Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

Geometric isomers of chloro-(6-methyl-1,4,8,11-tetraazacyclo-tetradecane-6-amine)cobalt(III) tetrachlorozincate(II)

Paul V. Bernhardt* and Brendan P. Macpherson

Department of Chemistry, The University of Queensland, Brisbane, Queensland 4072, Australia
Correspondence e-mail: p.bernhardt@uq.edu.au

Received 23 September 2003
Accepted 30 September 2003
Online 22 October 2003

The crystal structures of a pair of cis and trans isomers of the macrocyclic chloropentaamine title complex, as their tetrachlorozincate(II) salts, $\left[\mathrm{CoCl}\left(\mathrm{C}_{11} \mathrm{H}_{27} \mathrm{~N}_{5}\right)\right]\left[\mathrm{ZnCl}_{4}\right]$, are reported. The two distinct isomeric forms lead to significant variations in the $\mathrm{Co}-\mathrm{N}$ bond lengths and, furthermore, hydrogen bonding between the complex ions is influenced by the folded (cis) or planar (trans) conformations of the coordinated ligand.

Comment

The coordination chemistry of cyclic ligands may be expanded by the attachment of coordinating functional groups to the periphery of the ring to give so-called pendant-arm macrocycles. The pendant groups may be attached to the donor atoms (in the case of amines) or to the carbon skeleton. A family of penta- and hexadentate macrocyclic amines is now extant, bearing one or two primary amines attached to macrocyclic tetraamines of various sizes. One of the most studied representatives of this family is the pentadentate cyclam derivative 6 -methyl-1,4,8,11-tetraazacyclotetradecane-6-amine (L; Lawrance et al., 1992). Like its parent cyclam, the 14-membered macrocycle L has the capability of coordinating in either a folded (cis) or a planar (trans) configuration, with the pendant amine providing an extra donor group and structural rigidity. Three isomeric forms of pentadentate coordinated L have been structurally identified, viz. cis-[CoL$\mathrm{Cl}]\left(\mathrm{ClO}_{4}\right)_{2}$ (Lawrance et al., 1992) and two N-based isomeric trans forms. Specifically, in the trans form, the macrocyclic secondary amines may adopt either the RSRS (trans-I) configuration (Bernhardt et al., 2000), with all amine H atoms on the same side of the macrocyclic plane, or the RRSS (transIII) diastereomeric form, (III) (Hambley et al., 1992), with two H atoms up and two down. The sixth coordination site is available for ligand substitution reactions. In this work, we
report the crystal structures of cis- and trans- $[\mathrm{CoLCl}]^{2+}$ as their $\left[\mathrm{ZnCl}_{4}\right]^{2-}$ salts.

L

(II)
trans- $\mathrm{I}[\mathrm{CoLC}]\left[\mathrm{ZnCl}_{4}\right]$

cis-[CoLCl$]\left[\mathrm{ZnCl}_{4}\right]$

(III)
trans-III $[\mathrm{CoLCl}]\left(\mathrm{ClO}_{4}\right)_{2}$

The structure of cis-[CoLCl$]\left[\mathrm{ZnCl}_{4}\right]$, (I) (Fig. 1), reveals the folded conformation of the pentadentate coordinated macrocycle, with the Cl ligand occupying the coordination site adjacent to the primary amine. The $\mathrm{Co}-\mathrm{N}$ bond lengths (Table 1) are typical of a $\mathrm{Co}^{\mathrm{III}}$-amine and the $\mathrm{Co}-\mathrm{Cl}$ distance is also as expected. However, there are significant variations in the $\mathrm{Co}-\mathrm{N}$ bonds within the complex cation, notably the $\mathrm{Co}-$ N3 bond of $1.940(2) \AA$, which is the shortest, whereas the adjacent $\mathrm{Co}-\mathrm{N} 4$ bond of 1.970 (2) \AA is the longest. The corresponding coordinate bond lengths compare well with those determined for cis- $[\mathrm{CoLCl}]\left(\mathrm{ClO}_{4}\right)_{2}$ (Lawrance et al., 1992).

The $\left[\mathrm{ZnCl}_{4}\right]^{2-}$ anion in (I) exhibits a distorted tetrahedral geometry, with significant variations in the $\mathrm{Zn}-\mathrm{Cl}$ bond lengths (Table 1). The coordination angles also reveal a distortion from ideal tetrahedral symmetry. These distortions are related to hydrogen-bonding interactions with the amine H atoms of the coordinated macrocycle (Table 2). The Cl ligands $\mathrm{Cl} 2, \mathrm{Cl} 3$ and Cl 5 participate in hydrogen bonds with most of the amine H atoms, except that attached to atom N 2 , which makes no significant hydrogen-bonding contacts (Fig. 2). Interestingly, atom C 2 forms a trifurcated hydrogen-bonded motif involving amine H atoms from two separate complex cations. There is no correlation between the number of hydrogen-bonding interactions involving each acceptor and the respective $\mathrm{Zn}-\mathrm{Cl}$ bond length.

The structure of trans-I-[CoLCl][$\left.\mathrm{ZnCl}_{4}\right]$, (II) (Fig. 3), has also been determined. The macrocyclic secondary amines encircle the metal centre and the pendant primary amine occupies the coordination site trans to the Cl ligand. In contrast with the structure of the cis isomer, (I), the $\mathrm{Co}-\mathrm{N}$ bonds in (II) (Table 3) span a narrower range, while the $\mathrm{Co}-$ Cl bond length is significantly longer. The bond lengths determined match those reported for trans-I- $[\mathrm{CoLCl}]\left(\mathrm{ClO}_{4}\right)_{2}$ (Bernhardt et al., 2000). In addition, the bond lengths are not markedly different from those in the N -based diastereomer trans-III-[CoLCl] $\left(\mathrm{ClO}_{4}\right)_{2}$, (III) (Hambley et al., 1992).

Figure 1
A view of the cation and anion of (I), with 30% probability displacement ellipsoids. H atoms are shown as small spheres of arbitrary radii.

Molecular mechanics calculations (Bernhardt et al., 2002) have reproduced the variations in $\mathrm{Co}-\mathrm{N}$ and $\mathrm{Co}-\mathrm{Cl}$ bond lengths observed in cis-, trans-I- and trans-III- $[\mathrm{CoLCl}]^{2+}$. The folded cis configuration is best able to accommodate an expansion of the $\mathrm{Co}-\mathrm{N}$ bond lengths, whereas the trans isomers tend to enforce shorter coordinate bond lengths. These calculations agree with the reported crystal structures of these complexes.

Figure 2
A view of the hydrogen-bonding in (I). Alkyl H atoms have been omitted. Symmetry codes are as given in Table 2.

Figure 3
A view of the cation and anion of (II), with 30% probability displacement ellipsoids. H atoms are shown as small spheres of arbitrary radii.

Hydrogen bonding between the amine H atoms and the Cl ligands is again a feature in (II). Unlike the cis isomer, (I), each amine H atom participates in a hydrogen bond with a Cl ligand from either a $\left[\mathrm{ZnCl}_{4}\right]^{2-}$ anion or an adjacent complex cation (Fig. 4 and Table 4). Although atom Cl 1 is in proximity to the four macrocyclic NH groups, the $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ angles are too acute $\left(<120^{\circ}\right)$ to be considered significant hydrogen bonds.

In conclusion, a pair of cis and trans isomeric chloro-pentaamine-cobalt(III) complexes have each been crystallized as their tetrachlorozincate salts. The coordination geometries of the cations are the same as reported for the

Figure 4
A view of the hydrogen-bonding in (II). Alkyl H atoms have been omitted. Symmetry codes are as given in Table 4.
perchlorate salts of the respective isomers. Hydrogen bonding with the complex anions in this work has been found to be dependent on the isomeric form of the complex cation. In particular, the cis isomer, (I), possesses an unmatched hydrogen-bond donor ($\mathrm{N} 2-\mathrm{H} 2$) and acceptor (C14). In contrast, in the structure of the trans isomer, (II), all potential donors and acceptors are involved in hydrogen bonding.

Experimental

Reaction of $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ with $L \cdot 5 \mathrm{HCl}$ in aerated aqueous solution gives predominantly cis-[CoLCl$]^{2+}$, which may be separated from other products by cation exchange chromatography, as described by Lawrance et al. (1992). The cis-[CoLCl] $\left[\mathrm{ZnCl}_{4}\right]$ complex, (I), was crystallized from a concentrated HCl solution by addition of excess $\mathrm{ZnCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$. The trans-I- $[\mathrm{CoLCl}]^{2+}$ cation may be made selectively by reacting equimolar amounts of $\mathrm{Na}_{3}\left[\mathrm{Co}\left(\mathrm{CO}_{3}\right)_{3}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$ and $L \cdot 5 \mathrm{HCl}$, as reported by Bernhardt et al. (2000). Following purification by column chromatography, the complex was crystallized as trans-I[$\mathrm{Co} L \mathrm{Cl}]\left[\mathrm{ZnCl}_{4}\right]$, (II), by addition of excess $\mathrm{ZnCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ to an HCl solution.

Compound (I)

Crystal data

$\left[\mathrm{CoCl}\left(\mathrm{C}_{11} \mathrm{H}_{27} \mathrm{~N}_{5}\right)\right]\left[\mathrm{ZnCl}_{4}\right]$
$M_{r}=530.93$
Orthorhombic, Pcab
$a=11.619$ (1) \AA
$b=14.109$ (3) \AA
$c=23.517$ (3) \AA
$V=3855.2(10) \AA^{3}$
$Z=8$
$D_{x}=1.829 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Enraf-Nonius TurboCAD4 diffractometer
Non-profiled $\omega / 2 \theta$ scans
Absorption correction: ψ scan (North et al., 1968)
$T_{\text {min }}=0.284, T_{\text {max }}=0.335$
3385 measured reflections
3385 independent reflections

Mo $K \alpha$ radiation
Cell parameters from 25 reflections
$\theta=11.3-12.7^{\circ}$
$\mu=2.80 \mathrm{~mm}^{-1}$
$T=296$ (2) K
Prism, red
$0.6 \times 0.5 \times 0.5 \mathrm{~mm}$

2970 reflections with $I>2 \sigma(I)$
$\theta_{\text {max }}=25.0^{\circ}$
$h=0 \rightarrow 13$
$k=0 \rightarrow 16$
$l=0 \rightarrow 27$
3 standard reflections frequency: 120 min intensity decay: 1%

Table 1
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$ for (I).

$\mathrm{Co}-\mathrm{N} 1$	$1.961(2)$	$\mathrm{Co}-\mathrm{Cl} 1$	$2.2404(6)$
$\mathrm{Co}-\mathrm{N} 2$	$1.966(2)$	$\mathrm{Zn}-\mathrm{Cl} 3$	$2.2516(7)$
$\mathrm{Co}-\mathrm{N} 3$	$1.940(2)$	$\mathrm{Zn}-\mathrm{Cl} 2$	$2.2636(7)$
$\mathrm{Co}-\mathrm{N} 4$	$1.970(2)$	$\mathrm{Zn}-\mathrm{Cl} 4$	$2.2839(8)$
$\mathrm{Co}-\mathrm{N} 5$	$1.953(2)$	$\mathrm{Zn}-\mathrm{Cl} 5$	$2.3057(7)$
$\mathrm{N} 1-\mathrm{Co}-\mathrm{N} 2$	$87.37(8)$	$\mathrm{N} 3-\mathrm{Co}-\mathrm{Cl} 1$	$90.40(6)$
$\mathrm{N} 1-\mathrm{Co}-\mathrm{N} 3$	$175.99(8)$	$\mathrm{N} 4-\mathrm{Co}-\mathrm{N} 5$	$168.29(8)$
$\mathrm{N} 1-\mathrm{Co}-\mathrm{N} 4$	$95.38(8)$	$\mathrm{N} 4-\mathrm{Co}-\mathrm{Cl} 1$	$91.83(6)$
$\mathrm{N} 1-\mathrm{Co}-\mathrm{N} 5$	$95.64(8)$	$\mathrm{N} 5-\mathrm{Co}-\mathrm{Cl} 1$	$91.65(6)$
$\mathrm{N} 1-\mathrm{Co}-\mathrm{Cl} 1$	$92.32(6)$	$\mathrm{Cl} 2-\mathrm{Zn}-\mathrm{Cl} 3$	$105.98(3)$
$\mathrm{N} 2-\mathrm{Co}-\mathrm{N} 3$	$89.75(8)$	$\mathrm{Cl} 2-\mathrm{Zn}-\mathrm{Cl} 4$	$112.47(3)$
$\mathrm{N} 2-\mathrm{Co}-\mathrm{N} 4$	$91.42(8)$	$\mathrm{Cl} 2-\mathrm{Zn}-\mathrm{Cl} 5$	$104.43(3)$
$\mathrm{N} 2-\mathrm{Co}-\mathrm{N} 5$	$85.17(8)$	$\mathrm{Cl} 3-\mathrm{Zn}-\mathrm{Cl} 4$	$108.53(3)$
$\mathrm{N} 2-\mathrm{Co}-\mathrm{Cl} 1$	$176.76(6)$	$\mathrm{Cl} 3-\mathrm{Zn}-\mathrm{Cl} 5$	$113.48(3)$
$\mathrm{N} 3-\mathrm{Co}-\mathrm{N} 4$	$87.49(8)$	$\mathrm{Cl} 4-\mathrm{Zn}-\mathrm{Cl} 5$	$111.84(3)$
$\mathrm{N} 3-\mathrm{Co}-\mathrm{N} 5$	$81.32(8)$		

Refinement

Refinement on F^{2}
$(\Delta / \sigma)_{\text {max }}=0.001$
$R(F)=0.022$
$\Delta \rho_{\text {max }}=0.56 \mathrm{e} \AA^{-3}$
$w R\left(F^{2}\right)=0.056$
$\Delta \rho_{\text {min }}=-0.45 \mathrm{e}^{-3}$
$S=1.07$
3385 reflections
Extinction correction: SHELXL97
(Sheldrick, 1997)
Extinction coefficient: 0.00173 (8)

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0263 P)^{2}\right.$
$+3.6352 P]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3$

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},{ }^{\circ}\right)$ for (I).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N1-H1 $\cdots \mathrm{Cl} 2^{\mathrm{i}}$	0.91	2.33	$3.214(2)$	164
N3-H3 $\cdots \mathrm{Cl} 2$	0.91	2.60	$3.341(2)$	139
N4-H4 $\mathrm{Cl}^{\mathrm{ii}}$	0.91	2.48	$3.272(2)$	145
N5-H5C $\cdots \mathrm{Cl}^{\text {iii }}$	0.90	2.66	$3.494(2)$	155
N5-H5D $\cdots \mathrm{Cl} 2$	0.90	2.67	$3.458(2)$	147
N5-H5D $\cdots \mathrm{Cl} 1^{\mathrm{i}}$	0.90	2.85	$3.462(2)$	127

Symmetry codes: (i) $-x,-y, 1-z$; (ii) $\frac{1}{2}-x, y, \frac{1}{2}+z$; (iii) $\frac{1}{2}-x, y-\frac{1}{2}, 1-z$.

Compound (II)

Crystal data
$\left[\mathrm{CoCl}\left(\mathrm{C}_{11} \mathrm{H}_{27} \mathrm{~N}_{5}\right)\right]\left[\mathrm{ZnCl}_{4}\right]$
$M_{r}=530.93$
Monoclinic, $P 2_{2} / c$
$a=11.9431$ (9) \AA
$D_{x}=1.76 \mathrm{Mg} \mathrm{m}^{-3}$
Mo K α radiation
reflections
$b=12.167$ (1) A
$c=13.9670$ (7) \AA
$\theta=11.3-13.9^{\circ}$
$\beta=99.165$ (7) ${ }^{\circ}$
$\mu=2.70 \mathrm{~mm}^{-1}$
$V=2003.7$ (2) \AA^{3}
$T=296$ (2) K
Prism, red
$0.5 \times 0.5 \times 0.1 \mathrm{~mm}$

Data collection

Enraf-Nonius TurboCAD4	$R_{\text {int }}=0.024$
diffractometer	$\theta_{\max }=25.0^{\circ}$
Non-profiled $\omega / 2 \theta$ scans	$h=0 \rightarrow 14$
Absorption correction: ψ scan	$k=0 \rightarrow 14$
(North et al., 1968)	$l=-16 \rightarrow 16$

$T_{\text {min }}=0.346, T_{\text {max }}=0.774$
3 standard reflections
3698 measured reflections frequency: 120 min
3518 independent reflections
2570 reflections with $I>2 \sigma(I)$ intensity decay: 6%

Table 3
Selected geometric parameters $\left({ }^{\circ},^{\circ}\right)$ for (II).

$\mathrm{Co}-\mathrm{N} 1$	$1.958(3)$	$\mathrm{Co}-\mathrm{Cl} 1$	$2.256(1)$
$\mathrm{Co}-\mathrm{N} 2$	$1.944(3)$	$\mathrm{Zn}-\mathrm{Cl} 2$	$2.2880(11)$
$\mathrm{Co}-\mathrm{N} 3$	$1.955(3)$	$\mathrm{Zn}-\mathrm{Cl} 3$	$2.2969(11)$
$\mathrm{Co}-\mathrm{N} 4$	$1.957(3)$	$\mathrm{Zn}-\mathrm{Cl} 4$	$2.2723(11)$
$\mathrm{Co}-\mathrm{N} 5$	$1.961(3)$	$\mathrm{Zn}-\mathrm{Cl} 5$	$2.2420(11)$
$\mathrm{N} 1-\mathrm{Co}-\mathrm{N} 2$	$87.70(13)$	$\mathrm{N} 3-\mathrm{Co}-\mathrm{Cl} 1$	$90.37(9)$
$\mathrm{N} 1-\mathrm{Co}-\mathrm{N} 3$	$176.58(13)$	$\mathrm{N} 4-\mathrm{Co}-\mathrm{N} 5$	$94.65(13)$
$\mathrm{N} 1-\mathrm{Co}-\mathrm{N} 4$	$96.04(13)$	$\mathrm{N} 4-\mathrm{Co}-\mathrm{Cl} 1$	$90.60(9)$
$\mathrm{N} 1-\mathrm{Co}-\mathrm{N} 5$	$94.34(13)$	$\mathrm{N} 5-\mathrm{Co}-\mathrm{Cl} 1$	$172.58(9)$
$\mathrm{N} 1-\mathrm{Co}-\mathrm{Cl} 1$	$90.30(10)$	$\mathrm{Cl} 2-\mathrm{Zn}-\mathrm{Cl} 3$	$108.68(4)$
$\mathrm{N} 2-\mathrm{Co}-\mathrm{N} 3$	$88.95(12)$	$\mathrm{Cl} 2-\mathrm{Zn}-\mathrm{Cl} 4$	$108.70(4)$
$\mathrm{N} 2-\mathrm{Co}-\mathrm{N} 4$	$176.17(12)$	$\mathrm{Cl} 2-\mathrm{Zn}-\mathrm{Cl} 5$	$108.79(4)$
$\mathrm{N} 2-\mathrm{Co}-\mathrm{N} 5$	$84.20(12)$	$\mathrm{Cl} 3-\mathrm{Zn}-\mathrm{Cl} 4$	$106.37(4)$
$\mathrm{N} 2-\mathrm{Co}-\mathrm{Cl} 1$	$90.22(9)$	$\mathrm{Cl} 3-\mathrm{Zn}-\mathrm{Cl} 5$	$110.79(4)$
N3-Co-N4	$87.30(12)$	$\mathrm{Cl} 4-\mathrm{Zn}-\mathrm{Cl} 5$	$113.39(4)$
$\mathrm{N} 3-\mathrm{Co}-\mathrm{N} 5$	$84.66(12)$		

Refinement

Refinement on F^{2}
$R(F)=0.034$
$w R\left(F^{2}\right)=0.095$
$S=1.03$
3518 reflections
208 parameters
H -atom parameters constrained

$$
\begin{aligned}
& \begin{array}{c}
w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0565 P)^{2}\right. \\
\quad+0.6197 P] \\
\text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }<0.001 \\
\Delta \rho_{\max }=0.51 \mathrm{e}^{-3} \AA^{-3} \\
\Delta \rho_{\min }=
\end{array} \mathrm{C}^{-3}
\end{aligned}
$$

Table 4
Hydrogen-bonding geometry ($\AA{ }^{\circ}{ }^{\circ}$) for (II).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{Cl} 5^{\mathrm{i}}$	0.91	2.60	3.393 (3)	146
$\mathrm{N} 2-\mathrm{H} 2 \cdots \mathrm{Cl} 1^{\text {ii }}$	0.91	2.58	3.316 (3)	139
N3-H3 \cdots Cl ${ }^{\text {iii }}$	0.91	2.54	3.256 (3)	135
$\mathrm{N} 4-\mathrm{H} 4 \cdots \mathrm{Cl} 2$	0.91	2.75	3.395 (3)	129
$\mathrm{N} 5-\mathrm{H} 5 \mathrm{C} \cdots \mathrm{Cl} 3^{\text {iv }}$	0.90	2.49	3.327 (3)	156
$\mathrm{N} 5-\mathrm{H} 5 \mathrm{D} \cdots \mathrm{Cl4}{ }^{\text {v }}$	0.90	2.57	3.420 (3)	159

Symmetry codes: (i) $-x, \frac{1}{2}+y, \frac{3}{2}-z$; (ii) $-x,-y, 1-z$; (iii) $x,-\frac{1}{2}-y, z-\frac{1}{2}$; (iv) $x, 1+y, z ;$ (v) $1-x, \frac{1}{2}+y, \frac{3}{2}-z$.

All H atoms were included at estimated positions and constrained using a riding model ($\mathrm{N}-\mathrm{H}=0.90-0.91 \AA$ and $\mathrm{C}-\mathrm{H}=0.96-0.97 \AA$).

For both compounds, data collection: CAD-4 EXPRESS (EnrafNonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SHELXS86 (Sheldrick, 1985); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3
for Windows (Farrugia, 1997) and PLUTON (Spek, 1990); software used to prepare material for publication: WinGX (Farrugia, 1999).

PVB acknowledges financial support from the University of Queensland and the Australian Research Council.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: TA1423). Services for accessing these data are described at the back of the journal.

References

Bernhardt, P. V., Macpherson, B. P. \& Martinez, M. (2000). Inorg. Chem. 39, 5203-5208.
Bernhardt, P. V., Macpherson, B. P. \& Martinez, M. (2002). J. Chem. Soc. Dalton Trans. pp. 1435-1441.
Enraf-Nonius (1994). CAD-4 EXPRESS. Version 5.1/1.2. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Hambley, T. W., Lawrance, G. A., Martinez, M., Skelton, B. W. \& White, A. H. (1992). J. Chem. Soc. Dalton Trans. pp. 1643-1648.

Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
Lawrance, G. A., Manning, T. M., Maeder, M., Martinez, M., O'Leary, M. A., Patalinghug, W. C., Skelton, B. W. \& White, A. H. (1992). J. Chem. Soc. Dalton Trans. pp. 1635-1641.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Sheldrick, G. M. (1985). SHELXS86. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXL97. Release 97-2. University of Göttingen, Germany.
Spek, A. L. (1990). Acta Cryst. A46, C-34.

