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Wall Mediated Transport in Confined Spaces: Exact Theory for Low Density
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We present a theory for the transport of molecules adsorbed in slit and cylindrical nanopores at low
density, considering the axial momentum gain of molecules oscillating between diffuse wall reflections.
Good agreement with molecular dynamics simulations is obtained over a wide range of pore sizes,
including the regime of single-file diffusion where fluid-fluid interactions are shown to have a negligible
effect on the collective transport coefficient. We show that dispersive fluid-wall interactions consid-
erably attenuate transport compared to classical hard sphere theory.

DOI: 10.1103/PhysRevLett.91.126102 PACS numbers: 68.43.Jk, 47.55.Mh
actions lead to a weakly density dependent friction factor
at the pore wall that influences the surface slip, and which where J is the flux through the pore, � is the number
The problem of transport in small pores and confined
spaces is one of long-standing interest, which is now
receiving renewed attention due to its importance to
applications of new nanomaterials being vigorously de-
veloped. Nevertheless, despite a long history dating back
to the classical work of Knudsen [1], our understanding of
the subject is still relatively rudimentary with no suc-
cessful theory except for certain limiting situations.
Classical nonequilibrium thermodynamic models [2,3]
based on purely viscous flow are increasingly inaccurate
at low densities and in molecularly sized pores where the
relevant field quantities are ill-defined. Further, recent
simulation and modeling studies in our laboratory [4,5]
have confirmed that under such conditions momentum
exchange processes associated with molecular collisions
at the pore walls lead to finite surface slip that is not
captured in the classical models. Such mechanisms are
not unknown, and historically have received attention
[1,6,7] using kinetic theory. However, these classical
works have considered noninteracting systems, and the
associated Knudsen diffusivity is applicable under such
conditions. While it is unclear how these results apply to
real interacting systems, it is common to interpret trans-
port in this way, while introducing an empirical activated
diffusion in micropores [8].

The development of transport theories incorporating
more realistic interactions in small pores has long been a
goal of subsequent workers; however success has been
limited, with mechanical models involving many body
interactions fast becoming intractable [9,10]. While these
latter works have predominantly focused on intermolecu-
lar interactions and highlighted the mathematical com-
plexities involved, our studies have shown [4,5] that, at
least at low densities, it is not the intermolecular inter-
actions in the pore fluid but the surface interactions that
govern the transport. Interpretation of equilibrium and
nonequilibrium molecular dynamics (EMD and NEMD,
respectively) simulations revealed that the surface inter-
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is approximately consistent with kinetic theory estimates.
Here we build on these initial studies and develop an exact
theory for the low-density transport coefficient in slit-
shaped and cylindrical nanopores, considering the axial
momentum gain during oscillatory motion between dif-
fuse wall reflections. The theory is validated against MD
simulations, and it is found that the wall potential field,
neglected in the classical developments, considerably
attenuates the transport in small pores. Furthermore,
the range of conditions corresponding to the ‘‘low-density
region’’ is quite broad, so that many industrial applica-
tions take place close enough to this limit for the model to
be of practical interest. The low-density limit diffusion
coefficient can also be used in the estimation of the
transport mobility in single-file diffusion processes.

The transport theory we present models fluid mole-
cules being forced along a pore of a microporous solid.
Consider a system of fluid molecules adsorbed into a
slit pore, at temperature T. We describe the slit pore in
Cartesian coordinates, with the pore walls normal to the
x axis and the pore axis lying in the z direction. The pore-
fluid interaction is represented by a potential V�x�, sym-
metric about the pore center. Such a potential precludes
the exchange of z momentum between molecules and the
pore, which is an essential part of the transport dynamics.
We therefore introduce a further boundary condition —
the average zmomentum of a molecule is zero whenever a
fluid molecule ‘‘reflects’’ off a wall. Such reflections
occur when _xx � 0; and there is no potential minimum
between the molecule and the pore wall. This boundary
condition represents a diffuse reflection [11]. Details of
the treatment of the y momentum on reflection are un-
important for the theory.

The mechanism driving the diffusion is an external
force field of magnitude F in the positive z direction,
applied to each molecule. In such a system, the transport
diffusion coefficient D0 is given by

D0 � JkBT=�F � hvzikBT=F; (1)
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density of fluid molecules, hvzi is the average axial veloc-
ity, and kB is Boltzmann’s constant. We therefore seek to
determine hvzi via the model.

At low densities, fluid molecules rarely interact with
one another, and the dynamics of a molecule will be
dominated by its interaction with the pore. This dynamics
can be determined from the Hamiltonian

HS � V�x� � Fz� p2
x=2m� p2

y=2m� p2
z=2m:

We define

Ex � V�x�� p2
x=2m; Ey � p2

y=2m;

Ez � �Fz� p2
z=2m;

noting that they are constant between reflections, and
that Ex is constant throughout. The motion in the
x direction will therefore be periodic. Molecules will
either oscillate in one side of the pore, or across both
sides if they have sufficient energy. We assume that the
pore is centered at x � 0. We define x� and x� as the
bounds of the oscillation in the side of the pore where
x > 0, for molecules not crossing the center. For mole-
cules that do cross the center, we set x� to the upper
bound of the oscillation, and x� � 0. A molecule
passes through each x 2 �x�; x�� twice between wall
collisions — once at a time tx after a reflection, and later
at time tx before a reflection. In a symmetric pore, the
period between successive reflections, �, will be a con-
tinuous function of Ex, and therefore the average z mo-
mentum of a molecule at x 2 �x�; x�� will be
fFtx � F
��Ex� � tx�g=2 � F��Ex�=2. Considering a ca-
nonical distribution of energies, Eq. (1) yields

D0 �
kBT
F

hvzi

�
kBT
2m

R
1
�1

R
1
0 ��x; px�e

�Ex�x;px�=kBTdx dpxR
1
�1

R
1
0 e

�Ex�x;px�=kBTdx dpx
: (2)

The expression for Ex leads to

��x; px� �
�������
2m

p Z x��x;px�

x��x;px�

Ex�x; px� � V�x����1=2dx�:

We note here an early numerical treatment of molecular
trajectories [12] that instead averages the product of path
length and velocity in estimating the flux.

We derive a similar expression for D0 in a cylindrical
pore. Using cylindrical polar coordinates, the pore has
walls at radius R, and axis in the z direction. An external
force acts together with the solid-fluid interaction poten-
tial V�r�, and the average z momentum is zeroed at
reflections. A key difference originates from the cylin-
drical pore Hamiltonian

HC � V�r� � Fz� p2
r=2m� p2

�=2mr
2 � p2

z=2m;

in which the r and � components cannot be separated.
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Consequently, we can only separate HC into two parts:

Er � V�r��p2
r=2m�p2

�=2mr
2; Ez ��Fz�p2

z=2m:

The expression for D0 is now obtained as

D0�
kBT
2m

�

R
1
�1

R
1
�1

R
1
0 ��r;pr;p��e

�Er�r;pr;p��=kBTdrdprdp�R
1
�1

R
1
�1

R
1
0 e

�Er�r;pr;p��=kBTdrdprdp�
;

(3)

with ��r; pr; p�� given by

��r; pr; p�� �
�������
2m

p Z r��r;pr;p��

r��r;pr;p��

Er�r; pr; p�� � V�r��

� p2
�=2mr

�2��1=2dr�;

and where r��r; pr; p�� denote the bounds of oscillation.
Sidestepping algebraic details, we note that the above ex-
pression for the transport diffusion coefficient collapses
to the Knudsen result, when V�r� � 0 in the pore space.

Equations (2) and (3) have been solved here to obtain
estimates of the low-density transport diffusion coeffi-
cient for methane adsorption in carbon slit pores and
silica cylindrical pores. The slit pore walls were repre-
sented using the Steele 10-4-3 potential [13], with 12-6
Lennard-Jones (LJ) parameters defined via the Lorentz-
Berthelot combining rules (where "f=kB � 148:1 K,
 f � 0:381 nm for methane and "s=kB � 28:0 K,  s �
0:340 nm for carbon). The silica cylindrical pore walls
were considered infinitely thick and comprised of close-
packed LJ sites having [4,5] "s=kB � 290 K,  s �
0:29 nm. The solid-fluid interaction was determined by
summing the (LJ) interactions between pore atoms and a
methane molecule at various radii.

Values of D0 determined from the model, using these
potentials, are plotted in Figs. 1 and 2. For the slit pore
calculations (Fig. 1) the temperature was 298 K, and pore
widths (center-to-center distance between opposing car-
bon planes) ranged from 0.6 to 2.0 nm. For the cylindrical
pore (Fig. 2), the temperature was 450 K, with pore
diameters (center-to-center) ranging from 0.7 to 5 nm.
To validate the model, we have performed NEMD simu-
lations modeling the systems at low density (no greater
than 0:1 nm�3). The solid-fluid interaction potentials in
the simulations were identical to those used in the model,
with reflections between molecules and the pore wall
treated using diffuse boundary conditions [11]. Fluid-
fluid interactions were determined using a LJ potential,
cut off at 1.5 nm. The force field acceleration was chosen
in the range 0:002–0:02 nmps�2, which afforded linear
response behavior. To maintain constant temperature, a
Gaussian thermostat [14] was applied. The length of the
pores was selected to ensure that at least 500 molecules
were contained in the simulation cell, and each simula-
tion lasted 107 steps. The value of D0 was obtained from
126102-2
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FIG. 1. Variation of transport coefficient with slit width for
the adsorption of methane at 300 K in carbon slit pores. The
line corresponds to the model predictions and symbols to
simulation data. The inset shows a comparison of the velocity
profiles predicted by the model and generated by the simula-
tion, for a pore of 1.4 nm width.
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Eq. (1) and the values are depicted as the symbols in
Figs. 1 and 2. While showing excellent agreement with
the simulation results in these figures, the theory is com-
putationally faster by 2 to 3 orders of magnitude and
avoids the statistical variation inherent to simulations,
making it a very attractive alternative.

Depicted as the dash-dotted line in Fig. 2 is the
Knudsen result for the variation of transport coefficient
with pore diameter, showing considerable overprediction
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FIG. 2. Variation of transport coefficient with pore diameter
for the adsorption of methane at 450 K in cylindrical silica
pores. The inset shows a comparison of the streaming velocity
profiles predicted by the model and generated by the simula-
tion, for a 2.4 nm diameter pore.
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(even by orders of magnitude) by this classical theory
considering only hard sphere interactions. Clearly, dis-
persive interactions considerably attenuate the transport,
as they reduce the period of oscillation. The dashed curve
in Fig. 2 depicts a corrected Knudsen coefficient, in
which the pore radius is reduced by 0:92 fs to approxi-
mate the radius at the potential minimum, showing that
the excluded region accounts for most of the overpredic-
tion in pores smaller than about 1 nm diameter. Also
shown in the insets of Figs. 1 and 2 are comparisons of
the velocity profiles generated from NEMD and from the
model. In both cases, the model’s prediction for the ve-
locity profile across the pore is supported by the simula-
tion results.

While ignoring fluid-fluid interactions, the model is
applicable at all densities where the time spent by mole-
cules in interacting with each other is small compared to
that between such interactions. For example, consider a
monolayer in a slit pore. If the mean separation is taken as

that on a hexatic lattice, d �
�������������������
4=�H

���
3

pq
, the intermo-

lecular interaction time can be estimated as �t �
0:76

����������������������
m=kBT�H

p
, where a mean approach velocity of

2
���������������
kBT=m

p
(twice the mean thermal velocity) is assumed.

For a 0.8 nm pore at � � 0:1 nm�3 and T � 298 K, we
obtain �t � 6:8� 10�12 sec, while the oscillation period
h�i � 3:6� 10�13 sec [based on Eq. (1) and the value of
D0]. Thus, a molecule oscillates about 20 times between
intermolecular collisions, and the model is expected to be
accurate at this density which corresponds to a bulk
pressure of about 4 bars.

The above theory offers an attractive first-principles
option for the accurate prediction of transport coeffi-
cients in nanopores, overcoming the empiricism in
existing approaches [8]. As the momenta of different
molecules are uncorrelated in a smooth pore in the ab-
sence of fluid-solid interactions, the self and transport
diffusivities are identical and are determined from the
present theory. As discussed above, this transport diffu-
sivity is constant over a range of densities of practical
importance under supercritical conditions. This holds
even for single-file diffusion, as shown in Fig. 3 for
methane transport at 450 K in a 0.75 nm diameter silica
pore, in which only one layer can be accommodated. It
is evident that this transport diffusivity, obtained using
NEMD as well as EMD (where we used the autocor-
relation of the streaming velocity [4,5]), is constant at
the low-density value predicted remarkably well by the
theory. The density variation of the transport coefficient
is predominantly due to viscous effects [4,5], which are
absent in single-file diffusion where particle crossings are
rare. For the single component case, it is easily seen that
intermolecular ‘‘collisions’’ cannot affect the collective
transport coefficient in true single-file diffusion, where
they do not affect the center of mass motion or lateral
oscillation period. Consequently, the transport diffusivity
126102-3
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FIG. 3. Variation of transport coefficient with density for the
adsorption of methane at 450 K in a 0.75 nm diameter cylin-
drical silica pore. The left inset depicts the temporal variation
of the mean squared displacement of the center of mass and the
right that for a single particle, at a low as well as a high density.
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will be independent of density, which is confirmed by
Fig. 3. On the other hand, it is known [15,16] that self-
diffusion is nonclassical with mean squared displacement
hz2i /

��
t

p
when intermolecular collisions dominate. The

classical nature of the transport diffusivity is evident in
the inset of Fig. 3, illustrating linearity of the mean
squared displacement of the center of mass, hz2icm, with
time, obtained using EMD, at low (8� 10�5 nm�3) and
high (3:84 nm�3) density. However, for hz2i the slope is
unity at the low density and approaches 0.7 at the high
density, indicating transition to nonclassical behavior
when intermolecular interactions become important.
Thus, the value of the present theory in predicting the
diffusivity pertinent to actual transport is clearly evident.

In summary, a first-principles theory is developed that
determines the transport coefficient of an LJ fluid in a
nanopore under the action of the fluid-wall potential. The
theory is presented here using the diffuse reflection
boundary condition, and in the hard sphere limit yields
the classical Knudsen result. Nevertheless, the theory is
easily extended to accommodate other boundary condi-
tions, such as only partially diffuse reflection, which
may indeed be more realistic for some cases such as the
methane-nanotube system where a smooth energy land-
scape leading to predominantly specular reflection has
been noted using atomistic models [17,18]. In addition,
rough surfaces and potentials more complex than one-
dimensional as used here may also be considered, albeit
126102-4
with added computational burden. Indeed, more complex
potentials and pore topologies may yield behavior differ-
ent from that noted here, e.g., concentration dependence
of single-file transport diffusivity in networked pore
systems such as in silicalite observed for some gases but
not others [19]. In future work we hope to address such
problems.
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