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The X-ray crystal structures are reported of four novel and

potentially O,N,S-tridentate donor ligands that demonstrate

antitumour activity. These ligands are 1-[(4-methylthiosemi-

carbazono)methyl]-2-naphthol, C13H13N3OS, (III), 1-[(4-ethyl-

thiosemicarbazono)methyl]-2-naphthol, C14H15N3OS, (IV),

1-[(4-phenylthiosemicarbazono)methyl]-2-naphthol, C18H15-

N3OS, (V), and 1-[(4,4-dimethylthiosemicarbazono)methyl]-

2-naphthol dimethyl sulfoxide solvate, C14H15N3OS�C2H6OS,

(VI). These chelators are N4-substituted thiosemicarba-

zones, each based on the same parent aldehyde, namely

2-zhydroxynaphthalene-1-carboxaldehyde isonicotinoylhy-

drazone. Conformational variations within this series are

discussed in relation to the optimum conformation for metal-

ion binding.

Comment

Due to its critical role in DNA synthesis and proliferation, iron

is a potential target for the treatment of cancer (Richardson,

2002). To this end, the cellular antiproliferative effects of a

number of iron-speci®c chelators and their complexes have

been examined. A class of chelators with pronounced, and

selective, activity against tumour cells are the thiosemi-

carbazones. The mechanism by which these compounds act is

still not well understood, but chelation of intracellular Fe and

other metal ions is believed to be important. A pertinent

example is 3-aminopyridine-2-carbaldehyde thiosemicarba-

zone (also known as triapine), (I), which is a potent inhibitor

of ribonucleotide reductase (Finch et al., 1999), an enzyme

which catalyzes the rate-limiting step in DNA synthesis.

Recently, we reported (Lovejoy & Richardson, 2002) the

antiproliferative activity of a series of novel thiosemi-

carbazones based on 2-hydroxynaphthalene-1-carbox-

aldehyde, and found that many of them were highly active

against neoplastic cellular proliferation but had much less

effect on normal cells. Interestingly, structural variations at the

thiosemicarbazide moiety have a marked effect on biological

activity. For example, the N2-methyl-substituted thio-

semicarbazone (II) exhibits poor antiproliferative activity

(Lovejoy & Richardson, 2002), and we have reported the

crystal structure of this compound (Lovejoy et al., 2000). The

absence of an ionisable H atom on N2 and the consequential

lowering of Fe binding af®nity were attributed to this feature.

Herein, we report the crystal structures of four N4-substituted

thiosemicarbazones, (III)±(VI), each derived from the same

parent aldehyde (2-hydroxynaphthalene-1-carboxaldehyde)

and all displaying high antiproliferative activity (Lovejoy &

Richardson, 2002). In each case, atom N2 is protonated, but

the conformation of the thiosemicarbazide group varies across

the series.

Selected bond lengths and angles are shown in Tables 1, 3, 5

and 7 for compounds (III)±(VI), respectively. It can be seen

that there is little variation in the bond lengths within this
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Figure 1
A view of the molecule of (III), showing the atom-numbering scheme and
30% probability displacement ellipsoids.
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series, but there are some subtle distinctions between their

overall structures, as discussed below, particularly with regard

to hydrogen bonding.

The structure of (III) (Fig. 1 and Table 1) reveals an almost

planar molecule, with all non-H atoms within 0.04 AÊ of the

least-squares plane and dihedral angles all within 2� of either 0

or 180�. Intramolecular hydrogen bonding is a feature of the

structure. The hydroxyl group is hydrogen bonded to the

adjacent imine N atom (Table 2). A weaker and more acute

hydrogen bond is formed between the imine N atom and the

adjacent NH group. In this conformation, the S atom is anti to

atom N1 and is able to form a hydrogen bond with the

remaining hydrazide H atom. This interaction creates a

polymeric hydrogen-bonded chain, shown in the packing

diagram of (III) (Fig. 2).

The N-ethyl analogue, (IV) (Fig. 3 and Table 3), exhibits a

similar conformation and similar intramolecular hydrogen-

bonding interactions to the N-methyl analogue, (III) (Table 4).

Again, an intermolecular hydrogen bond involving the S atom

is observed in (IV). In contrast with the hydrogen-bonded

polymer found in (III), the intermolecular hydrogen bonds in

(IV) result in C2-symmetric dimers, as shown in Fig. 4. The

molecule of (IV) is somewhat less planar than that of (III); the

largest torsion angle deviation from either 0 or 180� is 7.6 (3)�

for N3ÐC12ÐN2ÐN1, which may be attributed to the

distortion resulting from the cyclic intermolecular hydrogen-

bonding motif.

A similar structure is again seen in the N-phenyl compound,

(V) (Fig. 5 and Table 5), although the phenyl ring is rotated by

ca 37� out of the plane de®ned by the rest of the molecule, to

minimize ortho-H-atom repulsions with atoms S1 and H3A

(the H atom attached to N3). The relevant intramolecular

hydrogen bonds (Table 6) are again similar in (V). Like (IV),

the N-phenyl analogue forms C2-symmetric hydrogen-bonded

dimers (Fig. 6). The unique intermolecular interaction again

involves the S atom as acceptor.

The structure of the N,N-dimethyl analogue, (VI), is unique

among the compounds reported here. The potentially coor-

dinating atoms O1, N1 and S1 are adjacent and de®ne a syn

conformation (Fig. 7 and Table 7). In this case, there are only

two signi®cant hydrogen bonds and both are intramolecular

(Table 8), involving the hydroxyl group and the syn N1 and S1

atoms. The structure of (VI) also contains a molecule of di-

methyl sulfoxide (DMSO), which is disordered about a

pseudo-mirror plane that includes the two methyl C atoms.

There are no signi®cant intermolecular hydrogen bonds in

(VI), except that between the minor (15%) DMSO contrib-

utor and the NH group.

It is known from the coordination chemistry of similar

thiosemicarbazones (Gyepes et al., 1981; Soriano-GarcõÂa et al.,

1985; Zimmer et al., 1991) that they bind as meridional O,N,S-

Figure 4
A diagram showing the hydrogen-bonded dimer of (IV). H atoms on C
atoms have been omitted for clarity. Atoms S10 and N20 are at the
symmetry position (1 ÿ x, y, 3

2 ÿ z).

Figure 3
A view of the molecule of (IV), showing the atom-numbering scheme and
30% probability displacement ellipsoids.

Figure 2
A diagram showing the hydrogen-bonded chain in (III) with the unit cell.
H atoms on C atoms have been omitted for clarity. Primed atoms are at
the symmetry position (1 ÿ x, y ÿ 1

2, 1 ÿ z).

Figure 5
A view of the molecule of (V), showing the atom-numbering scheme and
30% probability displacement ellipsoids.



chelators (in the syn conformation shown in the scheme

above), while the terminal N3 atom does not participate in

coordinate bonding. Of the four structures presented here,

only (VI) is preorganized for metal binding, while the other

compounds must undergo a 180� rotation of the N2ÐC12

bond.

In conclusion, there are two factors which result in the

conformational differences between (VI) (syn) and the group

composed of (III), (IV) and (V) (anti). The N3ÐH3A� � �N1

intramolecular hydrogen-bond interaction seen in compounds

(III), (IV) and (V), albeit weak, appears to favour the anti

conformer. In (VI), this hydrogen bond is not possible and the

anti conformer is further destabilized by steric clashing

between the N-methyl groups and the hydroxyl group, and the

syn conformer ensues.

Experimental

All four compounds were prepared by Schiff base condensation of

2-hydroxynaphthalene-1-carboxaldehyde with the appropriate thio-

semicarbazide in re¯uxing ethanol. The compounds precipitated

readily from the reaction mixtures and were found to be pure by

elemental analysis and NMR. Crystals of (III) were obtained from a

saturated dimethylformamide solution, (IV) and (V) were crystal-

lized from ethanol solutions, and (VI) was crystallized from a

concentrated dimethyl sulfoxide solution.

Compound (III)

Crystal data

C13H13N3OS
Mr = 259.32
Monoclinic, P21

a = 9.293 (1) AÊ

b = 5.1612 (3) AÊ

c = 12.563 (1) AÊ

� = 91.31 (2)�

V = 602.40 (9) AÊ 3

Z = 2
Dx = 1.43 Mg mÿ3

Mo K� radiation
Cell parameters from 25

re¯ections
� = 10.5±16.0�

� = 0.26 mmÿ1

T = 296 (2) K
Prism, yellow
0.50 � 0.17 � 0.10 mm

Data collection

Enraf±Nonius TurboCAD-4
diffractometer

Non-pro®led !/2� scans
Absorption correction:  scan

(North et al., 1968)
Tmin = 0.912, Tmax = 0.971

1262 measured re¯ections
1185 independent re¯ections
960 re¯ections with I > 2�(I)
Rint = 0.023

�max = 25.0�

h = 0! 11
k = 0! 6
l = ÿ14! 14
3 standard re¯ections

frequency: 120 min
intensity decay: ÿ2%

Re®nement

Re®nement on F 2

R(F ) = 0.030
wR(F 2) = 0.080
S = 1.06
1185 re¯ections
176 parameters
H atoms treated by a mixture of

independent and constrained
re®nement

w = 1/[�2(Fo
2) + (0.0508P)2

+ 0.0084P]
where P = (Fo

2 + 2Fc
2)/3

(�/�)max < 0.001
��max = 0.14 e AÊ ÿ3

��min = ÿ0.16 e AÊ ÿ3

Absolute structure: Bernardinelli &
Flack (1985)

Flack parameter = 0.01 (13)
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Figure 6
A diagram of the hydrogen-bonded dimer of (V). H atoms on C atoms
have been omitted for clarity. Atoms S10 and N20 are at the symmetry
position (1 ÿ x, y, 3

2 ÿ z).

Figure 7
A view of the molecule of (VI), showing the atom-numbering scheme and
30% probability displacement ellipsoids. For clarity, the dimethyl
sulfoxide solvent molecule is not shown.

Table 1
Selected geometric parameters (AÊ , �) for (III).

C2ÐO1 1.356 (4)
C11ÐN1 1.288 (4)
C12ÐN3 1.333 (4)
C12ÐN2 1.355 (4)

C12ÐS1 1.672 (3)
C13ÐN3 1.443 (4)
N1ÐN2 1.367 (4)

N1ÐC11ÐC1 122.9 (3)
N3ÐC12ÐN2 116.4 (3)
C11ÐN1ÐN2 115.1 (2)

C12ÐN2ÐN1 121.8 (2)
C12ÐN3ÐC13 123.3 (3)

Table 2
Hydrogen-bonding and contact geometry (AÊ , �) for (III).

DÐH� � �A DÐH H� � �A D� � �A DÐH� � �A

O1ÐH1A� � �N1 0.95 (5) 1.75 (5) 2.641 (3) 155 (5)
N3ÐH3A� � �N1 0.85 (4) 2.29 (4) 2.671 (4) 107 (3)
N2ÐH2A� � �S1i 0.92 (3) 2.60 (3) 3.467 (3) 158 (2)

Symmetry code: (i) 1ÿ x; 1
2� y; 1ÿ z.
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Compound (IV)

Crystal data

C14H15N3OS
Mr = 273.35
Monoclinic, C2=c
a = 26.608 (8) AÊ

b = 7.0551 (6) AÊ

c = 18.918 (5) AÊ

� = 129.710 (10)�

V = 2732.0 (11) AÊ 3

Z = 8

Dx = 1.329 Mg mÿ3

Mo K� radiation
Cell parameters from 21

re¯ections
� = 11.0±14.0�

� = 0.23 mmÿ1

T = 296 (2) K
Prism, yellow
0.5 � 0.5 � 0.5 mm

Data collection

Enraf±Nonius TurboCAD-4
diffractometer

Non-pro®led ! scans
Absorption correction:  scan

(North et al., 1968)
Tmin = 0.698, Tmax = 0.883

2466 measured re¯ections
2410 independent re¯ections
1847 re¯ections with I > 2�(I)

Rint = 0.039
�max = 25.0�

h = 0! 31
k = 0! 8
l = ÿ22! 17
3 standard re¯ections

frequency: 120 min
intensity decay: ÿ1%

Re®nement

Re®nement on F 2

R(F ) = 0.040
wR(F 2) = 0.122
S = 1.04
2410 re¯ections
184 parameters
H atoms treated by a mixture of

independent and constrained
re®nement

w = 1/[�2(Fo
2) + (0.0694P)2

+ 1.4628P]
where P = (Fo

2 + 2Fc
2)/3

(�/�)max < 0.001
��max = 0.20 e AÊ ÿ3

��min = ÿ0.21 e AÊ ÿ3

Compound (V)

Crystal data

C18H15N3OS
Mr = 321.39
Monoclinic, C2=c
a = 19.243 (4) AÊ

b = 6.7948 (6) AÊ

c = 24.471 (6) AÊ

� = 95.480 (10)�

V = 3185.0 (11) AÊ 3

Z = 8

Dx = 1.34 Mg mÿ3

Mo K� radiation
Cell parameters from 25

re¯ections
� = 9.7±14.3�

� = 0.21 mmÿ1

T = 296 (2) K
Prism, yellow
0.5 � 0.4 � 0.3 mm

Data collection

Enraf±Nonius TurboCAD-4
diffractometer

Non-pro®led !/2� scans
Absorption correction:  scan

(North et al., 1968)
Tmin = 0.911, Tmax = 0.936

2834 measured re¯ections
2747 independent re¯ections
1425 re¯ections with I > 2�(I)

Rint = 0.014
�max = 25.0�

h = 0! 22
k = 0! 8
l = ÿ29! 28
3 standard re¯ections

frequency: 120 min
intensity decay: ÿ5%

Re®nement

Re®nement on F 2

R(F ) = 0.040
wR(F 2) = 0.126
S = 1.00
2747 re¯ections
220 parameters
H atoms treated by a mixture of

independent and constrained
re®nement

w = 1/[�2(Fo
2) + (0.0576P)2

+ 0.9608P]
where P = (Fo

2 + 2Fc
2)/3

(�/�)max < 0.001
��max = 0.16 e AÊ ÿ3

��min = ÿ0.25 e AÊ ÿ3

Compound (VI)

Crystal data

C14H15N3OS�C2H6OS
Mr = 351.48
Monoclinic, P21=n
a = 12.012 (2) AÊ

b = 7.8776 (9) AÊ

c = 18.631 (3) AÊ

� = 95.780 (10)�

V = 1754.0 (5) AÊ 3

Z = 4

Dx = 1.331 Mg mÿ3

Mo K� radiation
Cell parameters from 25

re¯ections
� = 11.3±14.0�

� = 0.32 mmÿ1

T = 296 (2) K
Prism, yellow
0.5 � 0.4 � 0.4 mm

Data collection

Enraf±Nonius TurboCAD-4
diffractometer

Non-pro®led !/2� scans
Absorption correction:  scan

(North et al., 1968)
Tmin = 0.854, Tmax = 0.881

3226 measured re¯ections
3069 independent re¯ections
1929 re¯ections with I > 2�(I)

Rint = 0.011
�max = 25.0�

h = 0! 14
k = 0! 9
l = ÿ22! 22
3 standard re¯ections

frequency: 120 min
intensity decay: 5%

Table 4
Hydrogen-bonding and contact geometry (AÊ , �) for (IV).

DÐH� � �A DÐH H� � �A D� � �A DÐH� � �A

O1ÐH1A� � �N1 0.89 (3) 1.80 (3) 2.605 (2) 151 (3)
N3ÐH3A� � �N1 0.79 (3) 2.27 (3) 2.653 (2) 110 (2)
N2ÐH2A� � �S1i 0.91 (3) 2.50 (3) 3.409 (2) 176 (2)

Symmetry code: (i) 1ÿ x; y; 3
2ÿ z.

Table 6
Hydrogen-bonding and contact geometry (AÊ , �) for (V).

DÐH� � �A DÐH H� � �A D� � �A DÐH� � �A

O1ÐH1A� � �N1 0.83 (4) 1.86 (4) 2.620 (3) 150 (3)
N3ÐH3A� � �N1 0.81 (3) 2.20 (3) 2.653 (3) 116 (3)
N2ÐH2A� � �S1i 0.82 (3) 2.62 (3) 3.425 (3) 171 (3)

Symmetry code: (i) 3
2ÿ x; 1

2ÿ y;ÿz.

Table 3
Selected geometric parameters (AÊ , �) for (IV).

C2ÐO1 1.351 (2)
C11ÐN1 1.285 (2)
C12ÐN3 1.323 (3)
C12ÐN2 1.353 (2)

C12ÐS1 1.683 (2)
C13ÐN3 1.455 (3)
N1ÐN2 1.373 (2)

N1ÐC11ÐC1 121.79 (17)
N3ÐC12ÐN2 117.07 (18)
C11ÐN1ÐN2 116.94 (16)

C12ÐN2ÐN1 120.32 (17)
C12ÐN3ÐC13 124.81 (19)

Table 5
Selected geometric parameters (AÊ , �) for (V).

C2ÐO1 1.351 (3)
C12ÐN3 1.332 (3)
C12ÐN2 1.348 (3)

C12ÐS1 1.668 (2)
C13ÐN3 1.430 (3)
N1ÐN2 1.372 (3)

N1ÐC11ÐC1 122.9 (2)
N3ÐC12ÐN2 115.2 (2)
C11ÐN1ÐN2 116.0 (2)

C12ÐN2ÐN1 122.3 (2)
C12ÐN3ÐC13 131.1 (2)



Re®nement

Re®nement on F 2

R(F ) = 0.040
wR(F 2) = 0.120
S = 1.02
3069 re¯ections
227 parameters
H atoms treated by a mixture of

independent and constrained
re®nement

w = 1/[�2(Fo
2) + (0.0571P)2

+ 0.6902P]
where P = (Fo

2 + 2Fc
2)/3

(�/�)max < 0.001
��max = 0.20 e AÊ ÿ3

��min = ÿ0.26 e AÊ ÿ3

In each structure, the H atoms attached to N and O atoms were

located from difference maps and re®ned without any constraints on

their positional or isotropic displacement parameters. All H atoms

attached to C atoms were included at estimated positions and

restrained using a riding model. 14 Friedel pairs were measured for

the structure of (III) and the resulting Flack value (Bernardinelli &

Flack, 1985) is 0.01 (13).

For all four compounds, data collection: CAD-4 EXPRESS

(Enraf±Nonius, 1994); cell re®nement: CAD-4 EXPRESS; data

reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to

solve structure: SHELXS86 (Sheldrick, 1985); program(s) used to

re®ne structure: SHELXL97 (Sheldrick, 1997); molecular graphics:

ORTEP-3 for Windows (Farrugia, 1997) and PLUTON (Spek, 1990);

software used to prepare material for publication: WinGX

(Farrugia, 1999).

PVB acknowledges ®nancial support from the University of

Queensland. DRR thanks the NH&MRC for a Fellowship and

®nancial support.

Supplementary data for this paper are available from the IUCr electronic
archives (Reference: GG1180). Services for accessing these data are
described at the back of the journal.
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Table 7
Selected geometric parameters (AÊ , �) for (VI).

C2ÐO1 1.354 (3)
C11ÐN1 1.278 (3)
C12ÐN2 1.366 (3)
C12ÐN3 1.334 (3)

C12ÐS1 1.680 (3)
C13ÐN3 1.463 (3)
N1ÐN2 1.371 (3)

N1ÐC11ÐC1 119.9 (2)
N3ÐC12ÐN2 114.9 (2)
C11ÐN1ÐN2 118.2 (2)

C12ÐN2ÐN1 118.2 (2)
C12ÐN3ÐC13 121.3 (2)

Table 8
Hydrogen-bonding geometry (AÊ , �) for (VI).

DÐH� � �A DÐH H� � �A D� � �A DÐH� � �A

O1ÐH1A� � �N1 0.79 (3) 1.88 (3) 2.560 (3) 145 (3)
O1ÐH1A� � �S1 0.79 (3) 3.02 (3) 3.705 (2) 147 (3)


