�tgfW (Z;�;�t�1) lnh(Z ;�) (48)and similarly for the stohasti ounterpart of (48). For example, h(z;�) mightbe any light tail NEF pdf, (and thus, the optimal referene parameter vetor�� ould be obtained analytially from the stohasti version (ounterpart) of(48)), or h(z;�) might be a trunated version of the original pdf f(x), denotedas ef(x; ); where the trunation parameter  ould be ontrollable as well.It is ruial to understand that in ontrast to the SLR estimate (25), its TLRounterpart (47) involves an additional stage, namely it uses the transformationstage (46). As result, the TLR estimate (47) presents a three-stage proedurerather then on a two-stage one (see (25)). Note that the three-stages of TLRare assoiated with1. Transformation from the original pdf f to an auxiliary one h.17



2. Updating the parameter vetor � (at eah iteration of Algorithm 2.1)using the stohasti ounterpart of (48).3. Estimating ` aording to (47) with � replaed by b��, whih presents thesolution obtained from Algorithm 2.1 at stage two.the transformation stage (46) an exponential pdf is used.Example 3.1 (Inverse Transform Likelihood Ratio)Consider the single-dimensional ase. Aording to the inverse transform (IT)method a random variable X � F (x) an be written asX = F�1(Z); (49)where Z � U(0; 1) and F�1 is the inverse of the df F .Let h(�; �) be another density on (0; 1) dominating the uniform density, andparameterized by some referene parameter �. An example is the Beta(�; 1)-distribution, with densityh(z; �) = � z��1; z 2 (0; 1) ;with � > 0 or the Beta(1; �)-distribution, with densityh(z; �) = � (1� z)��1; z 2 (0; 1) :The TLR estimator is given byb̀= N�1 NXi=1 IfeS(Zi)�gfW (Zi; �) ; (50)where Z1; : : : ; ZN is a random sample from h(�; �) andfW (Z; �) = 1h(Z; �) (51)is the LR. We all (50) the inverse transform - likelihood ratio (ITLR) estimator[22℄.Consider next the multivariate ase where the omponents ofX = (X1; : : : ;Xn) are independent and Xi � F (�;ui) for a �xed parameter vetor u =(u1; : : : ; un). In analogy with the univariate ase we wish to estimate, forsome performane funtion S,` = EIfS(X )�g = EIfeS (Z)�g ;where eS(Z) = S(F�1(Z1;u1); : : : ; F�1(Zn;un)), Z = (Z1; : : : ; Zn), and Zj ; j =1; : : : ; n are i.i.d. and uniformly distributed on (0,1).Let h(�;�) be another density on (0; 1)n dominating the uniform density, andparameterized by some referene parameter vetor �. For example, we ould18



hoose h suh that the Zi's are independent with a Beta(1; �i)-distribution, inwhih ase h(z;�) = nYi=1 �i (1� zi)�i�1; z 2 (0; 1)n; (52)with � = (�1; : : : ; �n). As in the univariate ase we have the ITLR estimatorb̀= N�1 NXi=1 IfeS(Zi)�gfW (Zi;�) ; (53)respetively, where Z1; : : : ;ZN is a random sample from h(�;�) andfW (Z;�) = 1h(Z ;�) : (54)Note that Algorithm 2.1 remains the same for the ITLR approah, providedthe CE programs (23) and (24) are replaed bymax� D(�) = max� E� t�1IfeS(Z)�tgfW (Z;�t�1) lnh(Z;�); (55)and max� bD(�) = max� 1N NXi=1 IfeS(Zi)�btgfW (Zi; b�t�1) lnh(Zi;�); (56)respetively, where Zi � h(�; b� t�1) :In partiular, for the ase (52) where the Zi's are independent and Zi �Beta(1; �i), i = 1; : : : ; n (56) an be solved analytially, and it is not diÆultto see that the omponents of � = (�1; : : : ; �n) are updated asb�t;j = � NXi=1 IfeS(Zi)�btgfW (Zi; b�t�1)NXi=1 IfeS(Zi)�btgfW (Zi; b�t�1) ln(1� Zij) ; (57)where Zij is the j-th omponent of Zi.The following example shows that (I)TLR an lead to a more eÆient esti-mator than the SLR method.Example 3.2 (Example 2.2 ontinued) Suppose, as in Example 2.2, thatwe are interested in estimating ` = P(S(X) � ); whereS(X) = min(X1; : : : ;Xn); X1; : : : ;Xn � Exp(u�1) : (58)In this ase we an writeXi = �u ln(1� Zi) ; i = 1; : : : ; n ; (59)19



where Zi � U(0; 1); i = 1; : : : ; n and Z1; : : : ; Zn independent. We haveeS(Z) = mini (�u ln(1� Zi)) = �u ln(1�mini Zi) ;so that ` = P(eS(Z) � ) = P(mini Zi � 1� �);with � = e�u�1 .Let h(z; �) = Qni=1 �z��1i ; � > 0 be the dominating density on Un(0; 1) forZ. Note that (by symmetry) we hoose all omponent pdfs the same, this inontrast to (52). To �nd the optimal � we need to solve the CE program (55),whih for this ase redues tomax�>0 D(�) = max�>0 EIfeS (Z)�1��g nXi=1(ln � + (� � 1) lnZi)Equating the gradient with respet to � to 0 gives�� = � nEIfeS (Z)�1��gEIfeS (Z)�1��g lnZi= � n�nn�n�1 R 1��1 ln z dz = �ln(1� �)(1 � �) + � :It follows that for small � we have �� � 2� : (60)To �nd the asymptoti SCV �2 we need to �nd �st the variane of the ITLRestimator b̀. Let V (�) be the seond moment of IfeS(Z)�gfW (Z; 1; �). We haveV (�) = E� 8<: nYi=1 IfZi�1��g!2 � � 1h(Z; �)�29=;= �E � nIfZ�1��g ��Z��1��2o�n= 0�1� 1Z1�� z1��dz1An
=  �1� (1� �)2����(2� �) !n : (61)From (61) and (60) we have for small �V (��) � � �2�12� 2��1 [1� (1� �)2�2��1 ℄�n :20



So that, for small � V (��) � (e2 � 1)n4n �2n :For ` we have ` = nYi=1P(Zi � 1� �) = 0� 1Z1�� 1dz1An = �n ;Finally, N � �2 = V (��)`2 � 1 � �e2 � 14 �n � 1: (62)Note that �2 in (62) does not depend on � and therefore neither on .Consequently, the orresponding estimators are of bounded relative error in .Comparing (62) with N��2 = nen(2u)�n = (� ln �)n(e=2)n in (36), it readilyfollows that the former (ITLR) is muh faster than the latter (SLR), espeiallywhen  is large.The following proposition illustrates the usefulness of ITLR for estimatingsmall probabilities, for any distribution. In the results below the uni-variateITLR method is used with a Beta(�; 1) hange of measure. It is important torealize that this CM may not be appropriate for similar problems onerningmulti-variate random variables. Indeed the Beta(�; 1) CM may give exponentialomplexity, whereas a Beta(1; �) CM ould give polynomial omplexity.Proposition 3.1 Let X be distributed as L(1�Z), with Z � U(0; 1), for somemonotone inreasing funtion L on (0; 1). Then, estimating ` = P(X � ) viaITLR using the fBeta(�; 1); � > 0g family of distributions gives an LR estimatorwith bounded relative error.Proof. The proof uses similar arguments to the ones used in Example 3.2.First, we write ` = P(X � ) as ` = P(Z � 1 � �), with � = L�1(). Hene, ifwe estimate ` via the IS densityh(z; �) = �z��1; (63)then the optimal CE parameter is given, analogously to (60), by�� = �� + (1� �) ln(1� �) � 2� ;as � ! 0. Moreover, the orresponding SCV satis�esN � �2 � e2 � 14 � 1 � 0:597264 : (64)Note that this is independent of � (and hene ). Thus, the estimator is ofbounded relative error. 21



Example 3.3 (Example 2.3 ontinued) Let X �Weib(a; u�1). That is, Xhas df F given by F (x) = 1� e�(u�1x)a ; x � 0 :We wish to estimate ` = P(X � ) = e�(u�1)a for large . UsingL(z) = u (� ln z) 1a ; z 2 (0; 1);we an write ` = P(Z � 1 � �), with Z � U(0; 1) and � = e�(u�1)a . Hene,by Proposition 3.1 we an eÆiently estimate ` via ITLR using the Beta(�; 1)density, yielding an SLR estimator with bounded relative error given in (64).Note that this is true for any shape parameter a > 0, inluding the heavy-tailase 0 < a < 1.4 Equivalene between SLR and TLRAs we have seen the TLR method an be viewed as a generalization of theSLR method, involving an additional transformation step. In this setion weillustrate that seemingly di�erent implementations of SLR and (I)TLR may infat be ompletely equivalent.Let X1;X2; : : : ;Xn be i.i.d. Weib(a; u�1) distributed and onsider the esti-mation of a general rare event probability` = P(S(X) � )for large  using importane sampling. We onsider three methods.(1) SLR with Weib(a; v�1) twisting, �xed aThe �rst method is a straightforward hange of the Weibull sale parameter, asin Example 2.3. In partiular, we onsider the hange of measureXn �Weib(a; u�1) �!Weib(a; v�1) ; v � u :Note that the problem is of the form disussed in Remark 2.1; but by symmetrywe know that the omponents of the referene vetor must be equal. This leadsto slightly di�erent updating formulas, namely:bvt =  PNk=1 IfS(Xk)�btgW (Xk;u; bvt�1)n�1Pni=1XakiPNk=1 IfS(Xk)�btgW (Xk;u; bvt�1) !1=a : (65)(2) ITLR with Beta(1; �) twistingIn the seond method we estimate ` via the ITLR method. First, write Xi �Weib(a; u�1) as Xi = u (� ln(1� Zi))1=a ;22



with the Zi i.i.d. U(0; 1) = Beta(1; 1). We now apply a hange of measure onthe distribution of Zi:Zi � Beta(1; 1) �! Beta(1; �) 0 < � � 1 :De�ne eS(Z) = S(X). The CE updating formula is, similar to (57),b�t = � NXi=1 IfeS(Zi)�btgfW (Zi; 1; b�t�1)NXi=1 IfeS(Zi)�btgfW (Zi; 1; b�t�1)n�1 nXj=1 ln(1� Zij) ; (66)where Zij is the j-th omponent of Zi.It is interesting to ompare the present ITLR method with the previousWeibull hange of measure. Sine, Zi an be written as Zi = 1 � (1 � Ui)1=� ,with Ui � U(0; 1), we haveXi = u�� ln�f1� Uig1=���1=a= u�1=a (� ln (1� Ui))1=a ;so that under the hange of measure Zi � Beta(1; 1) �! Beta(1; �) we havethat Xi � Weib(a; u�1�1=a). Let us ompare the behavior of the SLR andITLR estimators for v = u��1=a. First of all, observe thatW (X;u; v) = nYi=1 au�1(u�1Xi)a�1e�(u�1Xi)aav�1(v�1Xi)a�1e�(v�1Xi)a= nYi=1 1� (1� Zi)��1 = fW (Z; 1; �) :This shows thatNXi=1 IfS(Xi)�gW (Xi;u; v) = NXi=1 IfeS(Zi)�gfW (Zi; 1; �) :In other words, the SLR estimator is idential to the ITLR estimator, providedwe take v = u ��1=a. Note also that, in the same way, the CE updating formulasand their deterministi ounterparts are equivalent, in the sense that bvt =u(b�t)�1=a and vt = u(�t)�1=a.(3) TLR with Exp(�) twistingLet us �nally apply the TLR method with an \exponential hange of measure".We now write Xi �Weib(a; u�1) asXi = uZ1=ai ;23



with the Zi i.i.d. Exp(1), and apply the hange of measureZi � Exp(1) �! Exp(�); 0 < � � 1 :With eS(Z) = S(X) the CE updating formula is given byb�t = NXi=1 IfeS(Zi)�btgfW (Zi; 1; b�t�1)NXi=1 IfeS(Zi)�btgfW (Zi; 1; b�t�1)n�1 nXj=1 Zij ; (67)where Zij is the j-th omponent of Zi.Sine, Zi an be written as Zi = ��1 ln(1� Ui), with Ui � U(0; 1), we haveXi = u��1=a ln(1� Ui)1=aso that under this hange of measure Xi � Weib(a; u�1�1=a). Repeating thearguments of the ITLR method above, we �nd that this approah is equivalentto the two methods above, provided that we take � = � = (u=v)a.Remark 4.1 (Sum of independent random variables) The speial asewhere S(X) = X1 + � � � + Xn, where the Xi are i.i.d. with a sub-exponentialdistribution was studied in both [3℄ and [19℄ via various methods, as explainedin the introdution. In partiular for the heavy tail Weibull ase [19℄ proved(see their Theorem 3.2) that the hange of measureXi �Weib(a; 1) �!Weib(a; �1=a) (68)provides a asymptotially optimal estimator, in the sense of (3), when we hoose� =  �a; (69)no matter how  is hosen. On the other hand [3℄ proposed an importanesampling distribution independent of  whih is onsistent with the fat that� ! 0. In the appendix of this paper we prove for the ase n = 2 the somewhatstronger result that the estimator is in fat polynomial and that the varianeof the estimator is minimized for  = 2; we onjeture that for general n thevariane minimal (VM) parameter is�� = n�a :In a forthoming paper [4℄ it is proved that for large  the optimal CE pa-rameter, �� say, is indeed given by �� above. More preisely, we show thatasymptotially �� = n1 + a : (70)Similar results are obtained for the Pareto distribution. Moreover, in that paperwe further explore the omplexity properties of the SLR estimators applied tovarious queueing models and provide numerial omparisons with other meth-ods. 24



5 Stationary waiting time of the GI/G/1 queueConsider a stable GI/G/1 queue starting with ustomer n = 1 arriving at anempty system. Let the inter-arrival time between ustomer n and n + 1 bedenoted by An � fA, n = 1; 2; : : : and let the servie time of ustomer n bedenoted by Bn � fB. We assume that all the servie and inter-arrival timesare independent. Let Sn denote the atual waiting time of the nth ustomer;hene, by de�nition S1 = 0. The stohasti proess fSn; n � 1g satis�es theelebrated Lindley equation (see for example [1℄)Sn+1 = (Sn +Xn)+;with Xn = Bn � An, i = 1; 2 : : : . For a stable system the random variablesfSng onverge in distribution to the steady-state waiting time, S say.We are interested in estimating ` = P(S � ) via importane sampling. Weonsider two methods.The regenerative methodUsing the regenerative method, see for example [24℄, we an write` = EP�n=1 IfSn�gE � ; (71)where � is the number of ustomers during the �rst busy period, that is� = inffn > 1 : Sn = 0g � 1 :De�ne � as � = inffn > 1 : Sn � g;In other words, � is the �rst time that the proess fSng exeeds level , if atall. Consider now the following swithing hange of measure [24℄.An � fA �! efA and Bn � fB �! efB ; for n = 1; : : : ;min(�; �) :In other words, the IS distribution hanges dynamially within the yles. Inpartiular, we initially use the IS densities efA and efB for the inter-arrival andservie times until the proess fSng exeeds level ; after whih we swith bakto the original densities, see [24℄, hapter 9. By doing so the proess fSngnaturally returns to the regenerative state.Under this hange of measure the likelihood ratio of a sampleA1; : : : ; An; B1;: : : ; Bn satis�esWn = 8><>:Wn�1 fA(An)fB(Bn)efA(An) efB(Bn) ; n � min(�; �)W� ; n � min(�; �) : (72)25



From [24℄, we an write` = EW� P�n=1 IfSn�gE � = EP�n=1 IfSn�gWnE � : (73)Note that the denominator of (73) an be easily estimated via CMC (no hangeof measure here). The numerator of (73) (num) an be estimated asdnum = 1N NXi=1 �iXn=1 IfSin�gWin ; (74)where, Sin and Win are the waiting time of the nth ustomer and the orre-sponding likelihood ratio, for iteration i.Now onsider the speial ase A1; A2; : : : �Weib(a1; u�11 ) and B1; B2; : : : �Weib(a2; u�12 ). Using the TLR method, we may writeXn = u2 �Z(2)n �1=a2 � u1 �Z(1)n �1=a1 ;with Z(k)n � Exp(1), k = 1; 2, n = 1; 2; : : : , so thatSn+1 = �Sn + u2 �Z(2)n �1=a2 � u1 �Z(1)n �1=a1�+ ; (75)with S1 = 0. Consider the following partiular ase of the swithing hange ofmeasure desribed above:Z(1)n � Exp(1) �! Exp(v�11 ) and Z(2)n � Exp(1) �! Exp(v�12 ); n � min(�; �) :Then (72) is given byWn = 8><>:Wn�1 2Yk=1 vk e�(1�v�1k )Z(k)n ; n � min(�; �)W� ; n � min(�; �) : (76)Sine the Z(k)n are independent and have an exponential distribution wean apply again the standard CE tehnique to determine/estimate the optimalreferene parameters v�1 and v�2 for the estimator (74) and ahieve varianeredution. In partiular, if we de�neH(Z) = �Xn=1 IfSn�g ;with Z = (Z(1)1 ; Z(2)1 ; : : : ; Z(1)� ; Z(2)� ), then, similar to Example 2.1, we havev�k = EvH(Z)W� P�n=1 Z(k)nEvH(Z)W� � ; k = 1; 2;for any referene vetor v = (v1; v2). Note that in a multi-level CE proedurethe updating rule for the level t is not the \usual" quantile rule. Instead tshould be hosen suh that during eah regeneration yle at least � perent ofthe ustomers has a waiting time � .26



Random walkIt is well known (see for example page 173 of [24℄) that the steady-state waitingtime for this queueing system has the same distribution as the supremum ofthe random walk fYn; n = 1; : : : g, where Y1 = 0 andYn+1 = Yn +Xn ; n � 1;with Xi = Bi � Ai, i = 1; 2 : : : , and the Ai and Bi the same as before. Thus `in (71) is the same as ` = P(supn Yn � ) : (77)Similar to (75) let us now (re-)de�neSn+1 = Sn + u2 �Z(2)i �1=a2 � u1 �Z(1)i �1=a1 ; (78)with Z(k)i � Exp(1), k = 1; 2 Then, with S = supn Sn, the estimation of (77)(under the original pdfs fWeib(a1; u�11 )g and fWeib(a2; u�12 )g) is equivalent tothe estimation of ` = P(S � ) :Thus, alternatively to Ifsupn Yn�g, whih employs Weibull random variableswe an simulate the random variable Ifsupn Sn�g to estimate `, whih employsExp(1) random variables Z(1) and Z(2). We an apply again the standard CEtehnique to �nd the optimal IS referene parameter.To proeed, de�ne � as the �rst time fSng exeeds level  or falls belowsome low level �L, that is� = inffn > 0 : Sn �  or Sn < �Lg : (79)Consider, similar to before, the IS hange of measure with Z(k)i � Exp(v�1k ).Typially, we seek for an IS hange of measure under whih the queue has apositive drift. In that ase S� �  with high probability. For �L small enoughwe may write to a very lose approximation` � P(S� � ) :It will be lear how we estimate the probability above: we run N samples ofS1; : : : ; S� and evaluate the estimatorb̀= 1N NXi=1 IfS�i�gW�i ;where W� = 2Yk=1 �Yn=1 vt�1;k e�(1�v�1t�1;k)Z(k)n :27



Applying the CE Algorithm 2.1 it is readily seen that the deterministi updatingrules for vt = (vt;1; vt;2) arevt;k = Ev t�1IfS��tgW�P�n=1 Z(k)nEv t�1IfS��tgW� � ;with v0;k = 1, k = 1; 2. This leads to the simulated updating rulesbvt;k = PNi=1 IfSi�i�btgWi�iP�in=1 Z(i)knPNi=1 IfSi�i�btgWi�i �i ;where the simulation is run under vt�1. Note that the updating rules for method1 and 2 are very similar. Indeed, it is reasonable to expet that the optimal CEparameters for the two methods should oinide for large ; numerial resultsindiate that this is indeed the ase. Finally we remark that some are shouldbe taken with the hoie of the low level �L. Typially, under the CE optimalparameter the system beomes unstable and hene �L an be safely set to �1,but for the �rst iteration the system is still stable and hene �L has to behosen not too small in order to save CPU time.Remark 5.1 It is important to set L in any simulation involving (79) largeenough in order to obtain a valid estimator for the steady state waiting timeprobabilities. The hoie of L is somewhat arbitrary. An alternative approahis to take L = 0 and let ` orrespond to the probability that the waiting timeproess exeeds level  during a busy period. This is alled the transient settingin [24℄, setion 9.3.2. In our numerial results we will onsider examples of bothases.6 Numerial ResultsThis setion presents simulation studies for the rare event probability ` =P(S(X) � ) for several stati and queueing models with both light and heavytail distributions. We shall employ both the SLR (25) and TLR estimators.Unless otherwise spei�ed we set in all our experiments with Algorithm 2.1the rarity parameter � = 0:01, the sample size for step 2{4 of the algorithmN = 104 and for the �nal sample size N1 = 5 � 105.For quite moderate probability like ` = 10�3, we typially ompare the CEresults with the orresponding CMC results.6.1 Sum of Weibull random variablesOur �rst model onerns �ve i.i.d. Weib(a; u�1) random variables with a = 5and a = 0:2, respetively. For both ases we seleted u = 1. We wish toestimate P(X1 + � � �+X5 � ) :28



Tables 1 and Tables 2 present, for the ases a = 5 and a = 0:2, respetively,the performane of Algorithm 2.1 for the TLR methodXi = uZ1=ai ; Zi � Exp(1) �! Exp(v�1i ) (80)whih is equivalent to the (one-parameter) SLR methodXi �Weib(a; u�1) �! Weib(a; v�1=ai ) :t t v1t v2t v3t v4t v5t0 - 1 1 1 1 11 5.7 2.37 2.42 2.54 2.49 2.462 6.7 5.52 4.91 4.84 4.97 5.203 7.0 6.06 6.04 6.03 5.93 5.894 7.0 5.99 5.96 6.02 6.00 5.995 7.0 5.95 5.90 6.03 6.04 5.986 7.0 5.95 5.98 6.04 5.93 5.987 7.0 6.03 5.93 6.01 6.01 5.958 7.0 6.00 6.08 6.02 5.90 5.95Table 1: The evolution of the estimate of vt of the optimal parameters v�with the TLR method (80), with a = 5. The estimated probability is b̀ =1:6694 � 10�9, the relative error RE = 0:011763 and �2 = 62:2t t v1t v2t v3t v4t v5t0 - 1 1 1 1 11 9.7e+003 2.45 2.25 2.55 1.97 2.122 6.4e+005 3.06 3.70 4.28 3.54 4.623 1.0e+006 3.68 5.82 3.92 3.34 4.354 1.0e+006 4.37 3.88 4.13 4.62 3.675 1.0e+006 4.13 4.47 4.11 3.77 4.376 1.0e+006 4.15 4.53 3.98 3.94 3.997 1.0e+006 4.10 4.22 4.40 4.11 4.168 1.0e+006 4.18 4.39 4.35 4.53 4.11Table 2: The evolution of the estimate of vt of the optimal parameters v� withthe TLRmethod (80), with a = 0:2. The estimated probability is b̀= 6:54�10�7 ,relative error RE = 0:0278 and �2 = 386Note that in both ases Algorithm 2.1 reahes the desired level  after threeiterations, but we have ontinued iterating steps 2 { 4 of Algorithm 2.1 in view ofRemark 2.2. We see that the parameter vetor vt stabilizes very quikly. Notealso that we ould have taken the average of the referene parameter at eahiteration as a more aurate estimate for the true optimal referene parameter.The asymptotial value for optimal referene parameter v in the heavy tailase is, see (70), given by 1�� = 1 + an :29



In partiular for Table 2 we obtain a value of (1 + 101:2)=5 � 3:4, whih is nottoo far from the observed value of around 4.2. Note that for the light tail asethe above formula does not hold.Tables 3 and 4 present, for the same ases a = 5 and a = 0:2 as above, theperformane of Algorithm 2.1 for the two-parameter SLR methodXi �Weib(a; u�1) �!Weib(bi; v�1=bii ) (81)of Remark 2.2.t t b1t v1t b2t v2t b3t v3t b4t v4t b5t v5t0 - 5 1 5 1 5 1 5 1 5 11 5.19 7.57 2.84 7.10 2.69 7.03 2.63 7.40 2.99 7.25 2.672 5.87 9.12 8.73 8.93 7.87 9.89 10.38 10.09 10.11 10.47 10.503 6.41 11.22 28.51 11.86 37.42 12.10 39.75 11.27 34.33 12.21 34.504 6.86 12.25 70.59 12.09 106.44 14.33 153.19 14.69 238.96 14.30 158.265 7.00 14.43 231.51 14.13 250.12 12.96 109.01 11.25 92.41 13.88 179.266 7.00 14.08 201.95 13.78 206.56 13.63 167.13 12.81 128.66 14.32 246.637 7.00 14.04 211.85 13.99 209.57 14.22 206.02 13.33 167.56 14.01 205.508 7.00 14.19 202.57 13.22 193.80 13.98 183.36 12.71 133.98 13.43 193.819 7.00 14.00 194.39 13.35 195.35 14.25 201.32 13.04 146.14 13.74 195.6810 7.00 14.24 200.73 13.63 191.78 13.28 185.02 12.59 124.85 14.14 202.64Table 3: The evolution of the estimates bt and vt of the optimal parameters b�and v� with the two-parameter SLR method (81). The estimated probabilityis b̀= 1:6570 � 10�9, the relative error RE = 0:0041 and �2 = 8:4t t b1t v1t b2t v2t b3t v3t b4t v4t b5t v5t0 - 0.2 1 0.2 1 0.2 1 0.2 1 0.2 11 971.28 0.17 1.55 0.18 1.69 0.18 1.63 0.17 1.48 0.18 1.522 28750 0.15 1.76 0.15 2.09 0.15 1.89 0.15 1.75 0.14 1.403 461370 0.12 1.86 0.13 1.84 0.12 1.43 0.12 1.53 0.13 2.384 1000000 0.12 1.50 0.13 2.17 0.12 1.83 0.13 1.62 0.11 1.935 1000000 0.12 1.59 0.12 1.66 0.12 1.92 0.11 1.66 0.12 1.996 1000000 0.13 1.68 0.12 2.02 0.12 1.96 0.12 1.83 0.13 1.917 1000000 0.12 1.72 0.13 1.97 0.12 1.87 0.12 1.77 0.12 1.878 1000000 0.12 1.81 0.12 2.05 0.12 1.90 0.13 1.94 0.12 1.679 1000000 0.12 1.95 0.12 1.70 0.13 1.88 0.12 1.66 0.12 1.88Table 4: The evolution of the estimates bt and vt of the optimal parameters b�and v� with the two-parameter SLR method (81). The estimated probabilityis b̀= 6:5964 � 10�7, the relative error RE = 0:014723 and �2 = 108:3We see that both the one- and two-parameter methods give very aurateresults for both heavy and light tail Weibull distributions, and that the TLRupdating performs similar to its two-parameter ounterpart, although repeatedmeasurements indiate that for the ases above the RE is about two timessmaller for the two-parameter TLR method.6.2 Sum of Pareto random variablesHere we repeat the experiments of Tables 1 and 2 for the Pareto ase. Speif-ially, we now let the Xi have a Pareto pdf f(x) = au�1(1 + xu�1)�(1+a) andonsider the TLR hange of measureXi = u�eZi=a � 1� ; Zi � Exp(1) �! Exp(v�1i ) : (82)30



Tables 5 and 6 present the performane of the TLR method for a = 5 anda = 0:2, respetively. For both ases we seleted u = 1 and took N = 2 � 105and N1 = 106. t t v1t v2t v3t v4t v5t0 - 1 1 1 1 11 2.14 1.90 1.88 1.88 1.93 1.932 5.56 2.95 2.94 2.93 2.93 2.963 13.06 3.67 3.62 3.46 3.68 3.874 22.41 4.50 3.99 4.19 4.30 3.895 25.00 3.61 5.35 3.92 4.52 3.886 25.00 4.02 4.24 4.40 4.36 4.457 25.00 4.44 4.30 4.26 4.09 4.278 25.00 4.38 4.18 4.11 4.09 4.639 25.00 4.27 4.07 4.29 4.47 4.2510 25.00 4.38 4.33 4.41 4.28 3.92Table 5: The evolution of the estimate of vt of the optimal parameters v� withthe TLR method for a = 5. The estimated probability is b̀= 5:22 � 10�7, therelative error RE = 0:0238 and �2 = 570:98t t v1t v2t v3t v4t v5t0 - 1 1 1 1 11 2.6e+008 1.74 1.75 1.75 1.74 1.742 4.6e+014 2.32 2.34 2.33 2.38 2.343 4.9e+019 2.78 2.86 2.72 2.89 2.824 4.9e+023 3.22 3.24 2.99 3.26 3.235 6.7e+026 3.56 3.47 3.26 3.48 3.586 1.3e+029 3.80 4.02 3.29 3.74 3.537 1.0e+031 3.60 4.09 3.74 4.11 3.788 4.5e+032 3.74 4.05 3.91 3.39 4.679 2.8e+033 4.00 4.72 3.78 3.81 4.4810 1e+035 4.48 3.97 4.12 4.57 3.8611 1e+035 4.16 4.35 4.57 3.99 4.1112 1e+035 4.37 4.49 4.16 4.13 4.0013 1e+035 4.14 4.00 4.25 4.11 4.5414 1e+035 4.12 4.24 4.44 4.16 4.2415 1e+035 4.30 4.16 4.53 4.18 4.30Table 6: The evolution of the estimate of vt of the optimal parameters v� withthe TLR method for a = 0:2. The estimated probability is b̀ = 4:86 � 10�7,relative error RE = 0:0267 and �2 = 716:74Although in this ase the TLR hange of measure (82) does not seem as\natural" as the SLR one, where a or u is hanged, we an see, however, thatagain a good variane redution is obtained. In fat, the variane redutionwith TLR was very similar to the SLR hange of measure, whih was alsoimplemented. An advantage of (82) is that only one line of the ode for theWeibull ase needed to be hanged. 31



6.3 Stohasti shortest pathOur seond model onerns a stohasti shortest path problem. Consider theweighted graph of Figure 1, with random weights X1; : : : ;X5.
BA

X1X2 X3 X4X5

1

Figure 1: Stohasti shortest path from A to BSuppose the rv's X1; : : : ;X5 are independent of eah other and have aWeib(ai; ui) distribution, i = 1; : : : ; 5. Let S(X) be the length of the shortestpath from node A to node B. Note that there are four possible paths. We wishto estimate from simulation the probability ` = P(S(X) � ) that the lengthof the shortest path S(X) will exeed some �xed .We onsider the light- and heavy-tail ases ai = 5 and ai = 0:2; i = 1; : : : ; 5.In both ases u = (0:25; 0:4; 0:1; 0:3; 0:2).Tables 7 and 8 present the performane of Algorithm 2.1 with the TLRmethod (80), for the ases a = 5 and a = 0:2 respetively. The results areself-explanatory. t t v1t v2t v3t v4t v5t0 - 1 1 1 1 11 0.568 2.491 1.530 1.267 1.748 1.9312 0.650 4.257 2.152 1.543 2.431 2.9773 0.706 6.052 2.705 1.896 3.294 4.1534 0.752 8.125 3.476 2.260 4.128 5.3605 0.792 10.356 4.074 2.630 4.994 6.6876 0.800 10.293 4.126 2.850 5.519 7.4607 0.800 10.712 4.265 2.520 5.090 7.1098 0.800 10.550 4.125 2.565 5.310 7.3839 0.800 10.897 4.377 2.577 5.277 7.096Table 7: The evolution of the estimate vt of the optimal parameter v� withthe TLR method and a = 5. The estimated probability is b̀= 1:20 � 10�10, therelative error 0:044.
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t t v1t v2t v3t v4t v5t0 - 1 1 1 1 11 6.760 2.005 1.906 1.166 1.857 1.9122 159.419 3.067 2.911 1.038 2.499 2.6193 1070.002 4.226 3.940 1.052 3.029 3.2114 4173.601 5.320 4.930 0.854 3.598 3.9015 11663.017 6.877 6.333 1.118 3.730 3.8676 34307.081 9.237 8.434 1.078 3.461 3.5487 100000.000 7.030 6.623 0.842 7.762 7.6588 100000.000 11.309 10.660 1.043 3.227 3.4749 100000.000 14.038 13.035 0.981 1.126 1.18910 100000.000 14.261 13.008 0.979 1.066 1.035Table 8: The evolution of the estimate vt of the optimal parameter vetor v�with the TLR method and a = 0:2. The estimated probability is b̀= 1:09�10�11the relative error 0:026.6.4 GI/G/1 queueOur third model is the GI/G/1 queue with inter-arrival time distributionWeib(a1; u�11 ) and servie time distributionWeib(a2; u�21 ). Note that the traÆintensity of the queue is thus given byu2�(1 + 1=a2)u1�(1 + 1=a1) :We �rst onsider the estimation of the probability that the stationary wait-ing time in the queue exeeds some �xed level , using the random walk methoddesribed in Setion 5.In partiular, with Ai and Bi the inter-arrival and servie times, we use theTLR hange of measureAi = u1 �Z(1)i �1=a1 ; Z(1)i � Exp(1) �! Exp(v�11 )Bi = u2 �Z(2)i �1=a2 ; Z(2)i � Exp(1) �! Exp(v�12 ) : (83)Table 9 illustrates the evolution of Algorithm 2.1 for determining the CE opti-mal parameters v1 and v2 to be used in the TLR estimator. In this partiularase the parameters are a1 = 0:5, u1 = 1, a2 = 0:5 and u2 = 0:5, whih givesa traÆ intensity of 0.5. The level to be exeeded is  = 80. The sample sizeused in steps 1{4 was N = 50; 000. The rarity parameter � was set to 0.01.We have repeated steps 2{4 four more times after reahing  in order toshow the auray of the estimation of the true optimal CE parameter. (Theorresponding estimate and RE for this ase are given in Table 10.)
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t t v1 v20 - 1 11 39.5 0.774073 1.394772 80 0.796896 1.449493 80 0.813729 1.429624 80 0.810056 1.404655 80 0.799487 1.436086 80 0.801236 1.44118Table 9: The evolution of Algorithm 2.1 using the TLR method for the GI=G=1with the following parameters: a1 = 0:5, v1 = 1, a2 = 0:5, v2 = 0:5It is interesting to note that after one iteration the system beomes unstable,so that t in step 2 of the CE algorithm reahes level  in just two iterations.This is in aordane with the instability property of the CE algorithm desribedand analyzed in [6℄. As a onsequene, the hoie of the rarity parameter doesnot matter very muh.Tables 10 { 13 summarize some performane harateristis of the TLRestimation proedure as a funtion of , for various light and heavy-tail ases.In all ases we set N = 104 and N1 = 5 � 105. Also, the rarity parameter � wasset to 0.1 (in fat any parameter � < 1 would be ok) and the level �L was setlow enough to �100.In all tables we report the optimal CE parameters (reall that the originalones are 1), the estimate of the probability, the relative error and the CPU timein seonds. a1 = 0:5; u1 = 1; a2 = 0:5; u2 = 0:5 20 40 60 80 100 120v�1 0.78 0.79 0.80 0.80 0.80 0.81v�2 1.36 1.38 1.40 1.41 1.43 1.45b̀ 7:139 � 10�2 1:152 � 10�2 2:08 � 10�3 4:25 � 10�4 8:99 � 10�5 2:08 � 10�5RE 0:002 0:0036 0:0067 0:016 0:020 0:045se 149 264 396 467 587 696Table 10: Simulation results for method 2 for the waiting time probabilities ofa GI/G/1 queue with heavy tail inter-arrival and servie time distributions, asa funtion of . The traÆ intensity is 0.5.a1 = 2; u1 = 1; a2 = 2; u2 = 0:75 3 6 9 12 15 18v�1 0.56 0.56 0.56 0.56 0.56 0.56v�2 1.57 1.58 1.58 1.58 1.58 1.59b̀ 1:031 � 10�2 1:63 � 10�4 2:60 � 10�6 4:15 � 10�8 6:63 � 10�10 1:56 � 10�11RE 0:0017 0:0027 0:0040 0:0053 0:013 0:016se 101 154 210 274 338 398Table 11: Simulation results for method 2 for the waiting time probabilities ofa GI/G/1 queue with light tail inter-arrival and servie time distributions, as afuntion of . The traÆ intensity is 0.75.
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a1 = 1; u1 = 2; a2 = 1; u2 = 1:5 20 40 60 80 100 120v�1 0.75 0.75 0.75 0.75 0.75 0.75v�2 1.33 1.33 1.33 1.33 1.33 1.33b̀ 2:676 � 10�2 9:539 � 10�4 3:404 � 10�5 1:214 � 10�6 4:333 � 10�8 1:546 � 10�9RE 0:00036 0:00039 0:00040 0:00040 0:00038 0:00053se 160 429 509 558 691 828Table 12: Simulation results for method 2 for the waiting time probabilities ofan M/M/1 queue, as a funtion of . The traÆ intensity is 0.75.a1 = 1; u1 = 1; a2 = 0:5; u2 = 0:25 10 20 30 40 50 60v�1 0.81 0.83 0.84 0.85 0.85 0.89v�2 1.64 1.68 1.71 1.65 1.73 1.77b̀ 2:83 � 10�2 3:55 � 10�3 5:63 � 10�4 1:05 � 10�4 2:60 � 10�5 7:07 � 10�6RE 0:003 0:0067 0:012 0:017 0:047 0:093se 108 190 224 306 335 407Table 13: Simulation results for method 2 for the waiting time probabilities ofan M/G/1 queue, with heavy tail servie distribution, as a funtion of . ThetraÆ intensity is 0.5.The results seem to indiate that the RE inreases (sub)linearly, but there isnot suÆient evidene to onlude that the estimators are polynomial, exeptin the M/M/1 ase, where the RE remains onstant. In the latter ase wehave the well-known optimal (exponential) hange of measure where the servieand inter-arrival rates are interhanged. What is learer is that for the lighttail ase we an estimate muh smaller probabilities than for the heavy tailase, for a given auray (RE) and simulation e�ort. It is interesting to notethat for the seond experiment (with a1 = a2 = 2) quite small probabilitiesan be eÆiently estimated despite the fat that the TLR estimator is notasymptotially optimal. Namely, the only asymptotially optimal estimator isobtained by an exponential hange of measure, see Sadowsky [26℄ and Asmussenand Rubinstein [5℄, and the TLR hange of measure for this ase is obviouslynot an exponential hange of measure.Note also that for both light-tail ases the referene parameters seem tohave \onverged", but not yet for the two heavy-tail ases. Also the estimatesfor the referene parameters seem more noisy in the heavy tail ase. In boththe light and heavy tail ase we observed that the estimates for the proba-bilities stabilized quite quikly (for moderate sample sizes). However, we alsoobserved that aurate estimates for the variane of the estimator were muhmore diÆult to obtain in the heavy-tail ase than in the light-tail ase.We have repeated the experiments in Tables 10{13 for method 1, the swith-ing regenerative method, using N1 = 5�105 regeneration yles and using exatlythe same CE parameters v�1 and v�2 as reported for method 2. The results werevery similar to those of method 2. Tables 14 and 15 give the results for twoof these experiments. We also ran the model with rude Monte Carlo, that ismethod 1 with v1 = v2 = 1, inreasing the number of yles to 5 � 106 in orderto obtain exeution times of the same order as the other methods. The SMC35



estimates were in exat agreement with the IS estimates, and the IS estimatesonsistently gave a signi�ant variane redution, although less pronouned inthe heavy-tail ase. a1 = 0:5; u1 = 1; a2 = 0:5; u2 = 0:5 20 40 60 80 100 120b̀ 7:19 � 10�2 1:161 � 10�2 2:08 � 10�3 4:38 � 10�4 8:63 � 10�5 2:01 � 10�5RE 0:0087 0:011 0:017 0:029 0:034 0:071se 59 80 109 135 170 200Table 14: Simulation results for method 1 for the waiting time probabilities ofa GI/G/1 queue with heavy tail inter-arrival and servie time distributions, asa funtion of . The traÆ intensity is 0.5.a1 = 2; u1 = 1; a2 = 2; u2 = 0:75 3 6 9 12 15 18b̀ 1:028 � 10�2 1:63 � 10�4 2:58 � 10�6 4:12 � 10�8 6:76 � 10�10 1:05 � 10�11RE 0:0064 0:0084 0:011 0:019 0:020 0:021se 51 91 167 173 212 398Table 15: Simulation results for method 1 for the waiting time probabilities ofa GI/G/1 queue with light tail inter-arrival and servie time distributions, as afuntion of . The traÆ intensity is 0.75.We also onduted various experiments in the transient setting (that is tak-ing L = 0, see Remark 5.1, and using Pareto arrival and servie times. Tables 16{ 17 present two examples. Table 18 presents an example using Pareto arrivaland Weibull servie time. For the Pareto ase a similar TLR hange of measureas in (82) was used. In all tables � is as in (79) with L = 0 and SCV standsfor the squared oeÆient of variation for the random variable IW in the TLRestimator. 40 120 160 240 300 360N 5 � 104 5 � 104 5 � 104 5 � 104 5 � 104 5 � 104N1 5 � 105 5 � 105 5 � 105 5 � 105 106 106b̀ 1.76e-002 1.49e-003 4.78e-004 5.32e-005 1.00e-005 1.81e-006RE 0.0068 0.013 0.016 0.023 0.021 0.026b� 94.26 655.96 1137.86 2075.22 3305.66 3703.51SCV 23.46 87.73 129.57 283.18 430.81 664.02Table 16: Transient simulation results as funtion of  for a GI/G/1 queuewith the inter-arrival distribution Pareto(0:5; 0:4) and servie distributionPareto(0:5; 0:36). The traÆ intensity is 0.9. For  = 40 the probability washeked by CMC estimator: b̀= 1:78 � 10�2
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 25 50 80 120 250 350N 105 105 105 105 105 105N1 5 � 105 5 � 105 5 � 105 5 � 105 5 � 105 5 � 105b̀ 1.25e-003 8.72e-005 9.66e-006 2.51e-006 2.59e-007 7.54e-008RE 0.011 0.029 0.041 0.047 0.053 0.051b� 75.60 88.26 69.75 79.20 92.18 93.76SCV 61.81 427.33 841.23 1082.71 1387.39 1301.01Table 17: Transient simulation results as funtion of  for GI/G/1 queue withthe inter-arrival distributionPareto(3; 0:75) and servie distributionPareto(3; 1).The traÆ intensity is 0.75. 20 50 130 160 300 400N 5 � 104 5 � 104 5 � 104 5 � 104 5 � 104 5 � 104N1 2 � 105 3 � 105 3 � 105 3 � 105 3 � 105 3 � 105b̀ 2.37e-003 2.20e-004 1.05e-005 8.25e-006 1.33e-006 5.75e-007RE 0.016 0.030 0.033 0.029 0.028 0.027b� 18.38 17.21 16.03 14.44 16.08 14.92SCV 51.94 275.31 326.70 258.69 239.94 220.05Table 18: Transient simulation results as funtion of  for GI/G/1 queue withthe inter-arrival distribution Weib(2; 1) and servie distribution Pareto(2:5; 1).The traÆ intensity is 0.75225.6.5 Two non-Markovian queues with feedbakAs a �nal example, we onsider the network depited in Figure 2. It onsistsof two queues in tandem, where ustomers departing from the seond queueeither leave the network (with probability p), or go bak to the �rst queue (withprobability 1�p). We are interested in estimating the transient probability thatthe total number of ustomers in the network exeeds some high level, 50 in thisexample, during one busy yle. This model was also onsidered in [6℄, usingonly light-tail distributions and applying IS with exponential twisting.
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1 2Figure 2: Two queues in tandem with feedbakIn the experiments reported below the inter-arrival time distribution is atwo-stage Erlang distribution, with exponential parameter � = 0:2. The servietime distributions of the �rst queue is uniform on [0; 3:333℄. In the seond queuethe servie time distribution is Weib(a; ). In Table 19 we onsider the light tailase with a = 2 and  = 0:354491, whih gives a mean servie time of 2.5, whilein Table 20 we onsider the heavy tail ase with a = 0:8 and  = 0:453201,whih gives again mean servie time of 2.5. We note that this is the same meanservie time as in [6℄. In the tables, � is the the exponential twisting parameterfor the uniform distribution. The � olumn gives the evolution of refereneparameter for the Erlang inter-arrivals, and similar for U and p.37



t t � �  p0 3.0 0.200000 0.000000 0.354491 0.51 50 0.342317 -0.023671 0.294095 0.1777782 50 0.363233 0.000000 0.315648 0.2252823 50 0.360159 0.000000 0.320599 0.2343364 50 0.360873 -0.003051 0.320986 0.2341135 50 0.358857 -0.003623 0.320894 0.2357796 50 0.360186 -0.000707 0.320591 0.2347697 50 0.359469 -0.003483 0.320718 0.234796Table 19: Simulation results for the non-Markovian network for ` = 50. HereN = N1 = 104. The estimated probability is b̀= 1:62e � 25, the relative errorRE = 0:018We see that the optimal CE parameters are estimated quite aurately for arelatively small N . Sine the seond queue is the bottlenek state independenttilting, hanging the parameters irrespetive of the state of the queue, seemsto work niely, and the TRL method seems to deliver an aurate estimateof a very small probability. No numerial results are available for validation;therefore, we repeated the experiment various times. The fat that we obtainedsimilar estimates gives on�dene.t t � �  p0 3.0 0.200000 0.000000 0.453201 0.51 50 0.300620 0.000000 0.263503 0.30192 50 0.301135 0.000000 0.263982 0.30313 50 0.301291 -0.000000 0.264346 0.30264 50 0.300832 0.000000 0.263580 0.30315 50 0.301350 -0.000000 0.263770 0.30296 50 0.300620 0.000000 0.263503 0.30197 50 0.301135 0.000000 0.263982 0.3031Table 20: Simulation results for the non-Markovian network for ` = 50. HereN = N1 = 105The estimated probability is b̀= 4:323e � 18, the relative errorRE = 0:0079For this heavy tail ase a similar piture emerges: the estimates for thereferene parameters are quite stable a small probability an be estimated withreasonable auray. However, when we repeat this for a smaller a (a = 0:5)the results were not so satisfatory, indiating that a (muh) larger sample sizeis required.A The sum of two WeibullsAs noted in Remark (4.1) for the sum of n heavy-tail Weibulls, the hange ofmeasure given by (68) for any onstant  in (69) gives an SLR estimator whihis asymptotiall optimal. A proof of this is given in Theorem 3.2 of [19℄. Inthis appendix we prove that for the ase n = 2 and for large  the best, that is,minimum variane, hoie for  is  = n = 2 and that the estimator is not onlyasymptotially optimal, but in fat polynomial. We onjeture that in general38



 = n. We show explitly that the relative error grows (for n = 2) as 2a, andwe onjeture that in general it grows as na. The proof below uses the TLRrepresentation of the hange of measure, but it ould as easily have been givenvia an SLR approah. Most of the result hold for the light (a � 1) and heavytail a < 1 ase, exept when the subexponentiality property is used for theheavy-tail ase. Without loss of generality we take u = 1.Thus the problem is as follows: Let X1;X2 be i.i.d. Weib(a; 1) distributed;estimate ` = P(X1 +X2 � ) = P(Z1=a1 + Z1=a2 � ) ;with Zi � Exp(1), independent. Consider the exponential hange of measureZi � Exp(1) �! Exp(1 � �), where 0 � � < 1 is the exponential twistingparameter. Let E � denote the orresponding expetation operator. Thus E 0orresponds to the original Exp(1) distribution. We have` = E �IfZ1=a1 +Z1=a2 �gW :Here W =W (�) is shorthand notation for the likelihood ratioW (�) = e��(Z1+Z2)+2�(�) = e��(Z1+Z2)(1� �)2 ;where we have used the fat that the umulant funtion for this exponentialfamily is given by �(�) = ln(1=(1 � �)) = � ln(1� �).There does not exist a simple formula for ` as a funtion of a and , but itis not diÆult to verify that`() = �2ZZ A1 +ZZ A2 +2ZZ A3� e�(z1+z2) dz1dz2= exp ��a 21�a�+ 2Z (=2)a0 exp��n � x1=aoa � x� dx ;where the regions A1, A2 and A3 are given in Figure 3.
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Figure 3: ` is equal to the integral of e�(z1+z2) over the shaded region.Let us mention some known fats about `. First, for the heavy-tail asea < 1 it is well-known that the Weibull distribution is sub-exponential, whihmeans that the sum of n i.i.d. Weibull random variables satis�eslim!1 P(X1 + � � � +Xn � )P(X1 � ) = n :In partiular, for our n = 2 ase we have thatlim!1 `()2e�a = 1 :For a = 1 it is not diÆult to see that` = e�( + 1) :For a > 1 one an show thatlim!1 `()e�2(=2)a a=2 = (a) ;for some onstant (a), dereasing as a inreases. For example, for a = 2,(a) =p�=2 and for a = 3, (a) = p3�=4.Let us now turn to the omplexity properties of the TLR estimator, as afuntion of . This is, as always, determined by the seond moment (under �)of the random variable IW = IfZ1=a1 +Z1=a2 �gW (�). Using a simpli�ed notation
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we have E � (IW )2 = E � IW 2= E 0 IW= E 0 I e��(Z1+Z2)(1� �)2= �2ZZ A1 +ZZ A2 +2ZZ A3� e�(1+�)(z1+z2)(1� �)2 dz : (84)
We wish to show that the SCV inreases at most polynomially in , for a ertainhoie of �. This is equivalent to showing that E � (IW )2=`2 inreases at mostpolynomially in . We do this by onsidering the ontributions of the threeintegrals in (84) individually.De�ne Di = RR Ai e�(1+�)(z1+z2)(1��)2 dz; i = 1; 2; 3. The easiest of these is D2;namely D2 =  e�(1+�)(=2)a1� �2 !2 :It follows that for �xed �lim!1 D2`2 = 4(1� �2)2 lim!1 e�af(1+�)21�a�2g = 0 ;provided that 1 + � > 2a, or equivalently 1� � < 2� 2a.Seond, we haveD1 � eD1 = Z 10 Z 1a e�(1+�)(z1+z2)(1� �)2 dz = 1(1� �2)2 e�a(1+�) :The ontribution of D1 to the SCV is therefore bounded byeD1`2 � 12 (1� �2)2 e�a(1+��2) :As a onsequene, this ontribution remains polynomial in  if we hoose � =1� �a, for any . In that aseeD1`2 � e4a42(� 2a)2 :If we minimize this with respet to , we obtain for �xed  the minimal argument� = a �p2a + 4 + 2 :For large  we have thus  � 2. This suggests we take� = 1� 2�a :41



It is obvious that with this hoie of � the ontribution of D2 to the SCV istends 0, as  inreases. It follows that2D1 +D2`2 = 2a e264 + o �2a� :It remains to show that the ontribution of D3 remains polynomial. We haveD3`2 � e2a2 Z (=2)a0 Z a��z1=a1 �a e�(1+�)(z1+z2)(1� �)2 dz= d32(1 � �)2(1 + �) ;where d3 = Z (=2)a0 e2a e�(1+�)z ne�(1+�)(�z1=a)a � e�(1+�)ao dz > 0 :For �xed z and � = 1� 2�a write the integrand of d3 as e�(1+�)zg(z; ), whereg(z; ) = e2a ne�(2�2�a)a(1�z1=a=)a � e�(2�2�a)ao= exp(a "2� 2 1� z1=a !a#+ 2 1� z1=a !a)� e2dereases monotone to 0 as  !1. By the monotone onvergene theorem, itfollows that d3 ! 0 as well, as  !1. Hene, we have D3=`2 = o �2a�.Conluding, for a < 1 we have proved that with the exponential twist � =1 � 2�a the SCV of the TLR estimator inreases proportionally to 2a, as !1, that is �2() = O(2a) as  !1: (85)It is interesting to note that �2 dereases with a, that is as the tail of Weibullpdf beomes heavier.We onjeture that for arbitrary n the optimal twisting parameter is asymp-totially �� � 1 � n�a and that the SCV inreases proportionally to na, as !1.Aknowledgement We would like to thank Rostislav Man from the Tehnionfor performing most of the omputational part of this work. We would also liketo thank Pieter-Tjerk de Boer for implementing and running the simulationsfor the tandem system.Referenes[1℄ S. Asmussen. Applied probability and queues. John Wiley and Sons, 1987.[2℄ S. Asmussen and K. Binswanger. Simulation of ruin probabilities for subex-ponential laims. ASTIN Bulletin, 27(2):297{318, 1997.42
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