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Abstract. In a previous paper R. Mathon gave a new construction method for maximal arcs
in finite Desarguesian projective planes via closed sets of conics, as well as giving many new
examples of maximal arcs. In the current paper, new classes of maximal arcs are constructed,
and it is shown that every maximal arc so constructed gives rise to an infinite class of maximal
arcs. Apart from when they are of Denniston type or dual hyperovals, closed sets of conics are
shown to give maximal arcs that are not isomorphic to the known constructions. An easy
characterisation of when a closed set of conics is of Denniston type is given. Results on the
geometric structure of the maximal arcs and their duals are proved, as well as on elements of
their collineation stabilisers.

1 Introduction

A maximal fqðn� 1Þ þ n; ng-arc in a projective plane of order q is a subset of
qðn� 1Þ þ n points such that every line meets the set in 0 or n points for some
2c nc q. For such a maximal arc n is called the degree. If K is a maximal
fqðn� 1Þ þ n; ng-arc, the set of lines external to K is a maximal fqðq� nþ 1Þ=n;
q=ng-arc in the dual plane called the dual of K. It follows that a necessary condition
for the existence of a maximal fqðn� 1Þ þ n; ng-arc in a projective plane of order q is
that n divides q.

Recently, Ball and Blokhuis [2] completed the classification of maximal arcs in
the Desarguesian projective plane of order 16. In [7], R. Mathon gave a construction
method for maximal arcs in Desarguesian projective planes that generalised a pre-
viously known construction of R. H. F. Denniston ([4]). Using this method several
new classes of maximal arcs were then constructed, and a large number of examples
given in small order projective planes including the Desarguesian projective plane of
order 32. We begin by describing this construction method.
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In the following the order of the fields will always be even. Let Trqm=q be the usual
trace map from the finite field GFðqmÞ onto GFðqÞ. We represent the points of the
Desarguesian projective plane, PGð2; qÞ, via homogeneous coordinates over GFðqÞ.
For a; b A GFðqÞ such that the absolute trace Trq=2ðabÞ ¼ 1, and l A GFðqÞ, define
Fa;b;l to be the conic

Fa;b;l ¼ fðx; y; zÞ : ax2 þ xyþ by2 þ lz2 ¼ 0g

and let F be the union of all such conics. Note that all the conics in F have the point
F0 ¼ ð0; 0; 1Þ as their nucleus.

For given l0 l 0, define a composition

Fa;b;l lFa 0;b 0;l 0 ¼ Fala 0;blb 0;lþl 0

where the operatorl is defined by

al b ¼ laþ l 0b

lþ l 0 :

Given some subset G of F, we say G is closed if for every Fa;b;l 0Fa 0;b 0;l 0 A G, we
have that Fala 0;blb 0;lþl 0 A G. In [7], the following theorems are proved.

Theorem 1 ([7, Theorem 2.4]). Let G be a closed set of conics with nucleus F0 in

PGð2; qÞ, q even. Then the union of the points of the conics of G together with F0 form

the points of a degree jGj þ 1 maximal arc in PGð2; qÞ.

Theorem 2 ([7, Theorem 2.5]). Let A be an additive subgroup of GFðqÞ, q even, with

jAj ¼ d. Let pðlÞ ¼
Pd�1

i¼0 ail
2 i�1 and rðlÞ ¼

Pd�1
i¼0 bil

2 i�1 be polynomials with

coe‰cients in GFðqÞ, q even. If Trq=2ðpðlÞrðlÞÞ ¼ 1 for every l A A� f0g, then the

union of the points of

G ¼ fFpðlÞ; rðlÞ;l : l A A� f0ggU fF0g

is a degree d maximal arc in PGð2; qÞ.

Suppose we choose a A GFðqÞ such that Trq=2ðaÞ ¼ 1, and let A be some additive
subgroup of GFðqÞ. Then the set of conics

fFa;1;l : l A A� f0ggU fF0g

is the set of points of a degree jAj maximal arc in PGð2; qÞ. These maximal arcs were
constructed by R. H. F. Denniston in [4]. They are a subset of the pencil of conics

given by

fFa;1;l : l A GFðqÞU fygg:
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This pencil partitions the points of the plane into the line z ¼ 0, q� 1 non-degenerate
conics, and the common nucleus ð0; 0; 1Þ of these conics. The line z ¼ 0 is often called
the line at infinity of the pencil and is denoted Fy.

The Denniston maximal arcs were characterised by Abatangelo and Larato in [1]
as exactly those maximal arcs whose point set is the union of elements of such a
pencil of conics. Alternatively they were characterised as exactly those maximal arcs
whose homography stabiliser admits a cyclic group of order qþ 1 (the orbits of such
a group are exactly the elements of the pencil).

More generally a pencil of conics may be obtained as follows. Suppose F1 and F2

are non-degenerate quadratic forms over GFðqÞ that have no common zeros, i.e. the
conics that they define have no common points. Then the set of polynomials

fmF1 þ gF2 : m; g A GFðqÞ; m and l not both zerog

determine ðqþ 1Þ quadratic forms: q� 1 pairwise disjoint non-degenerate conics; an
exterior line to those conics; and a point that is the nucleus of all the conics. Together
these conics partition the points of the plane. Up to isomorphism in PGLð3; qÞ there
is a unique such pencil, i.e. up to isomorphism the pencil is independent of the
choice of F1 and F2. We will call a closed set of conics that is a subset of such a pencil
linear. It follows immediately from Abatangelo and Larato’s result that a linear
closed set of conics corresponds to a maximal arc that is isomorphic to one of those
of Denniston.

In the next section a new construction of closed sets of conics is given, and it
is shown that any closed set of conics is still a closed set of conics in an odd order
extension of the underlying field. It is also shown that a closed set of conics of non-
Denniston type gives rise to sub-maximal arcs that are not of Denniston type. In
Section 6 the geometric structure of the closed sets of conics will be considered. In
particular it is shown that the only non-degenerate conics contained in the associated
maximal arcs are exactly those of the closed sets of conics, and the Denniston maxi-
mal arcs are characterised as exactly those closed sets of conics whose dual maximal
arcs contains a regular hyperoval. It is then shown that the maximal arcs of degree
2 < n < q=2 arising from closed sets of conics are not isomorphic to any of the known
classes of maximal arcs, except when they happen to be Denniston. In Section 3.2 the
types of collineations that may stabilise a closed set of conics are considered.

2 New maximal arcs in Desarguesian projective planes

The following theorem shows that in some sense no maximal arc arising from closed
sets of conics is sporadic.

Theorem 3. Let G be a closed set of conics in PGð2; qÞ. Then the equations of the conics

of G give a closed set of conics in PGð2; qmÞ, for any md 1, m odd.

Proof. We first show that the equations of the conics of G give non-degenerate conics
over GFðqmÞ. For a conic in Fa;b;l A G, the trace Trq=2ðabÞ from GFðqÞ to GFð2Þ is the
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identity. Now Trqm=2ðabÞ ¼ Trq=2 � Trqm=qðabÞ, but since ab A GFðqÞ, Trqm=qðabÞ ¼
mab. Hence Trqm=2ðabÞ ¼ Trq=2ðmabÞ ¼ mTrq=2ðabÞ ¼ 1, since m is odd and q is
even.

Hence the equation of an Fa;b;l A G also gives a non-degenerate conic in PGð2; qmÞ.
The set G then clearly gives a closed set of conics in PGð2; qmÞ. r

It immediately follows from the theorem that given a degree n maximal arc K in
PGð2; qÞ arising from a closed set of conics, there exist degree n maximal arcs Km in
PGð2; qmÞ for all odd positive integers m. Note that Km contains K in the real sub-
plane PGð2; qÞ of PGð2; qmÞ.

Theorem 4. Let rðlÞ ¼
Pm�1

i¼0 bil
2 i�1 be any polynomial with coe‰cients bi A GFðqmÞ

such that Trqm=2ðb0Þ ¼ 1 and for i > 0, Trqm=qðbiÞ ¼ 0. Then the points of

G ¼ fF1; rðlÞ;l : l A GFðqÞ�gU fF0g

form a degree q maximal arc in PGð2; qmÞ.

Proof. We show that Trqm=2ðrðlÞÞ ¼ 1 for every l A GFðqÞ and apply Theorem 2.
First note that the trace function is additive, hence

Trqm=2ðrðlÞÞ ¼
Xm�1

i¼0

Trqm=2ðbil2
i�1Þ:

Now for i > 1, since l A GFðqÞ we have

Trqm=2ðbil2
i�1Þ ¼ Trq=2 � Trqm=qðbil2

i�1Þ

¼ Trq=2ðl2
i�1 Trqm=qðbiÞÞ

¼ Trq=2ðl2
i�1:0Þ ¼ 0:

Hence Trqm=2ðrðlÞÞ ¼ Trqm=2ðb0Þ ¼ 1 for every l A GFðqÞ. r

Note that Theorem 3 can also be applied to the maximal arcs of the theorem to get
maximal arcs in odd order extensions of the plane.

In Theorem 4 there are qm�1 choices for each of the bi’s, i > 0, and qm � qm�1

choices for b0. But distinct polynomials may give isomorphic maximal arcs.
In the theorem the conics defining such a maximal arc were parameterised by ele-

ments of GFðqÞ�. By taking a subset A of GFðqÞ� such that AU f0g is closed under
addition we may construct a maximal arc whose conics correspond to elements of A.
Hence the theorem also implies the existence of degree r maximal arcs in these planes
for all r dividing n, though it may be that some of these sub-arcs are of Denniston
type. But the following lemma shows that non-Denniston sub-arcs may be obtained
from non-Denniston maximal arcs for rd 8.
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Lemma 5. Let G be a closed set of conics giving rise to a degree 8c n < q=2 maximal

arc K in PGð2; qÞ that is not of Denniston type. Then there exist maximal arcs of

degree r that are not of type Denniston in PGð2; qÞ for all rd 8, r dividing n.

Proof. If we choose Fa;b;l;Fa 0;b 0;l 0 A G, then the conics Fa;b;l;Fa 0;b 0;l 0 and
Fa;b;l lFa 0;b 0;l 0 are contained in a (unique) pencil F (see [7, Lemma 2.1]). Since K
is not of Denniston type, the conics of G are not all contained in a single pencil
of conics, so we may choose some Fa 00;b 00;l 00 not contained in F. Taking the closure
underl of Fa;b;l;Fa 0;b 0;l 0 and Fa 00;b 00;l 00 then gives rise to a maximal arc K8 of degree
8 whose conics are not all contained in a single pencil and so is not of Denniston type
(this uses the fact proved in the next section that the partition of K into disjoint
conics on a common nucleus is unique). Non-Denniston maximal arcs of degree r, for
all rd 8, r dividing n, may then be obtained by extending the set of conics of K8 by
other elements of G. r

3 The structure of the maximal arcs

3.1 Conics and substructures within the maximal arcs.

Theorem 6. Let K be a degree n < q=2 maximal arc in PGð2; qÞ constructed from

a closed set of conics G with nucleus F0. Then the point set of K contains no non-

degenerate conics apart from those of G.

Proof. Suppose K does contain some conic C other than those of G. Since five points
of a non-degenerate conic determine a unique non-degenerate conic, C meets each of
n� 1 conics of G in at most four points. One of the points of C may be the nucleus F0

of the other conics. Hence we require that 4ðn� 1Þd q, and so nd q=4þ 1. Since n
divides q, this implies nd q=2, and the result is proved. r

The case n ¼ q=2 really is an exception to the theorem. For instance, the dual of a
regular hyperoval may be thought of as a degree q=2 maximal arc of Denniston type.
But the fact that the collineation stabiliser of the regular hyperoval is transitive on
exterior lines shows that the partition of the degree q=2 maximal arc into conics on a
common nucleus is not unique.

Corollary 1. Let K be a degree n < q=2 maximal arc in PGð2; qÞ constructed from a

closed set of conics G with nucleus F0. Then any element of the collineation stabiliser of

K permutes the conics of G.

Proof. A conic in K must be mapped to a conic contained in K. r

The corollary will be useful in the next subsection when the collineation stabilisers
of the maximal arcs are examined.

The following theorem gives an easy geometric characterisation of the Denniston
maximal arcs.
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Theorem 7. Let K be a degree n maximal arc in PGð2; qÞ constructed from a closed set

of conics G with nucleus F0. Then K is of Denniston type if and only if its dual contains

a regular hyperoval.

Proof. Let K be as in the statement of the theorem. Suppose K is of type Denniston.
Then it is stabilised by a cyclic group of order qþ 1 whose orbits on points are a
union of disjoint conics with common nucleus and exterior line. The action on the
lines of the plane is the same in that orbits on the lines form a pencil of the same form
in the dual plane (see for instance [6]). Hence the orbit of any non-fixed line that is
exterior to K together with the fixed line forms a regular hyperoval in the dual plane.
By definition this hyperoval is contained in the dual of K.

Conversely, suppose that the dual maximal arc KD of K does contain a regular
hyperoval H with nucleus N. We show that the conics of K are contained in a pencil
of the required form, and hence K is of Denniston type.

First notice that since HHKD the dual maximal arc HD of H contains K. We
show that HD can be partitioned into a set of q=2� 1 conics in a linear pencil with
common nucleus F0, i.e. is of Denniston type.

As noted above a Denniston maximal arc admits a cyclic group of order qþ 1 in
its collineation stabiliser, and admitting such a cyclic group characterises the Den-
niston maximal arcs. The orbits of this group are the points of q� 1 conics, a single
fixed point which is the nucleus of the conics, and the points on a single line. This
group has an identical orbit structure in the dual plane, and so the dual of a Denniston
maximal arc is also of Denniston type. Now a regular hyperoval admits a collineation
stabiliser that is transitive on lines exterior to the hyperoval, and contains cyclic sub-
groups of order qþ 1. Hence for any exterior line l to a regular hyperoval that we
might choose, there exists a cyclic subgroup of order qþ 1 stabilising the hyperoval,
and fixing l. It then follows that the dual of a regular hyperoval may be thought of as
a degree q=2 Denniston maximal arc, all of whose conics have common nucleus,
namely the point of the dual plane corresponding to the line l.

Now the point F0 corresponds to an external line to H in the dual plane. So choose
the cyclic group of order qþ 1 fixing H and the line F0 in the dual plane. The dual of
H is then partitioned into q=2� 1 conics on common nucleus F0 and contains K; let
Cq=2�1 denote the set of these q=2� 1 conics.

If all of the conics of K are in Cq=2�1, then K is Denniston and we are done. So
suppose some conic C of K is not in Cq=2�1. Then a nucleus and three points (forming
a quadrangle) determine a unique conic on that nucleus. The conics of Cq=2�1 and C
all share the nucleus F0 and so C meets each conic of Cq=2�1 in at most two points.
But C has qþ 1 > 2ðq=2� 1Þ points, giving a contradiction. Hence the only conics
contained in K are some subset of Cq=2�1, and K is Denniston. r

The following corollary answers a question posed in [7].

Corollary 2. The dual of a non-Denniston maximal arc constructed from a closed set of

conics cannot be constructed from a closed set of conics.
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Hence a non-Denniston closed set of conics always gives two non-isomorphic max-
imal arcs. The case for Dennistons is quite di¤erent; the dual of a Denniston maximal
arc is always a Denniston maximal arc since both the maximal arc and its dual admit
a cyclic group of order qþ 1. In the case that q is a square and the Denniston maxi-
mal arc has degree

ffiffiffi
q

p
, the dual is often isomorphic to the original maximal arc. In

fact computer calculations based on the results contained in [6] show that the smallest
order plane in which a degree

ffiffiffi
q

p
Denniston maximal arc is not isomorphic to its

dual is PGð2; 256Þ. There take the pencil Fl : x
2 þ axyþ y2 þ lz2 ¼ 0 where a is a

fixed element of GFð256Þ such that the quadratic polynomial x2 þ axþ 1 is irreduc-
ible, and let

l A f0; 1;o;o2;o33;o5;o36;o101;o15;o47;o50;o225;o138;o198;o25;o26g

where o is a generator of GFð256Þ� and satisfies o25 þ o ¼ 1. Then this describes a
degree 16 maximal arcs in PGð2; 256Þ that is not isomorphic to its dual.

Apart from maximal arcs arising from closed sets of conics the known construc-
tions of degree n maximal arcs in PGð2; qÞ are hyperovals (n ¼ 2) and their duals
(n ¼ q=2), the construction of Denniston [4], and two constructions of J. A. Thas [8],
[9]. The maximal arcs constructed in [9] were shown in [6] to be of Denniston type
in PGð2; qÞ. Those in [8] are sometimes known as Thas 074 maximal arcs and are of
two types. The first uses a spread of tangent lines to an elliptic quadric in PGð3; qÞ
and gives rise to degree q maximal arcs in PGð2; q2Þ for all even q. These were also
shown in [6] to be of Denniston type. The second uses a spread of tangent lines to a
Tits’ ovoid in PGð3; qÞ and gives rise to degree q maximal arcs in PGð2; q2Þ for all
q ¼ 22hþ1, hd 1. It was shown in [6] that up to isomorphism there are two such
maximal arcs in PGð2; q2Þ arising using the Tits’ ovoid and that these maximal arcs
were not of Denniston type. The collineation stabilisers of the maximal arcs were also
calculated and shown to have distinct orders. The Thas 074 maximal arcs were char-
acterised in [5] as exactly those degree q maximal arcs in PGð2; q2Þ stabilised by an
homology of order q� 1. It follows that the duals of the Thas 074 maximal arcs are
also of Thas 074 type, and since the order of the collineation stabiliser of the Thas 074
maximal arc uniquely identifies that maximal arc it follows that the Thas 074 maxi-
mal arcs are isomorphic to their dual maximal arcs. The following corollary is then
an immediate consequence of this and the previous corollary.

Corollary 3. The Thas 074 maximal arcs arising from a spread of tangent lines to a Tits’

ovoid cannot be constructed from a closed set of conics.

We conclude this section by showing that a non-linear closed set of conics cannot
contain pairs of ‘‘large’’ linear closed sets of conics.

Theorem 8. Let K be a degree n maximal arc in PGð2; qÞ arising from a closed set of

conics. SupposeK contains two maximal arcsK1 andK2 of degrees n1 d 4 and n2 d 4,
that are of Denniston type and are contained in distinct pencils, then n1n2 c 2n.
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Proof. Define an incidence structure ðP;B;IÞ as follows. The points P are the
n� 1 conics of the closed set of conics of K. The blocks are the sets of the form
fC1;C2;C1 lC2g for C1;C2 A P, C1 0C2, and incidence is containment. Then it is
easily shown that the incidence structure is a 2� ðn� 1; 3; 1Þ design. We show that it
is a projective space of dimension ðlog2 nÞ � 1 over GFð2Þ by showing that it satisfies
the axiom of Pasch.

For any distinct conics C1;C2 and C3 in a closed set, it is readily verified
that ðC1 lC2Þl ðC3 lC2Þ ¼ C1 lC3. Also note that l is commutative. Let
fC1;C2;C3g and fC1;C

0
2;C

0
3g be distinct blocks on C1. Then C2 lC 0

3 ¼ ðC3 lC1Þl
ðC 0

2 lC1Þ ¼ C3 lC 0
2. Hence the block joining C2 to C 0

3 meets the block joining C3 to
C 0

2 in a point of the setP, and so the design is a projective space PGððlog2 nÞ � 1; 2Þ [3,
Section 1.4].

Notice that any closed subset of conics of K corresponds to a subspace of
PGððlog2 nÞ � 1; 2Þ. Hence K1 and K2 correspond to subspaces of dimension
ðlog2 n1Þ � 1 and ðlog2 n2Þ � 1 respectively. Now a closed triple of conics determines
a unique pencil of conics, and so for K1 and K2 to be contained in distinct pencils,
their corresponding subspaces must meet in at most a point in PGððlog2 nÞ � 1; 2Þ.
Hence if m is the dimension of the span of the subspaces corresponding to K1 and K2,
we require that the dimension of intersection ðlog2 n1Þ � 1þ ðlog2 n2Þ � 1�m is at
most 0. But m is at most ðlog2 nÞ � 1. Hence we get the condition that ðlog2 n1Þ � 1þ
ðlog2 n2Þ � 1� ðlog2 nÞ þ 1c 0, i.e. n1n2 c 2n. r

Corollary 4. A degree nd 16 maximal arc arising from a non-Denniston closed set of

conics contains at most one degree n=2 Denniston maximal arc.

Proof. Suppose a degree n maximal arc arising from a non-Denniston closed set of
conics contains two degree n=2 Denniston maximal arcs. Then these maximal arcs
must be in distinct pencils. Applying the theorem then gives n

2
n
2
c 2n and so nc 8. r

The bound given in the corollary can be tight. Seven of the degree 16 maximal arcs
in PGð2; 64Þ constructed in [7] are shown there to contain unique degree 8 Denniston
maximal arcs. Taking the odd order extensions of these maximal arcs via Theorem 3
will also give further examples.

3.2 Collineations of the maximal arcs. In [6], the collineation stabilisers of the Den-
niston maximal arcs were calculated in terms of the additive subgroups of GFðqÞ that
defined them. In this section we examine the collineation stabilisers of closed sets of
conics that are not of Denniston type. The general problem of calculating the colli-
neation stabilisers seems at present to be intractable, but results may be obtained for
particular cases.

In the previous subsection we saw that for n < q=2, the only conics contained
within a maximal arc constructed from a closed set of conics were those of the closed
set of conics. We use this fact to prove results about the collineation stabilisers.

Theorem 9. Let K be a non-Denniston maximal arc of degree n0 q=2 in PGð2; qÞ
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arising from a closed set of conics. Then there is at most one non-identity element of

PGLð3; qÞK that fixes each of the conics of the closed set. Hence the subgroup of

PGLð3; qÞ fixing each of the conics of the closed set has order dividing 2h, where

q ¼ 2h.

Proof. Suppose thatK contains the three conics C1;C2, C1 lC2 in some linear pencil
F, and where C1 lC2 is the composition of C1 and C2 as defined in the introduction.
Then it follows that the union of the conics of K in F with the nucleus is the set of
points of a degree at least 4 maximal arc Ksub that is of type Denniston. Now since
K is not of Denniston type there exists some conic C 0 of K that is not contained
in F. The closed set of conics C1;C

0, C1 lC 0 is in some linear pencil F 0, and the
conics of F 0 that are contained in K together with the nucleus again determine a
maximal arc K 0

sub of Denniston type.
We first show that the line at infinity of the pencil F is distinct from the line at

infinity of F 0. Suppose we have some non-degenerate conic with quadratic form FC ,
and suppose there is a line l exterior to the conic and whose points are the zeros of
some (degenerate) quadric Fl . Then, just as two non-intersecting conics, taking GFðqÞ
linear combinations of FC and Fl determines a unique pencil of conics. Since F0F 0

share the conic C1, it follows that the line at infinity of F must be distinct from that
of F 0.

The full collineation stabiliser of a pencil of conics of the form we are interested in is
isomorphic to GFðq2Þ� cAutðGFðq2ÞÞ, and the homography stabiliser is isomorphic
to GFðq2Þ� cC2, where C2 is an elation group of order 2 (see [6]). In [6] it is shown
that the homography/collineation stabiliser of any Denniston maximal arc of degree
n, 2 < n < q=2, is a subgroup of such a group. It is also shown that if you fix each
of the conics in the Denniston maximal arc then this homography stabiliser is iso-
morphic to the semidirect product Cqþ1 cC2 of a cyclic group, Cqþ1 of order qþ 1,
whose orbits are the elements of the pencil with an elation of order 2. Now every non-
trivial element of Cqþ1 fixes a unique line, that line being the line at infinity of the
pencil. So such an element cannot fix both the line at infinity of F and F 0. It follows
that no non-trivial element of the homography stabiliser of F can stabilise each of
the elements of F 0, apart from possibly an element of order 2. r

Note that in the proof the elation group C2 stabilising a (sub) Denniston maximal
arc has centre on the line at infinity of that maximal arc, and axis the line joining the
nucleus to the centre. Hence for such an element to stabilise the non-Denniston maxi-
mal arc, the lines at infinity of all the sub maximal arcs must be concurrent.

We now examine the case where the collineation stabiliser of a closed set of conics
is known to be a subgroup of some Denniston maximal arc that it contains.

Theorem 10. Let F be a non-linear closed set of conics in PGð2; 2hÞ and K the asso-

ciated maximal arc. Let Fsub be a linear closed subset of F and let Ksub be the asso-

ciated maximal arc, where jFsubj and jFj are coprime, jFsubjd 4. Suppose that the

collineation stabiliser PGLð3; qÞK of K fixes Ksub, then jPGLð3; qÞKj divides 2h.
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Proof. Let F;K;Fsub and Ksub be as in the statement of the theorem. Since Ksub is
fixed by PGLð3; qÞK and so by PGLð3; qÞK, it follows as in the previous theorem that
PGLð3; qÞK is a subgroup of the stabiliser of the Denniston maximal arc K, and so is
isomorphic to a group of the form GFðq2Þ� cC2. Now GFðq2Þ� cC2 is isomorphic
to G ¼ ðCqþ1 � Cq�1ÞcC2 where Cqþ1 is as in the proof of the previous theorem and
Cq�1 is a (cyclic) homology group of order q� 1. In [6] it is shown that the homology
group has centre the nucleus of Ksub and axis the line at infinity of the pencil asso-
ciated with Ksub.

Let g be an non-identity element of PGLð3; qÞK. There are two cases to consider.
(i) g A Cqþ1 � Cq�1, g0 1. Suppose there exists i such that gi A Cq�1, g

i 0 1. Now
gi stabilises K. The orbits of non-fixed points of gi all have the same length, l say.
On a line through the nucleus there are jFj points of K, hence l divides jFj. But gi

also stabilises Ksub and so l divides jFsubj. This contradicts our assumption that jFj
and jFsubj are coprime. Hence there does not exist i with gi A Cq�1 and gi 0 1. Since
qþ 1 and q� 1 are coprime it follows that g A Cqþ1.

Suppose g0 1. Now as previously mentioned the orbits of Cqþ1 are the conics of
the pencil that make up Ksub, together with the nucleus and the line at infinity. So the
orbits of the group generated by g not on the nucleus or the line at infinity are subsets
of conics of size at least three. But three such points and the nucleus determine a
unique conic, and this conic is an orbit of Cqþ1. Hence since g stabilises K it follows
that K is a union of conics of the pencil determined by Cqþ1. Applying Abatangelo
and Larato’s characterisation gives that K is then Denniston, contradicting our
hypothesis. Hence g ¼ 1.

(ii) g B Cqþ1 � Cq�1. Then g2 A Cqþ1 � Cq�1 and arguing as in (i) gives that g2 ¼ 1.
So g has order 2 and so is an elation. Suppose two distinct elations in G stabilise both
K and Ksub. Then it is easily shown that their product is in Cqþ1 � Cq�1 and is the
identity if and only if they are equal. It follows that at most one elation in G fixes K
and Ksub. Hence the homography stabiliser of K has order at most 2, and the colli-
neation stabiliser has order at most 2h. r

As mentioned at the end of the previous section, seven of non-Denniston degree 16
maximal arcs in PGð2; 64Þ given in [7] contain a unique Denniston degree 8 maximal
arc. Hence they have collineation stabilisers of order dividing 12. In fact in the paper
it is shown that five of them have collineation stabiliser of order 4, and three have
collineation stabiliser of order 2. But the above theorem and the details of the proof
explain the structure of the groups.

Finally, taking extensions of maximal arcs satisfying this theorem via Theorem 3
will also give maximal arcs that also have small order collineation stabilisers.

4 Conclusion

In this paper and in [7] several constructions of closed sets of conics that are non-
linear, i.e. give rise to maximal arcs which are not of Denniston type, have been given.
The largest known maximal arcs that are part of a class are of degree 2mþ1 in GFð22mÞ
([7, Theorem 3.3]). It would be interesting to know what the largest n is such that in
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PGð2; qÞ there exists a non-linear closed set of conics giving rise to a maximal arc of
degree n.
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