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[1] Comprehensive measurements are presented of the piezometric head in an unconfined
aquifer during steady, simple harmonic oscillations driven by a hydrostatic clear water
reservoir through a vertical interface. The results are analyzed and used to test existing
hydrostatic and nonhydrostatic, small-amplitude theories along with capillary fringe
effects. As expected, the amplitude of the water table wave decays exponentially.
However, the decay rates and phase lags indicate the influence of both vertical flow and
capillary effects. The capillary effects are reconciled with observations of water table
oscillations in a sand column with the same sand. The effects of vertical flows and the
corresponding nonhydrostatic pressure are reasonably well described by small-amplitude
theory for water table waves in finite depth aquifers. That includes the oscillation
amplitudes being greater at the bottom than at the top and the phase lead of the bottom
compared with the top. The main problems with respect to interpreting the measurements
through existing theory relate to the complicated boundary condition at the interface
between the driving head reservoir and the aquifer. That is, the small-amplitude, finite
depth expansion solution, which matches a hydrostatic boundary condition between the
bottom and the mean driving head level, is unrealistic with respect to the pressure
variation above this level. Hence it cannot describe the finer details of the multiple mode
behavior close to the driving head boundary. The mean water table height initially
increases with distance from the forcing boundary but then decreases again, and its
asymptotic value is considerably smaller than that previously predicted for finite depth
aquifers without capillary effects. Just as the mean water table over-height is smaller than
predicted by capillarity-free shallow aquifer models, so is the amplitude of the second
harmonic. In fact, there is no indication of extra second harmonics (in addition to that
contained in the driving head) being generated at the interface or in the interior. INDEX
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1. Introduction

[2] The availability of fresh groundwater on islands and
in coastal areas in general is influenced by the nearby ocean,
estuary or tidal rivers. Hence our ability to utilize many
fresh water resources relies on our understanding of the
interaction between neighboring tidal waters and the aqui-
fer. The interaction between oscillating reservoirs and
aquifers has therefore been the subject of experimental
and theoretical research for many decades. It turns out that
the groundwater dynamics in real world scenarios deviate
significantly from the simplest theories, i.e., those based on
the Dupuit-Forchheimer assumptions for shallow aquifers,
small-amplitude oscillations and neglecting any influence
from the partly saturated zone above the water table.

[3] Such deviations are best illustrated using the water
table wave number which provides a description of the
waves’ dispersive properties. The wave number is complex
in nature, k = kr + iki, with kr representing the amplitude
decay and ki representing the rate of increase in phase lag as
the wave propagates into the aquifer. The simple, shallow
aquifer, capillary free theory predicts the wave number to
have equal real and imaginary parts, kr/ki = 1, whereas
field observations indicate otherwise. Nielsen [1990] found
kr/ki � 1.7 and Aseervatham [1994] found values in the
range 0.7 < kr/ki < 2.7. Hele-Shaw cell experiments by
Nielsen et al. [1997] also show that kr/ki > 1.
[4] Quite a few comprehensive field data sets exist [e.g.,

Nielsen, 1990; Kang et al., 1994; Raubenheimer et al.,
1999]. However, with all field data, the amount of compli-
cating details in the geometry and composition of the
aquifer and in the periodic forcing prevent detailed analysis
of ‘‘what is due to what’’, i.e., which of the deviations from
simple theory are caused by aquifer geometry and stratifi-
cation, which are caused by capillary effects, which by
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finite amplitude, which by vertical flows, etc. Hence the
purpose of the present investigation is to provide a simple
aquifer of constant depth and packing (to the extent that this
is achievable) with a simple harmonic driving head acting
on a vertical interface (Figure 1). Still, strong effects of
finite aquifer depth and of the capillary fringe are present
and enable evaluation of existing theory and identification
of the most pressing issues for future research.
[5] The paper is organized as follows. Section 2 describes

the experimental setup and procedures. The results are then
analyzed and compared with existing theory in section 3,
and the main conclusions are drawn in section 4.

2. Experimental Setup and Procedure

2.1. Flume

[6] The sand flume shown in Figure 1 is 9 m long by 14 cm
wide by 1.5 m high. The flume is full to the top with sand
except for a 15 cm wide, driving head reservoir at one end. A
vertical stainless steel wire mesh with 0.15 mm openings
(supported by a coarser grid with 2 cm openings) separates
the sand from the clear water over the full depth at x = 0. The
driving head level is regulated by a variable height overflow
delivering almost simple harmonic oscillations.
[7] Water pressure in the saturated zone was measured

with piezometers extending 10 cm into the sand. The
piezometers are 5 mm stainless steel tubes perforated with
numerous 2.5 mm diameter holes screened by stainless steel
mesh with 0.1 mm openings. Measurements were taken
visually, by reading ID 8 mm manometer tubes connected to
the piezometers with a reading accuracy of ±1 mm.

2.2. Sand

[8] The sand in the flume consists mainly of quartz and is
mined locally from Pleistocene coastal dunes. It is well
sorted with d50 = 0.20 mm and d90/d10 = 1.83, providing a
more or less homogeneous medium. In order to avoid
trapped air, the sand was added to the flume by allowing
it to settle by gravity through clear water, in layers of the
order 10 cm thick. The procedure was repeated until the
flume was filled to the top with saturated sand, draining
the clear water as required. The sand’s hydraulic and
moisture characteristics were investigated by Nielsen and
Perrochet [2000] and are presented in Table 1.

[9] The two packing types in Table 1 were dry packed
into the column so, as the flume was packed by allowing the
sand to settle by gravity though the water-filled flume, the
present packing is likely to be a little looser than the loosest
of these. For comparison, the hydraulic conductivity, K, was
also calculated based on measured sediment characteristics
(sieve curve) using the empirical formulation of Krumbein
and Monk [1942] which gave K = 0.00053 m/s. Throughout
all of the following analysis the parameters for packing type
B in Table 1 have been adopted.
[10] The flume was covered with loose plastic to mini-

mize evaporation and the sand remained moist to the top
and the mean water table was 40 cm (�0.73Hy) below the
sand surface. Possible implications of a truncated capillary
fringe are discussed in section 3.3.

2.3. Driving Head

[11] The driving head, ho(t), was almost sinusoidal,

ho tð Þ ¼ d þ Ao coswt ¼ d þ Ao< eiwt
� �

ð1Þ

where d is the mean elevation, Ao is the amplitude and
w (=2p/T ) is the angular frequency. The amplitude of the
first and second harmonics were Rw = 0.235 m and R2w =
7 mm, respectively, with the ratio R2w/Rw � 1/34 confirming
the almost simple harmonic nature of the driving head. The
period was T = 772 s, corresponding to w = 0.0081 rad/s
which falls in the range of infra-gravity and long waves
observed in oceans. The vertical accelerations are very
small, with w2Ao/g � 1.6 � 10�6, and so the pressure in the
clear water reservoir is taken to be hydrostatic. Table 2
provides a summary of the driving head parameters.
[12] Given the above period and using the sand parameters

of packing type B listed in the bottom row of Table 1, the
present experiment leads to the nondimensional, ‘‘coastal’’

Figure 1. Experimental setup: the groundwater flow in a uniform aquifer of simple rectangular shape is
driven by a simple harmonic driving head at x = 0 with d = 1.094 m, Rw = 0.235 m and T = 772 s.
Capillary effects are significant and the aquifer is not shallow.

Table 1. Hydraulic Parameters of the Test Sanda

Packing Type K, m/s qs, vol/vol qr, vol/vol Hy, m

A 0.00015 0.38 0.08 0.60
B 0.00047 0.41 0.09 0.55

aK, saturated hydraulic conductivity; qs and qr, saturated and residual
moisture contents, respectively; Hy, steady capillary fringe thickness. After
Nielsen and Perrochet [2000].
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aquifer response number NCAR = K/nwHy = 0.33 which
indicates that capillary fringe effects will be important for
this setup [cf. Li et al., 1997]. For comparison, if we consider
forcing from a tide of period 12.25 hours (where capillary
effects are considered to be small) with the same sand
parameters used above, we obtain NCAR = 18.7.
[13] Since the data analysis is based on the assumption of

a steady oscillation, the flume was left running steadily for
at least 24 hours before measurements. This ensured that
any start-up transients had disappeared since the timescale
for water table adjustments at the ‘‘inland’’ end (x = 9 m) is
Tadj = jnejx2/(Kd) � 2.6 hours.

3. Observations and Analysis

[14] The observed time series of head oscillations from
selected stations along the flume are shown in Figure 2 with
the head variation at all stations essentially simple harmonic
like the driving head. The amplitude decays exponentially
inland and a phase lag grows linearly in accordance with
small-amplitude theory,

hðx; tÞ ¼ Aoe
�krx cosðwt � kixÞ ¼ AoRefe�ðkrþikiÞxeiwtg ð2Þ

[15] Comparison of the behavior near the base, z = 0.1 m
(solid symbols) with that closer to the water table z = 0.8 m
(open symbols) reveals effects of finite aquifer depth.

Closest to the interface at x = 0.04 m (solid and open
squares), the head at both levels is very similar to that of the
driving head, i.e., little damping has occurred and the head
is more or less hydrostatic as in the clear water. The slight
difference at low tide is believed to be due to seepage face
formation. At x = 0.29 m (solid and open circles), the heads
are hydrostatic except at low water where the level at z =
0.8 m sits above that at z = 0.1 m. At x = 0.54 m (solid and
open triangles), the oscillation amplitudes are similar but
the mean at z = 0.8 m is greater than at z = 0.1 m (see
section 3.1). At x = 1.34 m (solid and open diamonds) we
see the finite depth behavior of the amplitude near the
bottom (solid symbols) being greatest and the head near the
bottom leads that at the top (open symbols).
[16] The latter is consistent with the finite depth theory of

Nielsen et al. [1997], who by relaxing the hydrostatic
pressure assumption, obtained the small-amplitude, expan-
sion solution,

hj*ðx; z; tÞ ¼ BjRe e�kjx
cos kjz

cos kjd
eiwt

� �
ð3Þ

where the subscript j = 1..1, represents the wave mode and
Bj is the amplitude of the piezometric head at (x, z) = (0, d )
for the jth wave mode. Equation 3) shows that the pressure
( p) distribution due to each mode is nonhydrostatic so a
combination of modes is required to match the hydrostatic
clear water boundary condition. The nonhydrostatic
behavior and higher wave mode boundary condition
requirements are discussed in detail in sections 3.4 and
3.5, respectively.
[17] Table 3 summarizes the results (time means, ampli-

tudes and phases) of harmonic analysis conducted on

Table 2. Summary of Aquifer Forcing Parameters

Parameter Value

T, s 772
Rw, m 0.235
R2w, m 0.007
d, m 1.094

Figure 2. The driving head (solid line) and the piezo-
metric head measured at z = 0.1 m (solid symbols) and z =
0.8 m (open symbols) at five selected stations along the
flume: x = 0.04 m (solid and open squares), x = 0.29 m
(solid and open circles), x = 0.54 m (solid and open
triangles), x = 1.34 m (solid and open diamonds) and x =
3.34 m (solid and open inverted triangles).

Table 3. Time Mean Values (h*), Amplitudes (Rmw), and Phases

(fmw) of the First Two Harmonics (Angular Frequencies w and 2w)
of the Piezometric Head at Different Points in the Flume

x, m z, m h*, m Rw, m fw, rad R2w, m f2w, rad

0 – 1.094 0.235 0 0.007 0
0.035 0.10 1.094 0.233 0.01 0.006 0.03
0.135 0.10 1.096 0.223 0.05 0.007 0.36
0.29 0.10 1.097 0.200 0.13 0.004 0.76
0.54 0.10 1.098 0.165 0.25 0.003 0.68
0.84 0.10 1.099 0.139 0.24 0.002 0.74
1.34 0.10 1.099 0.106 0.37 0.001 0.82
1.84 0.10 1.100 0.076 0.48 – –
2.34 0.10 1.100 0.047 0.69 – –
3.34 0.10 1.101 0.022 1.07 – –
4.84 0.10 1.099 0.009 1.47 – –
6.84 0.10 1.099 0.002 2.00 – –
8.84 0.10 1.099 0.001 2.34 – –
0 – – – – – –
0.035 0.80 1.096 0.229 0.01 0.005 0.00
0.135 0.80 1.099 0.210 0.05 0.001 1.04
0.29 0.80 1.101 0.192 0.10 0.002 2.00
0.54 0.80 1.102 0.163 0.22 0.002 2.49
0.84 0.80 1.101 0.132 0.32 0.001 3.02
1.34 0.80 1.100 0.088 0.53 0.001 2.79
1.84 0.80 1.100 0.058 0.73 – –
2.34 0.80 1.101 0.039 0.94 – –
3.34 0.80 1.099 0.019 1.23 – –
4.84 0.80 1.099 0.008 1.62 – –
6.84 0.80 1.099 0.003 2.28 – –
8.84 0.80 1.099 0.001 2.31 – –
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observations from all piezometers. If the amplitude of the
second harmonic R2w(x, z) was large enough (
1 mm), it
too was extracted along with the corresponding phase f2w.

3.1. Mean Head Values

[18] The time-averaged head profiles h* x; 0:1 mð Þ and
h* x; 0:8 mÞð are shown in Figure 3. At both levels, the
piezometric head is higher for x ! 1 than at x ! 0+.
However, the common asymptotic value, h1* , of approxi-
mately 1.099 m is below the ‘‘Boussinesq’’ value offfiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d2 þ A2
o=2

p
� 1.107 m derived by Philip [1973]. In other

words, with a mean water level of d = 1.094 m in the driving
head reservoir, the measured inland over-height was only
h1 = 0.005 m compared to 0.013 m given by Philip’s [1973]
shallow aquifer, capillary-free theory.
[19] This difference is interesting because Philip’s [1973]

result was shown by Knight [1981] to be valid even if the
aquifer is not shallow. The differences are therefore believed
to be due to capillary effects. Recently, Silliman et al.
[2002]. demonstrated that horizontal as well vertical flows
were present in the capillary fringe and this may play a role.
However, meniscus suction on the vertical face of the
aquifer at x = 0 may well be different from that at the
inland boundary. If there was no such imbalance, the simple
requirement of balance between the total pore water pres-
sure forces at x = 0 and at x = 8.84 m (where the oscillation
has died out),

Zsandsurface

z¼0

p 0; z; tð Þ:dz ¼
Zsandsurface

z¼0

p 8:84; z; tð Þ:dz ð4Þ

would lead to Philip’s [1973] result, i.e., hð8:84 mÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ A2

o=2
p

� 1.107 m. Since the flume was covered with
loose plastic and the sand remained moist at the top,
evaporation is not believed to have been significant.
[20] Conditions are hydrostatic in the clear water reservoir

and below the water table at the landward end, and hence h*
does not depend on z at these boundaries. However, in the
range 0 < x < 4 m, we see that the conditions are not

hydrostatic as the mean piezometric head is different at the
two levels, with values at the top being greater than at the
bottom. The pressure in the driving head reservoir at x = 0 is
hydrostatic but inside the sand, deviations from hydrostatic
conditions develop very rapidly to a peak difference of 4 mm
between x = 0.25 m and x = 0.5 m. The fact that both
h� x; 0:1 mð Þ and h� x; 0:8 mð Þ show local maxima instead of
increasing monotonically with x is not covered by any theory
known to the writers. S. Dunn et al. (manuscript in prepara-
tion, 2003) present a detailed investigation of the observed
time-averaged head levels including an analytical solution to
describe the resultant circulation.

3.2. Oscillation Amplitudes, Phases, and
Wave Numbers

[21] As mentioned previously in section 3, the observed
oscillations will at any point contain contributions from
several modes. However, the contributions from individual
modes cannot be separated on the basis of measurements at
a single point so the following analysis will be on the
overall signal including all contributions from all modes.
[22] As expected, the time-variation of the piezometric

head at each measuring point is essentially simple harmonic,

h*ðx; z; tÞ � Rwðx; zÞ cos wt � fwðx; zÞ½ � ð5Þ

see Table 3. The oscillation amplitudes, Rw(x, z), decay in
the inland direction and the phase lags, fw(x, z), compared
with the driving head, increase. These decay rates and
phase shift variations with x reflect those of a simple water
table-wave of the form (2). That is, an ‘‘overall’’ wave
number (for the total signal at angular frequency, w) can be
estimated by fitting straight lines to plots of ln[Ao/Rw(x, z)]
(=krx) and phase lag, fw(x, z) � fw(0) (=ki x). These
quantities are plotted in Figure 4.
[23] We see that both ln[Ao/Rw(x, z)] and the phase lags

show essentially the linear growth with x that corresponds to
a single wave mode of the form (2). Least squares fitting
of straight lines lead to, k = kr + iki = 0.687 + 0.293i or, with
d = 1.094 m,

kd ¼ 0:752þ 0:321i ð6Þ

This gives a ratio, kr/ki � 2.3 which is comparable to
the values found in the field by Nielsen [1990] and
Aseervatham [1994] for fluctuations at the tidal frequency
as described in section 1. If the forcing frequency were that
of a tidal signal, capillary effects would be negligible [e.g.,
Li et al., 1997] so the field values are likely to be dominated
by finite depth effects whereas the present experiment
has a significant influence from the capillary fringe (see
section 2.3). The ‘‘overall’’ wave number (equation (6)) will
correspond rather closely to the actual wave number of the
primary mode because the higher modes decay very rapidly
(see section 3.4).
3.2.1. Finite Depth Effects
[24] Under the shallow aquifer assumption of hydrostatic

pressure and neglecting capillarity effects, the wave number
can be predicted by the ‘‘Boussinesq’’ wave number,

k ¼ ð1þ iÞ
ffiffiffiffiffiffiffiffiffi
nw
2Kd

r
ð7Þ

Figure 3. Measured time averaged piezometric heads
close to the bottom h*x; 0:1m (solid diamonds) and close to
the water table h*x; 0:8m (open circles). The mean driving
head level is also shown (dashed line).
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where, n is the drainable porosity (=qs � qr; qs is the
saturated moisture content and qr is the residual moisture
content), w the angular frequency, K the saturated hydraulic
conductivity and d the mean aquifer depth and i is the
imaginary unit [see, e.g., Todd, 1960]. Using the packing
type B sand parameters from Table 1 and the forcing
parameters in Table 2, equation (7) predicts,

kd ¼ 1:741ð1þ iÞ ð8Þ

i.e., kr = ki which is clearly not the case for the present
experiment.
[25] The dispersion relation (7) only holds for shallow

aquifers, i.e., in the limit of negligible dimensionless depth,
nwd/K ! 0. For finite nwd/K (i.e., nonhydrostatic pressure),
Nielsen et al. [1997] derived the following finite depth,
small-amplitude dispersion relation,

kd tan kd ¼ i
nwd
K

ð9Þ

Note that (7) emerges from (9) when only the first term of
the Taylor expansion for tan kd is used. For finite nwd/K,
there are infinitely many wave modes of the form (2) at each
frequency because equation (9) has infinitely many complex
roots kj. The real parts (kr,j) of these wave numbers increase
by approximately p/d from one mode to the next [cf.
Nielsen et al., 1997; Li et al., 2000]. This means that,
according to equation (2), the higher modes decay very
rapidly compared with the primary mode. The imaginary
parts (kI,j) are however very similar indicating similar
speeds of propagation for all modes.
[26] For the present parameters equation (9) predicts,

kd ¼ 1:526þ 0:257i ð10Þ

The comparison with equation (6) is improved somewhat in
terms of the phase (ki) but the decay rate (kr) is still too
strong.

3.2.2. Capillarity Effects
[27] At higher frequencies, water table oscillations will be

influenced by capillarity [e.g., Li et al., 1997; Nielsen and
Perrochet, 2000]. Under the shallow aquifer assumption
(neglecting vertical flow effects), Barry et al. [1996] solved
a modified Boussinesq equation with the capillarity correc-
tion of Parlange and Brutsaert [1987] for water table waves
described by (2) and obtained the following dispersion
relation,

k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nw
2d

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 þ wBð Þ2

q � wB

K2 þ wBð Þ2

2
64

3
75

vuuuut ð11Þ

where B = nHy is the capillary fringe thickness.
[28] For the present parameters, equation (11) predicts,

kd ¼ 1:358þ 0:217i ð12Þ

thereby reducing the decay rate slightly but still over
predicting it in comparison to the observed value, (6).
[29] A useful mathematical technique to account for

capillarity effects is to replace the drainable porosity, n, in
the dispersion relations (7) and (9) with the complex
effective porosity, ne, defined as

ne

n
¼

dhtot

dt

�
dh

dt
ð13Þ

where htot is the equivalent height of total drainable
moisture and h is the water table height. The complex
nature of ne is such, so as to mathematically account for the
damped response of htot(t) to h(t) through its magnitude,
jnej, and for the phase lag of htot(t) behind h(t) through its
argument, Arg{ne} [Nielsen and Perrochet, 2000].
[30] For an oscillating water table, ne is a function of the

dimensionless frequency nwHy/K. The Green and Ampt

Figure 4. Amplitude decay, ln[Ao/Rw(x, z)] = kr x (solid and open diamonds), and phase lags, fw(x, z) �
fw(0) = ki x (solid and open circles) for the fundamental frequency w plotted as function of distance from
the driving head reservoir. Solid symbols correspond to measurements near the bottom (z = 0.1 m), while
the open symbols correspond to measurements near the water table (z = 0.8 m).
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[1911] capillary fringe model of a fringe height, Hy, with
the pressure at the top of the fringe being constant at -rgHy,
leads to [Nielsen and Turner, 2000],

ne ¼
n

1þ i
nwHy
K

ð14Þ

[31] Equation (14) implies that jnej < n, so by replacing n
with the complex ne in equations (7) and (9) results in
smaller wave numbers which, in turn, leads to a slower
damping rate and a faster wave propagation. When substi-
tuted into (7), (14) yields the shallow aquifer dispersion
relation, (11), as obtained by Barry et al. [1996]. When
substituted into (9), (14) gives the same finite depth,
dispersion relation obtained by Li et al. [2000], their
equation (7). Using the present parameters, this model [(9)
with n = ne by (14)] predicts,

kd ¼ 1:063þ 0:097i ð15Þ

An improved decay rate is seen but the speed of propagation
is over-predicted.
[32] Following the 1-D sand column experiments of

Nielsen and Perrochet [2000], Nielsen and Turner [2000]
proposed a slightly different, but analogous form of ne via
an empirical curve fit to the column data of ne(nwHy/K) for
three differing soil types,

ne ¼
n

1þ C i
nwHy
K

� �2=3
ð16Þ

where, C is an empirical constant. Taking C = 2.5 and the
present parameters, this model [(9) with n = ne by (16)] gives,

kd ¼ 0:868þ 0:218i ð17Þ

which, though over-predicting both the decay rate and
phasing, is seen to provide the best comparison with the
experimental value, equation (6), of all the models outlined
above.
[33] Comparisons of all the above models with the

‘‘overall’’ best fit wave number (equation (6)) are summa-
rized graphically in Figure 5. The much improved compar-
ison when using the complex effective porosity derived
from the empirical formulation, equation (16) (solid
squares), is clearly evident.
[34] The sensitivity of all the models outlined above, to the

aquifer parameters K (open squares), n (open circles) and Hy
(open diamonds), is illustrated in Figure 6 where the follow-
ing range of parameters was tested: K = [0.000235 m/s;
0.00047 m/s; 0.00094 m/s]; n = [0.2; 0.32; 0.4];Hy = [0.4 m;
0.55 m; 0.7 m]. The analysis shows that changes in K and n
will shift the wave numbers along the same dispersion
relation curve, whereas a change in Hy will shift the whole
curve closer or further from the origin. Of all the models, the
finite depth with the empirical capillary fringe model (equa-
tion (9) with ne by equation (16)) is seen to be the least
sensitive as a consequence of the 2/3 power in the denomi-
nator of equation (16) as opposed to the power of 1 in
equation (14).

3.3. Effective Porosity

[35] The effective porosity applicable to the present sand
parameters and wave frequency can be found by inserting

the experimental value, equation (6), for kd on the left-hand
side of equation (9) and solving for n (= ne), leading to,

ne ¼ 0:034� 0:022i ð18Þ

which gives jnej = 0.041 and Arg{ne} = �0.57 radians
(=33�). Parameters used are: T = 772 s, d = 1.094 m, n = 0.32,
K = 0.00047 m/s, Hy = 0.55 m.
[36] As discussed in section 3.2, the necessary ne, as

defined by equation (13), is complex in nature to mathe-
matically account for the fact that the total moisture lags
behind the water table. The (negative) argument of ne gives
the phase angle which describes this lag and given the
present forcing period of 772 s, the 33� phase angle
corresponds to the total moisture lagging behind the water
table by 70 s. The best fit ne value, equation (18), is shown
in Figure 7 (crosses), together with values obtained for the
same sand in column experiments as described by Nielsen
and Perrochet [2000]. For comparison, the effective poros-
ity based on the Green and Ampt [1911] model, equation
(14), is also plotted and the discrepancy between this model
and data is clearly apparent.
[37] The implications of such an effective porosity to

natural systems can be discussed by returning to the
definition of ne given by equation (13). Taking the magni-
tude of the experimental value, jnej = 0.041, equation (13)
states that for the present forcing and aquifer parameters
(n = 0.32), a 10 cm change in water table height will result
in only a 1.3 cm change in total moisture. Thus the presence
of a capillary fringe will limit moisture exchange due to
high frequency water table waves [Nielsen and Turner,
2000]. An example environment where this is important is

Figure 5. Comparison of the overall, best fit wave number
equation (6) (cross) with those predicted by the finite depth
dispersion relation, equation (9), using a real valued
porosity (solid circle), and complex effective porosities as
defined by equations (14) (solid triangle) and equation (16)
(solid square). The shallow aquifer, with capillary fringe
value defined by equation (11) is also shown (solid
diamond). The associated curves illustrate the wave
dispersion properties for 0 < nwd/K < 1 for each of the
above models. Parameters used are T = 772 s; d = 1.094 m;
n = 0.32; K = 0.00047 m/s; Hy = 0.55 m.
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the wave run-up zone on beaches where the forcing free
water waves have periods ranging from around 10 s for
wind waves to the order of minutes for long waves.
Equations (14) and (16) indicate that this effect becomes
more important at higher frequencies.
[38] The effective porosities calculated using the Green

and Ampt [1911] equation (14), and the empirical formu-
lation (16), are ne = 0.031 � 0.095i and ne = 0.043 �
0.051i respectively. The fact that these values (calculated
using theory and experiments under a fully developed
fringe) are slightly greater than the ‘‘best fit’’ value
(equation (18)) could, in part, be related to the fact
that in the present experiment the capillary fringe was
truncated (see section 2.2). Column experiments on oscil-
lating water tables under a truncated capillary fringe
indicate that the complex effective porosity is reduced
compared to that obtained under a fully developed fringe
(pluses and stars in Figure 7). The implication of this on
the propagation of a water table wave may be qualitatively
described on inspection of the dispersion relations (7) and
(9). If ne is reduced due to a truncated fringe, then smaller
wave numbers will result and hence less damping and an

increase in wave speed. This phenomenon could have
important implications for high frequency oscillations in
beaches where, just landward of the shoreline, the water
table lies just below the sand surface. The effect of a
truncated fringe in the present experiments, however, is
considered minor as the present experimental value
(crosses) shown in Figure 7 is within the range of scatter
in the column data obtained under a fully developed
capillary fringe.

3.4. Nonhydrostatic Behavior

[39] At the interface with the clear water reservoir, at x = 0,
conditions must be hydrostatic. Hence oscillation ampli-
tudes and phase shifts are observed to be practically
identical at the top and at the bottom of the aquifer
for x = 0.04 m (see Figure 2 and Table 3). However,
both oscillation amplitudes and phases display clear non-
hydrostatic features in the interior. That is, for x > 1 m, the
oscillation amplitudes Rw and R2w are larger at the bottom
than at the top (see Table 3). This is in qualitative agreement
with the small-amplitude, finite depth theory of Nielsen
et al. [1997], as expressed by equation (3). The theory

Figure 6. Sensitivity of theoretical dispersion relations to variations in the aquifer parameters, K (open
squares), n (open circles), and Hy (open diamonds). The points shown correspond to the range of
parameters: K = [0.000235 m/s; 0.00094 m/s]; n = [0.2; 0.4]; Hy = [0.4 m; 0.7 m]. Circled crosses denote
the experimental value, and crosses denote the theoretical predictions based on the experimental
parameters: T = 772 s; d = 1.094 m; n = 0.32; K = 0.00047 m/s; Hy = 0.55 m.
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predicts different ratios, Rw, j(x, 0.1 m)/Rw, j(x, 0.8 m), for the
different modes at each frequency and the overall behavior
corresponds to a linear combination of several modes.
However, the primary mode dominates for x > 1 m because
the higher modes decay very rapidly due to their much
larger kr values, see Table 4.
[40] The primary mode with wave number kw,1 taken as

the overall best fit value, corresponding to equation (6),
gives the head amplitude ratio Rw(x, 0.1 m)/Rw(x, 0.8 m),

cos kw;1 � 0:1 m
� �

cos kw;1 � 0:8 m
� � ¼ 1:117þ 0:155i ¼ 1:13e0:14i ð19Þ

i.e., a magnitude ratio of 1.13 and a phase lead of the head at
z = 0.1 m by 0.14 radians.
[41] The data, which contains contributions from all

modes, show considerable variation as seen for x < 1 m
in Figure 8. However, for x > 1 m where the higher modes
are insignificant, there is reasonable agreement. Thus the
nonhydrostatic behavior displayed landward of the decay of
the higher modes is in agreement with small-amplitude
theory. Also comforting is the much improved agreement
upon inclusion of capillarity effects via both equations (14)
(dash-dotted line) and (16) (solid line).

3.5. Multiple Mode Content Due to the Hydrostatic
Boundary Condition at x = 0

[42] The pressure distribution in the clear water reservoir
at x = 0 is hydrostatic. However, the individual water table

wave modes all have a nonhydrostatic pressure distribution
given by (3) which corresponds to,

hw; j* ðx; z; tÞ ¼ hw; j* ðx; 0; tÞ cos kw; jz ð20Þ

where kw, j with j = 1, 2, . . .1, are the infinitely many roots
of the dispersion relation (9). This means that an expansion
solution, i.e., a combination of modes is needed in order to
match a hydrostatic boundary condition like,

h*ð0; z; tÞ ¼ d þ Ao coswt ¼ d þ Re Aoe
iwt� �

; 0 < z < d ð21Þ

We follow the notation of Nielsen et al. [1997] and write the
piezometric head as an expansion of the form,

h*ðx; z; tÞ ¼ d þ Re Aoe
iwt

X1
j¼1

Aw; je
�kw; jx cos kw; jz

( )
ð22Þ

which for x = 0 becomes,

h*ð0; z; tÞ ¼ d þ Re Aoe
iwt

X1
j¼1

Aw; j cos kw; jz

( )
ð23Þ

which means that the head coefficients, Aw,j, for the different
modes are determined from,

1 ¼
X1
j¼1

Aw;j cos kw;jz for 0 < z < d ð24Þ

[43] The values corresponding to the present experiment
for Aw, j, which gives the mode contribution at (x, z) = (0, 0),
along with the coefficient Bw, j = Aw, jcoskw, jd, which gives
the mode contribution at (x, z) = (0, d), are given in Table 4.
The alternating behavior of Aw, j is typical (see Table 1 of
Nielsen et al. [1997]) and is seen to converge quite rapidly
with respect to the head at the bottom, Bw, j. Hence the
convergence of the expansion is slower near the water table
than at the bottom.
[44] The way in which the successive approximations,

including more and more modes in equations (22)–(24),
approach the constant (hydrostatic) head over the range 0 <
z < d at x = 0, is illustrated by Figure 9 with the parameter
values for the present experiment, corresponding to the

Figure 7. The best fit effective porosity obtained by
inserting equation (6) into equation (9) is shown in terms of
its magnitude jnej, and argument �Arg{ne} (both shown as
crosses) and compared with values obtained with the same
sand used in the column experiments by Nielsen and
Perrochet [2000a, 2000b]. The solid symbols diamonds
indicate jnej, and the open symbols diamonds indicate
�Arg{ne}. The curves are calculated using equations (14)
(dashed lines) and (16) with C = 2.5 (solid lines). The stars
and pluses indicate data collected under a truncated
capillary fringe, with pluses and stars representing jnej
and �Arg{ne}, respectively.

Table 4. Wave Numbers in Terms of the Dimensionless Depths

kw, jd (d = 1.094 m) and Head Coefficients for z = 0 (Aw, j) and at z =

d (Bw, j) Based on the kw,1d Equal to the Overall Best Fit Value

Equation (6) and the Small-Amplitude Theory of Nielsen et al.

[1997]

j kw, j d Aw, j Bw, j

1 0.752 + 0.321i 1.079 + 0.078i 0.846 � 0.181i
2 3.283 + 0.190i �0.094 � 0.100i 0.098 + 0.098i
3 6.351 + 0.102i 0.022 + 0.031i 0.022 + 0.031i
4 9.469 + 0.069i �0.010 � 0.014i 0.010 + 0.014i
5 12.600 + 0.052i 0.005 + 0.008i 0.005 + 0.008i
6 15.734 + 0.042i �0.003 � 0.005i 0.003 + 0.005i
7 18.872 + 0.035i 0.002 + 0.004i 0.002 + 0.004i
8 22.010 + 0.030i �0.002 � 0.003i 0.002 + 0.003i

Sum 0.999 � 0.001i 0.989 � 0.018i
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coefficients Aw, j and Bw, j in Table 4. We see that the
convergence of equation (24) is much faster at z = 0 than at
z = d. The expansion solution (24), being part of a small-
amplitude solution, exact only for Ao /d ! 0, has limited
meaning above z = d.
[45] The solution, equation (3), solves, in part, the prob-

lem of matching the hydrostatic clear water reservoir with
the nonhydrostatic pressure field in the interior as outlined
by Dagan [1967]. This is achieved by matching the
hydrostatic boundary condition with a suitable combination
of nonhydrostatic modes in the interior. However, the small-
amplitude expansion, equation (3), is only applicable over
the range 0 < z < d and therefore neglects the water pressure
between z = d and the water surface at maximum driving
head level. It also neglects any meniscus suction above z = d
at minimum driving head level. The modeling of these
aspects requires a finite amplitude formulation of the
boundary condition and consideration of capillary suction
at the vertical interface, including seepage face dynamics.
Such a boundary condition is so far not available in a form
suited for analytical solution. Hopefully, the experimental
findings of the present study can assist in the process of
achieving this.
[46] Capillary suction and a possible seepage face will

complicate the boundary condition at x = 0 in the way
qualitatively outlined in Figure 10. The fact that the
complete small-amplitude solution contains many modes,
each decaying with x at different rates, suggests that the
overall decay of the head oscillations is not necessarily

exponential and that the overall phase shift may not
necessarily grow linearly with x, i.e., the data points in
Figure 4 should not necessarily fall along straight lines. This
is illustrated in Figure 11 where we have zoomed in to the
first 3 m only and the phase of the driving head has been
subtracted from the local phase angles. The multiple-mode

Figure 8. Comparison of (a) measured (open circles) amplitude ratios and (b) phase leads with those
obtained by equation (3). Theoretical wave numbers were calculated using the dispersion relation (9) with
a real valued porosity (dashed lines), and the complex effective porosities by equations (14) (dash-dotted
lines) and (16) (solid lines). Parameters used are T = 772 s; d = 1.094 m; n = 0.32; K = 0.00047 m/s;
Hy = 0.55 m.

Figure 9. Dimensionless head amplitude at x=0, h*(0, z/d),
given by equation (24), including the primary mode only
(solid line), the first two modes (long-dashed line) and
the first five modes (short-dashed line).
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theory near the bottom, (solid lines), show a slight
downward convex trend while closer to the top, (dashed
lines), an upward convex behavior is seen. As in Figure 8
the comparison in the transitional, multiple-mode zone,
0 < x < 1 m, is not so good.
[47] By definition, the lines and the symbols in Figure 11

all come together at the origin. The lines then diverge
and become parallel for x > 1 m indicating that only
the primary mode remains. The asymptotic distance
between the upper lines corresponds to the amplitude ratio
Rw,1(x, 0.1 m)/Rw,1(x, 0.8 m) = 1.13 calculated from
equation (19). The asymptotic distance between the lower
lines corresponds to the phase lead of 0.14 radians (7.9�) by
h*w,1(x, 0.1 m) ahead of h*w,1(x, 0.8 m).
[48] The differences between each set of symbols and the

corresponding line in Figure 11 are, of course, partly due to
measurement scatter. However, the differences may also
indicate ‘‘theoretical’’ differences, i.e., the differences
that would exist between perfect measurements and the
expansion solution (22) which is derived from a simplified
boundary condition as discussed in connection with
Figures 9 and 10.

3.6. Higher Harmonics

[49] If a seepage face forms during part of the forcing
cycle (see Figure 10), the h*(0, z, t) variation at points
above z = d will not necessarily be simple harmonic. Hence
the seepage face will probably generate higher harmonic
components of h*(x, z, t) near x = 0. It is also conceivable
that other nonlinear phenomena could generate higher
harmonics. However, the second harmonics measured in
our experiment were everywhere equal to or smaller
than that in the driving head reservoir (see Table 3 with
R2w(0) = 7 mm). In other words, the measured second

harmonics do not indicate that seepage face formation or any
other phenomenon generated significant second harmonic
oscillations at x = 0.
[50] A number of researchers [Steggewentz, 1933; Dagan,

1967; Parlange et al., 1984] have investigated the
generation of higher harmonics in the interior due to

Figure 10. At low water a seepage face may form between the driver level and the moving exit point E,
along which, the pressure is atmospheric. Hence h* = p/rg + z will increase linearly between the surface
and E. Above E the pore pressure may again be hydrostatic and h* constant up to a height comparable
with Hy above E. The appearance of a seepage face is seen to increase the time-mean head at x = 0 and
hence throughout. The variation of the seepage face height through the forcing cycle might be expected to
drive higher harmonic components of h* in the aquifer. However, in this study such higher harmonics
were found to be insignificant.

Figure 11. Details of the h* oscillation decay measured by
ln[Ao/Rw(x, z)] and phase lags, fw(x, z) � fw(0), over the
first 3 m of the flume. Symbols shown represent phase lag at
z = 0.1 m (solid circles) and at z = 0.8 m (open circles);
ln[Ao/Rw(x, z)] at z = 0.1 m (solid diamonds) and at z = 0.8 m
(open diamonds). For each symbol the nearest line shows
the same quantity according to the small-amplitude
expansion (equation (22)).
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nonlinearity of the field equation. They carried out the
analysis for shallow aquifers with no capillary effects and
found that due to the nonlinearity of the Boussinesq
equation a simple harmonic wave at frequency w and wave
number k will generate two waves at frequency 2w, one that
decays as exp(�

ffiffiffi
2

p
krx) and one that decays as exp(�2krx).

These two, 2w-modes cancel each other at x = 0 but yield a
maximum amplitude of approximately 0.179Ao

2/d for kx �
0.6 which, for our experiment, corresponds to a maximum
amplitude of 5 mm between x = 0.5 m and x = 1 m. Our
experimental data show essentially a monotonic decay of
R2w from the driving head value of 7 mm at x = 0. Hence the
generation of second harmonics by nonlinearity in the
interior seems to have been weakened by the presence of a
capillary fringe in our experiment. All in all, the present
finite amplitude (Ao/d � 0.22) experiments show no
evidence of significant second harmonics being generated
at the interface or in the interior.

4. Conclusions

[51] Detailed measurements of the piezometric head h*(x,
z, t) have been performed in a nonshallow (jnewd/Kj � 6)
sand flume interacting with a hydrostatic clear water
reservoir through a vertical interface at a frequency where
capillary effects are significant.
[52] The h* oscillations display approximately exponen-

tial decay and linearly growing phase lag relative to the
driving head, which is predicted by shallow aquifer, small-
amplitude, capillarity free theory. However, significant
differences were observed which are most easily summar-
ized in terms of the wave numbers for the corresponding
water table waves. That is, decay rates and phase shifts in
the simple theory correspond to wave numbers with equal
real and imaginary part (ki = kr), while the best fit wave
number (equation (6)) for the overall behavior of the
measurements gives kr/ki � 2.3. This difference is due
partly to finite aquifer depth jnewd/Kj � 6 and partly to
capillary fringe effects, Hy /d � 0.38.
[53] Comparison of wave number prediction using the

dispersion relations (7) and (9) with the experimental
estimate (equation (6)), is greatly improved upon inclusion
of capillary effects via the complex effective porosity concept
of Nielsen and Perrochet [2000] (see Figure 5). The best
comparison is obtained using the finite depth dispersion
relation (9), with the empirical complex effective porosity
(equation (16)). This model is also shown to be the least
sensitive to variations in the aquifer parameters, K, n and Hy
(see Figure 6).
[54] Applied in a quasi-predictive manner (i.e., using the

experimental wave number, equation (6), as input), the
small-amplitude theory of Nielsen et al. [1997] (equation
(3)) appropriately accounts for the observed finite depth
effects of greater amplitude and phase lead at the base.
Using the best fit wave number (equation (6)) and the finite
depth dispersion relation (equation (9)), a best fit value of ne
is obtained and agrees closely with those obtained from 1-D
vertical sand column experiments with the same sand, as
reported by Nielsen and Turner [2000] (see Figure 7).
[55] The h* oscillations far from the driving head

reservoir (x > 1 m) have greater amplitude near the bottom
than near the water table jh*(x, 0.1 m, t)j/jh*(x, 0.8 m, t)j �
1.13 and the oscillations at the bottom lead those close to

the water table by about 0.14 radians. This is in agreement
with the finite depth, small-amplitude theory of Nielsen et
al. [1997] as described by equation (3).
[56] The transition from the multiple mode hydrostatic

behavior near the driving head reservoir (x ! 0+) to the
asymptotic single mode behavior for x > 1 m is qualitatively
modeled by small-amplitude theory. However, the observed
differences in the details of this transition (Figure 11),
between the small-amplitude solution and the measure-
ments, are probably more than measurement scatter. We
expect that upwards from the present value (Ao/d = 0.22) a
more detailed finite amplitude formulation of the boundary
condition is warranted.
[57] The mean water table height is higher for x ! 1 than

for x! 0+ in qualitative agreement with the shallow aquifer
theories of Philip [1973] and Parlange et al. [1984].
However, the rise in mean head levels is not monotonic as
predicted by these theories, a maximum occurs at about x =
1 m (see Figure 3). The asymptotic inland over-height is
only about 1/3 of the shallow, capillary free aquifer value.
This reduction may not be entirely due to nonshallowness.
Differences in the time-averaged capillary suction patterns
at the two ends of the aquifer may also play a role. The
time-mean piezometric head h*ðx; zÞ is significantly non-
hydrostatic in the range 0.04 m < x < 2.5 m with larger
values at the top indicating steady downward flow in the
upper part of the aquifer.
[58] Nonlinear effects were surprisingly small in the

experiments with no evidence of second harmonics being
generated either by the finite amplitude (Ao/d = 0.22)
boundary condition or by nonlinearity in the interior.

Notation

Ao amplitude of (simple harmonic) driving head, m.
Aw, j amplitude of piezometric head fluctuation at (0,0), m.
B capillary fringe thickness = nHy, m.

Bw, j amplitude of piezometric head fluctuation at (0,d), m.
d time averaged driving head level, m.

d50 median sediment size, mm.
fmw harmonic phase, radians.
g acceleration due to gravity, m/s2.
ho driving head level, m.
h water table elevation, m.
h* piezometric head level, m.
h* time-averaged piezometric head level, m.
htot equivalent height of total moisture, m.
Hy equivalent, steady capillary fringe height, m.
i imaginary unit.
j wave mode component.
k wave number = kr + iki, rad/m.
kr amplitude decay rate, rad/m.
ki rate of increase of phase lag, rad/m.
kj wave mode wave number, rad/m.
K saturated hydraulic conductivity, m/s.
m harmonic component.
n drainable porosity.
ne (complex) effective porosity.
h water table fluctuation, m.

h1 asymptotic inland water table overheight, m.
qs saturated moisture content.
qr residual moisture content.

Rmw harmonic amplitude, m.
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Rw, j amplitude of wave mode, m.
r density of fluid, kg/m3.
x shore-normal coordinate, m.
t time, s.
T period, s.
w angular frequency, rad/s.
z vertical coordinate, m.
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