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Calculation of bound and resonance states of HO 2 for nonzero total
angular momentum

Hong Zhang and Sean C. Smitha)

Centre for Computational Molecular Science, Chemistry Building 68, The University of Queensland,
Qld 4072, Brisbane, Australia

~Received 28 January 2003; accepted 14 March 2003!

Bound and resonance states of HO2 have been calculated quantum mechanically by the Lanczos
homogeneous filter diagonalization method@Zhang and Smith, Phys. Chem. Chem. Phys.3, 2282
~2001!; J. Chem. Phys.115, 5751~2001!# for nonzero total angular momentumJ51,2,3. For lower
bound states, agreement between the results in this paper and previous work is quite satisfactory;
while for high lying bound states and resonances these are the first reported results. A helicity
quantum numberV assignment~within the helicity conserving approximation! is performed and the
results indicate that for lower bound states it is possible to assign theV quantum numbers
unambiguously, but for resonances it is impossible to assign theV helicity quantum numbers due to
strong mixing. In fact, for the high-lying bound states, the mixing has already appeared. These
results indicate that the helicity conserving approximation is not good for the resonance state
calculations and exact quantum calculations are needed to accurately describe the reaction dynamics
for HO2 system. Analysis of the resonance widths shows that most of the resonances are overlapping
and the interferences between them lead to large fluctuations from one resonance to another. In
accord with the conclusions from earlierJ50 calculations, this indicates that the dissociation of
HO2 is essentially irregular. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1572132#

I. INTRODUCTION

Resonances are temporarily trapped meta-stable states,
which are formed by bound-free excitations or by collisions
between reactants. After some finite time they will decay into
products. In essence, resonances are quantum mechanical
phenomena because they occur at discrete energies~reso-
nance positions!, but unlike bound states they have a finite
width ~resonance width!. Resonances are more difficult to
characterize computationally than bound states, not only be-
cause of the progressive increase in computational demands
as one moves up into denser regions of the spectrum, but
also because of the nonlocalization of their wave functions
~extending to infinity!. Though long recognized in the litera-
ture, the quantitative determination of resonances started to
appear only during past two decades for triatomic systems.
There are basically two ways to determine the resonance
energies and widths. The first one can be described as the
boundlike eigenvalue problem. In this method, the resonance
positions and widths are, respectively, associated with the
real and imaginary part of the complex eigenvalues of the
absorbing potential augmented Hamiltonian1–6 or complex
scaled Hamiltonian.7–10The second one is the so-called scat-
tering method, which rely on the scatteringS matrix
calculations.11–13 Resonance states are associated with the
complex poles of theS matrix and thus allS matrix related
quantities such as lifetime matrix or scattering probabilities

will reflect the resonance structures in their energy dependent
profiles. Analysis of the profiles can lead to resonance ener-
gies as well as widths.

Resonances can be generally classified into three catego-
ries according to the shapes of the potential energy surfaces
~PES!, namely, unbound, weakly bound, and strongly bound
systems. Three typical examples are, respectively, H1H2,
HCO, and HO2 ~or their isotopes!, which have been exten-
sively investigated both theoretically and experimentally, and
several review articles have appeared over the past
decades.14–23Among the three types of resonances, complex
forming systems are more difficult to compute. This is be-
cause the PES generally has a deep well supporting a dense
spectrum and thus more iterations are needed in time-
independent~TI! quantum iterative methods, or alternatively
more time is needed in time-dependent~TD! wave packet
methods. The potential well on the ground state PES of HO2

is 2.38 eV deep, supporting over 350 bound states of odd
exchange parity~for J50). It therefore has a relatively high
density of states, making this system a very complicated and
challenging one to characterize. For this system, there have
been several reports of total angular momentumJ50 bound
and resonance calculations.13,24–33There is only one report
of calculations of the low-lying bound states for small non-
zeroJ values,34 and no reports of resonance calculations for
nonzeroJ. There have been several reports detailing calcula-
tions of the initial-state-resolved reaction probability for H
1O2 reaction.29,30,35–43While most of the calculations focus
on J50, J.0 total reaction probability calculations have
appeared in recent rears.39–41 TheseJ.0 calculations focus
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mainly on the total angular momentum dependence of the
global shape of the reaction probabilities and of the mecha-
nisms governing the reaction, and the details of the indi-
vidual resonances are not considered. In particular, there are
no reported calculations focusing on the energy region in
which only one arrangement channel is open, i.e., above the
first reaction threshold and below the second reaction thresh-
old, which is the main focus in this paper. The continuing
interest in the HO2 system is motivated not only by its im-
portance as a benchmark system for computational methods,
but also by its importance in combustion and atmospheric
chemistry.44

ExactJ.0 calculations are essential in fully understand-
ing quantum reaction dynamics. For example, in unimolecu-
lar dissociation, to understand the temperature variation of
rate constants, it is important to implementJ.0 calculations
as accurately as possible. In bimolecular reactions, the de-
tailed cross sections can only be obtained after summing
over many manifolds of scattering matrix elements associ-
ated with nonzeroJ. However, theseJ.0 calculations are
still very challenging even for triatomic reactions, especially
when dealing with complex-forming systems. The major rea-
son for this situation is the so-called ‘‘angular momentum
catastrophe:’’45 many J.0 calculations have to be per-
formed, and the size of the Hamiltonian matrix increases
linearly with J. Thus approximate quantum methods such as
adiabatic rotation,46 J-shifting,47 and helicity conserving
~HC!48 approximations are commonly used. As important as
exact quantum methods may be, approximations may be-
come unavoidable for complex or/and large systems. How-
ever, for the complex forming reaction such as HO2, it
seems that the Coriolis coupling is important due to its flop-
piness, and these approximations might cause some inaccu-
racies, even errors. In another word, is there a reasonably
good quantum numberV associated with the projection of
total angular momentum on a body fixed axis? If the sub-
statesV of the wave function forJ.0 are heavily coupled,
the Coriolis coupling between the states cannot be ignored
and any attempts to assign the helicity quantum numberV
will fail. We will examine this issue by a helicity quantum
numberV assignment for both bound and resonance states.
If this assignment is successful, the approximate helicity
conserving calculations may be applied, otherwise the Cori-
olis coupling should not be ignored and exact quantum meth-
ods have to be used.

For exact quantum methods, there are several represen-
tations which can be utilized, such as close-coupled repre-
sentations~CCR!,49 finite basis representations~FBR!, dis-
crete variable representations~DVR!,50 and pseudo-spectral
transformation representations~PSTR!.51,52 These represen-
tations are closely related, and each has its advantages as
well as its disadvantages. In this paper we will use a DVR
for the internal Jacobi coordinates. The advantage of DVRs
is that the potential matrix is diagonal, which will reduce the
memory requirement substantially. For the three Eulerian
angles we employ a FBR. After setting up the Hamiltonian
matrix, one can use iterative methods such as standard com-

plex symmetric Lanczos method53,54 to calculate the eigen-
values. However, Lanczos subspace filter diagonalization
~LSFD! methods24,25,32,33,55–57recently developed in this
group may have many advantages over the standard Lanczos
method. First, LSFD is more efficient than standard Lanczos
method because only a small sized generalized eigen-
problem needs to be solved in LSFD. It is relatively easy to
set up the small eigen-problem since representing the Hamil-
tonian tridiagonally makes it a straightforward exercise to
generate a set of filtered states for each energy window
within the Lanczos subspace. For challenging molecular ap-

plications the rank of the tridiagonal representation ofĤ can
typically be in the range of 104– 106, in which case the di-
agonalization to extract eigenvalues using standard Lanczos
method can consume significant amounts of cpu time~not to
mention many additional diagonalisations used for conver-
gence checking as the size of the Lanczos basis increases!.
LSFD is especially useful when one only considers a small
section of the entire spectrum as in most applications. In
addition, LSFD has the desirable property of avoiding most
of the ghost eigenvalues that will appear in standard Lanczos
diagonalization. Different Lanczos FD versions have been
proposed such as quasiminimum residual~QMR! FD or
minimum residual~MINRES! FD approaches.33,55,56Very re-
cently we have developed a simpler and more efficient Lanc-
zos homogeneous filter diagonalization~LHFD! algorithm
based on a very simple homogeneous filtering recursion
within the Lanczos representation.24,25 This LHFD method
has been employed onJ50 bound and resonance state cal-
culations for HO2 system.24 In this report, we will extend the
LHFD method into exactJ.0 calculations for this system
for J51,2,3.

The rest of this article is organized as follows: In Sec. II
we describe the theoretical methods needed to characterize
both bound and resonance states for nonzero total angular
momentum. In Sec. III we shall give some computational
details and present the results ofJ.0 bound and resonance
calculations performed on the HO2 system. Section IV con-
cludes.

II. THEORETICAL METHODS

A. Hamiltonian

In general, we treat the three internal Jacobi coordinates
(R,r ,g) on discrete grids, while the three Eulerian angles~u,
f, c! are described in a basis set. This procedure is very
efficient because the potential part of the Hamiltonian matrix
is diagonal, which can reduce the memory requirement sub-
stantially. The following presentations follow the basic defi-
nitions, and our purpose is to reduce the 6D Hamiltonian into
a 4D tridiagonal block matrix for each singleJ value. Here
we do not give more details, and for that purpose the reader
is referred to earlier works.58–60

The triatomic Hamiltonian in Jacobi coordinates for HO2

system in body fixed frame is given by

10043J. Chem. Phys., Vol. 118, No. 22, 8 June 2003 Bound and resonance states of HO2
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ĵ 2

2mr 2 1V~R,r ,g!, ~1!
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Ĵ" ĵ 52\2F 2sinc cotg
]2

]c ]u
1cosc

]2

]g ]u
1~12cosc cotg cotu!

]2

]c2

1
cosc cotg

sinu

]2

]c ]f
1

sinc

sinu

]2

]g ]f
2sinc cotu

]2

]c ]g

G , ~4!

and using symmetry-adapted symmetric top eigenfunctions
to expand the total wave function, one can get the coupled
equations,
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3F6
]

]g
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with m50 for ĤV,V11 andm51 for ĤV,V21 . Such coupled
equations can be represented in any one of the four represen-
tations mentioned above. In our calculations, we use DVR:
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with

tV,V61
J j 52~11dV,m!1/2

\2

2mR2 AJ~J11!2V~V61!Aj ~ j 11!2V~V61!.

In Eq. ~7!, we have usedV-dependent DVR forg coordinate,
which is obtained by either diagonalizing the coordinate op-
erator (x5cosg) matrix V,gD j j 85*21

1 Q j
V(g)xQ j 8

V (g)dx or
by a Gauss-Jacobi quadrature schemeV,gD j j 8
5*21

1 W(x)Q̃ j
V(g)xQ̃ j 8

V (g)dx. Here Q j
V(g) is the associ-

ated Legendre polynomial, the weight functionW(x)5(1

2x2)V, and Q̃ j
V(g)5Q j

V(g)/A(12x2)V. In Gauss–Jacobi
quadrature scheme, the transformation matrix is set up ac-

cording to Tj l
V 5AvlQ̃ j

V(xl). Here l is used to label the
DVR in the g coordinate, andxl andvl are the quadrature

points and weights, respectively, which can be obtained from
standard methods.61 In a direct diagonalization scheme, the
DVR points and the transformation matrix are simply the
eigenvalues and the eigenvector matrix of the coordinate op-
erator matrix. We have compared the two DVR schemes, and
the DVR points as well as the transformation matrixT from
the two methods are nearly the same. ForR and r coordi-
nates, we have used potential optimized DVR.62 The details
of the DVRs will be given in Sec. III. The final Hamiltonian
matrix-vector multiplication for even spectroscopic symme-
try looks like
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S H00 H01 0 0

H10 H11 H12 0

0 H21 H22 �

0 0 � �

D S cV50

cV51

cV52

]

D 5S fV50

fV51

fV52

]

D , ~8!

which is a very sparse and large tridiagonal block matrix. For
odd spectroscopic symmetry, the Hamiltonian matrix is the
same exceptV51,2,...,J. The spectroscopic symmetry parity
is defined as (21)J1p, with p being the parity of the wave
function under inversion of the space fixed nuclear coordi-
nates. We calculate at the outset and then store the neighbor-
ing Coriolis coupling matrices@see the last two terms in Eq.
~7! for the details of the matrix elements# for eachV com-
ponent. The memory requirement for the coupling matrices
is not large, and whenever they are needed in the iterations,
we use them to perform the Hamiltonian matrix vector mul-
tiplications directly within the DVR. Although it is imple-
mented as a single matrix multiply, the Coriolis coupling
matrix multiplication onto the coupling wave packetcV61

can be interpreted as first transforming the DVR wave pack-
etscV61 into the FBR, then acting with the Coriolis operator
in the FBR, and finally transforming back into the~V-
dependent! DVR.

B. Lanczos homogeneous filter diagonalization

After setting up Hamiltonian matrix, we use complex
symmetric Lanczos algorithm to generate the Lanczos sub-
space, and then perform LHFD inside the subspace to extract
the bound and resonance information for chosen energy win-
dows. The LHFD algorithm for characterizing bound states
as well as resonances can be summarized as follows:

~i! Choose a normalized, randomly generated initial vec-
tor n1Þ0 and setb150 and n050. Then use the
three-term Lanczos algorithm for complex-symmetric
matrices63

bk11nk115Ĥ8nk2aknk2bknk21 ~9!

to project the non-Hermitian absorbing potential aug-
mented Hamiltonian into a Krylov subspace. The
M3M tridiagonal representation of the Hamiltonian,
TM , has diagonal elementsak5(nkuĤ8unk) and sub-
diagonal elementsbk5(nk21uĤ8unk). Note that a
complex-symmetric inner product is used~i.e., bra
vectors are not complex conjugated!.

~ii ! For all j 51,2,...,j max, generate filtered statesf(Ej )
by solving the homogeneous linear system

~Ej2TM!uf~Ej!&50. ~10!

Here a backward substitution recursion is employed:
ChoosefM , the M th element off(Ej ), to be arbi-
trary ~but nonzero; usually setfM51), and calculate

fM215
1

bM
~EjfM2aMfM!. ~11!

For k5M21,M22,...,2, update scalarfk21 :

bkfk215Ejfk2akfk2bk11fk11. ~12!

~iii ! Construct the overlap matrix with elementsSj j 8
5(f(Ej )uf(Ej 8)) and subspace Hamiltonian matrix
with elementsWj j 85(f(Ej )uTMuf(Ej 8)). Note that
Wj j 8 can be calculated using a three-term summation:

Wjj85(
k51

M

@fk~Ej!bkfk21~Ej8!1fk~Ej!akfk~Ej8!

1fk~Ej!bk11fk11~Ej8!#. ~13!

~iv! Solve the generalized complex-symmetric eigenvalue
problem WB5SB« to obtain the complex energies,
$«%.

~v! Span the energy domain by repeating~ii !–~iv! win-
dow by window.

To check the convergence of the eigenvalues as well as
the quality of the eigenpairs generated by the above iterative
methods, one can typically compute the error norm about the
eigenenergyE,

s~E!5i~TM2E!z~E!i ~14!

where the Lanczos eigenvectorz(E) is cheaply regenerated
for each complex eigenenergy using Eq.~10!. Clearly, true
eigenvalues should have small error norms and can thus be
distinguished from any unconverged/spurious eigenvalues.

III. RESULTS

A. Calculational details

The triatomic HO2 Hamiltonian matrix was set up in
terms of reactant Jacobi coordinates, and the HO2 DMBE IV
PES64 was employed as we did forJ50 bound and reso-
nance calculations. For the two radial coordinates, a
potential-optimized discrete variable representation62

TABLE I. Selected low lying bound state energies in energy window 1 for
J51 and even spectroscopic symmetry. The results of Wu and Hayes~Ref.
34! are also included for comparison. LHFD indicates this work, andV
indicates the helicity quantum number assignment.1 means even spectro-
scopic symmetry and2 means odd spectroscopic symmetry. The ro-
vibrational ground state energy was calculated at22.015 861 eV relative to
the dissociation limit of H1O2 , which is referred to as the zero energy
point. All energy units are in eV.

n LHFD Ref. 34 V n LHFD Ref. 34 V

1 0.000 271 0.000 270 01 18 0.422 581 0.422 618 11

2 0.002 668 0.002 668 11 19 0.445 320 0.445 347 01

3 0.132 352 0.132 368 01 20 0.447 875 0.447 903 11

4 0.134 720 0.134 736 11 21 0.462 197 0.462 211 01

5 0.160 996 0.161 003 01 22 0.464 906 0.464 921 11

6 0.163 488 0.163 496 11 23 0.501 247 0.501 304 01

7 0.259 495 0.259 525 01 24 0.503 535 0.503 592 11

8 0.261 834 0.261 865 11 25 0.541 845 0.541 891 01

9 0.292 789 0.292 812 01 26 0.544 223 0.544 269 11

10 0.295 249 0.295 272 11 27 0.548 433 0.548 455 01

11 0.312 291 0.312 302 01 28 0.550 718 0.550 741 11

12 0.314 886 0.314 898 11 29 0.572 484 0.572 523 01

13 0.382 208 0.382 252 01 30 0.574 994 0.575 033 11

14 0.384 520 0.384 564 11 31 0.581 538 0.581 552 01

15 0.413 593 0.413 598 01 32 0.583 961 0.583 976 11

16 0.415 892 0.415 896 11 33 0.597 478 0.597 507 01

17 0.420 161 0.420 197 01 34 0.600 120 0.600 151 11

10045J. Chem. Phys., Vol. 118, No. 22, 8 June 2003 Bound and resonance states of HO2

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  130.102.82.69 On: Fri, 07 Oct 2016

05:31:59



~PODVR! was utilized to reduce the size of the Hamiltonian
matrix. For the R coordinate, we have usedNR5110
PODVR points, which were contracted from 315 evenly-
spaced primitive sinc DVR points65 spanning the range from
0.5 a0 to 11.0a0 with the one-dimensional reference poten-
tial V(R,r e ,ue). Similarly, for the r coordinate,Nr550
PODVR points were obtained from 150 primary DVR points
spanning the range from 1.3a0 to 5.0a0 using the reference
potential V(Re ,r ,ue). For the g variable, V-dependent
symmetry-adapted DVR functions, defined by corresponding
associated Gauss–Legendre quadrature points, were em-
ployed to take account of the odd O–O exchange parity.
Another kind of symmetry originated from the Wigner
D-functions, i.e., spectroscopic symmetry, has also been con-
sidered. The resulting direct product basis set was further
contracted by discarding those points whose potential ener-
gies were higher than the cutoff energyVcutoff52.0 eV, re-
sulting in the final basis size of 110 7003(J11) for even
spectroscopic symmetry and 110 7003J for odd spectro-
scopic symmetry.

For the LHFD calculations, the absorbing potential in
the dissociation channel of H1O2 takes the following form:

V̂abs~R!5
V0

cosh2@~Rmax2R!/l#
, ~15!

whereRmax511.0a0 , andV0 andl are two adjusting param-
eters. For our purposes we takeV052.0 eV andl50.5a0 .

B. Bound and resonance energies

We have employed the LHFD methods described in de-
tail above to compute the bound state energies as well as the
resonance energies and widths for two chosen energy win-
dows for lowJ values 1, 2, 3. The first energy window is for
the lowest bound state energies from20.08 eV to 0.92 eV.
Here the zero energy point is referred to as the ground state
energy of HO2 for J50, which is22.015 861 eV relative to
the H1O2 dissociation limit. For this energy window we can
also compare our results with the early calculated results
from Wu and Hayes.34 This energy window is relatively easy
to calculate and a Lanczos subspace sizeM55000 is enough
to converge all the energies in this window. In Tables I–VI
we have listed the bound state energies for each symmetry of
J51, 2, and 3 separately. Inspection of the energies shows
that the agreement between our results and the earlier ones
are quite satisfactory and four digits of relative accuracy has
been achieved for most of the energies.

The second energy window we have chosen is close to
and above dissociation threshold, namely, the highest lying
bound state energies and lowest resonance energies and
widths from 2.10 eV to 2.18 eV. Since these are the first

TABLE II. Selected low bound state energies from energy window 1 from
J51 and odd spectroscopic symmetry calculations. All other symbols are
the same as in Table I.

n LHFD Ref. 34 V n LHFD Ref. 34 V

1 0.002 675 0.002 675 12 9 0.422 589 0.422 627 12

2 0.134 728 0.134 744 12 10 0.447 884 0.447 912 12

3 0.163 496 0.163 505 12 11 0.464 913 0.464 931 12

4 0.261 842 0.261 872 12 12 0.503 543 0.503 600 12

5 0.295 257 0.295 281 12 13 0.544 231 0.544 278 12

6 0.314 893 0.314 907 12 14 0.550 726 0.550 749 12

7 0.384 527 0.384 572 12 15 0.575 002 0.575 043 12

8 0.415 902 0.415 904 12 16 0.583 969 0.583 985 12

TABLE III. Selected low bound state energies from energy window 1 from
J52 and even spectroscopic symmetry calculations. Other symbols are the
same as in Table I.

n LHFD Ref. 34 V n LHFD Ref. 34 V

1 0.000 811 0.000 811 01 16 0.312 835 0.312 848 01

2 0.003 200 0.003 201 11 17 0.315 425 0.315 434 11

3 0.010 408 0.010 410 21 18 0.323 229 0.323 241 21

4 0.132 881 0.132 897 01 19 0.382 714 0.382 758 01

5 0.135 241 0.135 257 11 20 0.385 019 0.385 063 11

6 0.142 362 0.142 379 21 21 0.391 974 0.392 019 21

7 0.161 540 0.161 547 01 22 0.414 139 0.414 142 01

8 0.164 025 0.164 031 11 23 0.416 425 0.416 432 11

9 0.171 520 0.171 528 21 24 0.420 681 0.420 718 21

10 0.260 012 0.260 043 01 25 0.423 094 0.423 130 01

11 0.262 343 0.262 374 11 26 0.423 336 0.423 344 11

12 0.269 379 0.269 410 21 27 0.430 377 0.430 414 21

13 0.293 321 0.293 344 01 28 0.445 853 0.445 880 01

14 0.295 772 0.295 795 11 29 0.448 401 0.448 427 11

15 0.303 170 0.303 194 21 30 0.456 087 0.456 115 21

TABLE IV. Selected low bound state energies from energy window 1 from
J52 and odd spectroscopic symmetry calculations. Other symbols are the
same as in Table I.

n LHFD Ref. 34 V n LHFD Ref. 34 V

1 0.003 224 0.003 224 12 11 0.315 450 0.315 462 12

2 0.010 408 0.010 410 22 12 0.323 228 0.323 241 22

3 0.135 264 0.135 280 12 13 0.385 041 0.385 086 12

4 0.142 362 0.142 379 22 14 0.391 974 0.392 019 22

5 0.164 049 0.164 057 12 15 0.416 453 0.416 456 12

6 0.171 519 0.171 528 22 16 0.423 119 0.423 156 22

7 0.262 366 0.262 397 12 17 0.423 337 0.423 344 12

8 0.269 379 0.269 410 22 18 0.430 377 0.430 414 22

9 0.295 798 0.295 821 12 19 0.448 428 0.448 456 12

10 0.303 170 0.303 194 22 20 0.456 087 0.456 115 22

TABLE V. Selected low bound state energies from energy window 1 from
J53 and even spectroscopic symmetry calculations. Other symbols are the
same as in Table I.

n LHFD Ref. 34 V n LHFD Ref. 34 V

1 0.001 622 0.001 623 01 15 0.270 154 0.270 186 21

2 0.004 000 0.004 000 11 16 0.281 844 0.281 877 31

3 0.011 219 0.011 221 21 17 0.294 119 0.294 142 01

4 0.023 195 0.023 198 31 18 0.296 557 0.296 580 11

5 0.133 674 0.133 690 01 19 0.303 967 0.303 992 21

6 0.136 023 0.136 039 11 20 0.313 655 0.313 667 31

7 0.143 155 0.143 172 21 21 0.316 228 0.316 240 01

8 0.154 986 0.155 005 31 22 0.316 253 0.316 279 11

9 0.162 356 0.162 363 01 23 0.324 047 0.324 060 21

10 0.164 827 0.164 834 11 24 0.337 002 0.337 018 31

11 0.172 335 0.172 344 21 25 0.383 474 0.383 518 01

12 0.184 783 0.184 793 31 26 0.385 767 0.385 812 11

13 0.260 788 0.260 819 01 27 0.392 733 0.392 778 21

14 0.263 108 0.263 139 11 28 0.404 289 0.404 336 31
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calculated results, the convergence has been carefully tested
and in Fig. 1 we have plotted the convergence behavior for
one resonance atE52.133 96 eV forJ51 ~odd symmetry!.
From this figure one can see thatM5100 000 Lanczos itera-
tions can well converge most of the resonances in this energy
rage and in all our calculations we have used a largerM
5150 000 Lanczos subspace size. In Tables VII–XII we
present the resonance energies and widths for each symmetry
of J51, 2, and 3, respectively. These resonances are rela-
tively narrow ones and broader resonances cannot be ex-
tracted from the spectrum, simply because they are hidden in
the background. Also we do not attempt to perform stabili-
zation calculations for each resonance due to too large de-
manding on the computational resources.

Analysis of the resonance widths shows that most of the
resonances are overlapping ones. In Fig. 2 we have plotted
the resonance widths versus energies forJ51, 2, 3 ~reso-
nances from both even and odd symmetries are put together!.
Our considered energy range is relative small, but the fluc-
tuations from the three figures are not small at all. It seems
that the quantum widths~related to unimolecular dissociation
rates! fluctuate from one resonance to another in a random
and an unpredictable way. Such a fluctuation is a manifesta-
tion of prominent quantum interference effects between over-

lapping resonances. This fluctuating behavior has also been
obtained fromJ50 theoretical calculations on HO2 dissocia-
tion by several groups,13,26,31which indicates that the disso-
ciation of HO2 is essentially irregular. Although experimen-
tal data are still not available for this system, fluctuating
resonance rates have been observed for several other disso-
ciation systems including H2CO, CH3O, and NO2.66–68

Finally, in Tables I–VI an unambiguousV assignment
has been given for the low-lying bound states, supposing that
the helicity conserving approximation holds~because there
exist near degeneracies for the sameV components from
both symmetries, it is possible to assign them by comparing
the calculated energies from even and odd symmetries!. The
purpose ofV assignment is to investigate the importance of
the Coriolis coupling for this system. If this assignment is
successful, then helicity conserving~HC! calculations should
be accurate, which will save quite a lot of computational
time. For the high-lying bound states as well as for the reso-
nances, we have failed to assign them unambiguously. For
example, we have analyzed the high-lying bound state ener-
gies near the dissociation threshold fromJ51 calculations
for both even and odd spectroscopic symmetries, respec-

FIG. 1. Plot of the logarithmic relative errors, log10(error), versus Lanczos
iteration sizes at one resonance energyE52.133 96 eV fromJ51 odd sym-
metry calculations. All errors are relative to the reference energy ofE
52.133 957 694 6 eV from the largest subspace sizeM5300 000 calcula-
tions.

TABLE VI. Selected low bound state energies from energy window 1 from
J53 and odd spectroscopic symmetry calculations. Other symbols are the
same as in Table I.

n LHFD Ref. 34 V n LHFD Ref. 34 V

1 0.004 046 0.004 047 12 9 0.184 783 0.184 793 32

2 0.011 219 0.011 221 22 10 0.263 154 0.263 185 12

3 0.023 195 0.023 198 32 11 0.270 154 0.270 186 22

4 0.136 069 0.136 085 12 12 0.281 844 0.281 877 32

5 0.143 155 0.143 172 22 13 0.296 609 0.296 632 12

6 0.154 986 0.155 005 32 14 0.303 967 0.303 992 22

7 0.164 878 0.164 886 12 15 0.316 253 0.316 279 32

8 0.172 334 0.172 344 22 16 0.316 284 0.316 296 12

TABLE VII. Selected resonance energies and widths from energy window 2
from J51 and even spectroscopic symmetry calculations. All results are
from this work. The resonance energies are relative to the ro-vibrational
ground state energy of 2.015 861 eV fromJ50 calculations. All energy
units are in eV.

n
Energy
~LHFD!

Width
~LHFD! n

Energy
~LHFD!

Width
~LHFD!

1 2.115 615 0.96E204 15 2.123 716 0.87E205
2 2.115 940 0.21E204 16 2.124 557 0.75E204
3 2.116 007 0.50E204 17 2.125 397 0.11E204
4 2.117 532 0.72E204 18 2.126 727 0.66E203
5 2.117 632 0.18E203 19 2.127 894 0.83E204
6 2.118 151 0.15E206 20 2.129 499 0.14E202
7 2.118 766 0.11E203 21 2.129 565 0.20E205
8 2.119 246 0.79E204 22 2.130 381 0.34E205
9 2.120 072 0.55E203 23 2.130 942 0.34E204
10 2.120 213 0.16E204 24 2.131 559 0.27E203
11 2.121 811 0.60E204 25 2.132 133 0.90E203
12 2.121 944 0.41E203 26 2.133 084 0.13E204
13 2.122 115 0.25E203 27 2.133 194 0.34E204
14 2.123 205 0.89E206 28 2.134 299 0.13E203

TABLE VIII. Selected resonance energies and widths from energy window
2 from J51 and odd spectroscopic symmetry calculations. Other symbols
are the same as in Table VII.

n
Energy
~LHFD!

Width
~LHFD! n

Energy
~LHFD!

Width
~LHFD!

1 2.115 124 0.37E204 9 2.124 787 0.33E203
2 2.116 654 0.14E203 10 2.125 180 0.11E203
3 2.118 201 0.89E204 11 2.126 976 0.54E203
4 2.119 989 0.37E203 12 2.127 957 0.43E203
5 2.120 155 0.10E203 13 2.130 496 0.23E203
6 2.120 639 0.38E203 14 2.132 355 0.18E203
7 2.121 335 0.35E203 15 2.133 304 0.18E202
8 2.123 094 0.13E203 16 2.133 958 0.16E204
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tively. ~The results for the high-lying bound state energies
are not shown here, and they can be acquired from us upon
request.! While only several of them fromJ51 even sym-
metry calculations can be assigned tentatively, most of them
cannot be assigned with confidence~for J51 odd symmetry
results there is no need to assign because only one compo-
nent V51 exists!. The indication is that the mixing of dif-
ferent V components is so strong for them thatV is no
longer a good quantum number. Of course, the difficulties in
assignment also arise from the fact that the spacings between
these high-lying bound states and resonance states are be-
coming smaller and smaller. For overlapping resonances, the
assignment is further complicated by the mixing of different

resonance states, i.e., at resonance energy, other neighboring
resonances might interfere with this ‘‘main’’ resonance. For
this system, it seems that HC calculations can give reason-
ably accurate results only for low bound state energies. This
observation is in consistent with the previously reportedJ
.0 total reaction probability calculations for this system,
which show that for HO2 the Coriolis coupling is important
and cannot be ignored.69 Interestingly, this situation is in
contrast to the H2O system, for which HC calculations can
predict quite accurate total reaction probabilities.70,71

TABLE IX. Selected resonance energies and widths from energy window 2
from J52 and even spectroscopic symmetry calculations. Other symbols
are the same as in Table VII.

n
Energy
~LHFD!

Width
~LHFD! n

Energy
~LHFD!

Width
~LHFD!

1 2.115 111 0.65E205 21 2.123 966 0.80E203
2 2.115 438 0.17E204 22 2.124 270 0.24E204
3 2.115 799 0.99E205 23 2.125 191 0.10E203
4 2.116 490 0.20E204 24 2.125 260 0.88E204
5 2.116 649 0.33E205 25 2.125 840 0.57E203
6 2.117 014 0.44E203 26 2.126 601 0.22E203
7 2.117 971 0.31E203 27 2.126 638 0.47E203
8 2.118 494 0.54E204 28 2.126 871 0.66E204
9 2.118 581 0.92E204 29 2.126 889 0.41E203
10 2.118 964 0.38E204 30 2.127 681 0.38E204
11 2.119 042 0.83E203 31 2.128 527 0.37E203
12 2.119 276 0.16E203 32 2.129 272 0.15E204
13 2.120 353 0.21E204 33 2.129 329 0.12E204
14 2.120 670 0.37E204 34 2.130 435 0.92E204
15 2.121 447 0.62E204 35 2.130 675 0.36E204
16 2.121 541 0.11E203 36 2.131 177 0.44E204
17 2.121 696 0.28E204 37 2.131 484 0.10E203
18 2.123 237 0.22E204 38 2.131 530 0.13E204
19 2.123 409 0.16E203 39 2.131 838 0.15E202
20 2.123 660 0.51E204 40 2.132 128 0.18E205

TABLE X. Selected resonance energies and widths from energy window 2
from J52 and odd spectroscopic symmetry calculations. Other symbols are
the same as in Table VII.

n
Energy
~LHFD!

Width
~LHFD! n

Energy
~LHFD!

Width
~LHFD!

1 2.114 868 0.11E205 16 2.124 291 0.18E204
2 2.115 574 0.53E205 17 2.124 380 0.40E203
3 2.116 195 0.25E205 18 2.125 595 0.10E202
4 2.116 429 0.15E204 19 2.125 853 0.20E204
5 2.116 728 0.54E204 20 2.126 950 0.93E204
6 2.117 200 0.64E203 21 2.127 115 0.18E201
7 2.117 740 0.61E204 22 2.127 474 0.65E203
8 2.118 729 0.91E204 23 2.128 793 0.83E204
9 2.119 612 0.78E204 24 2.130 450 0.72E203
10 2.120 857 0.11E203 25 2.130 836 0.77E205
11 2.121 512 0.32E203 26 2.131 321 0.43E205
12 2.121 778 0.10E202 27 2.132 097 0.43E203
13 2.122 184 0.40E203 28 2.132 892 0.15E202
14 2.122 643 0.61E205 29 2.133 648 0.83E205
15 2.124 159 0.34E203 30 2.134 665 0.16E204

TABLE XI. Selected resonance energies and widths from energy window 2
from J53 and even spectroscopic symmetry calculations. Other symbols
are the same as in Table VII.

n
Energy
~LHFD!

Width
~LHFD! n

Energy
~LHFD!

Width
~LHFD!

1 2.114 890 0.21E204 21 2.123 500 0.40E203
2 2.115 157 0.16E204 22 2.124 398 0.13E204
3 2.116 115 0.28E206 23 2.125 038 0.61E205
4 2.116 582 0.68E205 24 2.125 702 0.27E203
5 2.116 830 0.42E204 25 2.126 171 0.99E204
6 2.117 415 0.17E204 26 2.126 612 0.65E204
7 2.117 513 0.13E203 27 2.127 339 0.34E204
8 2.117 638 0.23E203 28 2.127 699 0.46E205
9 2.117 936 0.56E203 29 2.128 075 0.21E204
10 2.118 330 0.57E204 30 2.128 473 0.12E202
11 2.118 967 0.78E204 31 2.129 215 0.14E203
12 2.119 048 0.15E204 32 2.129 751 0.23E203
13 2.119 506 0.10E202 33 2.130 537 0.88E203
14 2.119 829 0.94E204 34 2.130 736 0.67E204
15 2.120 150 0.52E204 35 2.131 283 0.14E204
16 2.121 257 0.59E204 36 2.132 044 0.33E204
17 2.121 417 0.56E204 37 2.132 124 0.65E204
18 2.122 265 0.42E203 38 2.132 497 0.39E203
19 2.122 916 0.32E203 39 2.133 296 0.15E202
20 2.123 335 0.17E203 40 2.134 151 0.17E204

TABLE XII. Selected resonance energies and widths from energy window 2
from J53 and odd spectroscopic symmetry calculations. Other symbols are
the same as in Table VII.

n
Energy
~LHFD!

Width
~LHFD! n

Energy
~LHFD!

Width
~LHFD!

1 2.114 837 0.48E205 19 2.124 190 0.17E204
2 2.115 698 0.18E205 20 2.124 864 0.94E204
3 2.116 131 0.91E205 21 2.125 135 0.17E204
4 2.116 308 0.22E205 22 2.126 286 0.79E204
5 2.117 299 0.17E206 23 2.126 588 0.21E203
6 2.118 239 0.25E203 24 2.127 464 0.46E204
7 2.118 494 0.40E203 25 2.127 961 0.39E205
8 2.118 646 0.96E205 26 2.128 120 0.51E203
9 2.119 368 0.13E203 27 2.128 637 0.75E207
10 2.119 731 0.16E203 28 2.129 578 0.59E203
11 2.120 174 0.62E204 29 2.130 126 0.45E204
12 2.121 093 0.82E203 30 2.130 932 0.12E203
13 2.121 352 0.19E204 31 2.131 309 0.11E203
14 2.121 626 0.54E203 32 2.131 807 0.53E204
15 2.121 946 0.35E203 33 2.132 399 0.34E204
16 2.122 469 0.50E205 34 2.133 563 0.39E204
17 2.123 365 0.98E203 35 2.133 686 0.55E204
18 2.123 570 0.30E203 36 2.133 876 0.12E204
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IV. CONCLUSIONS

In this paper the Lanszos subspace FD method devel-
oped in this group has been successfully extended toJ.0
calculations and converged HO2 bound state energies as well
as resonance energies and widths have been obtained for low
J values 1, 2, and 3. For low-lying bound states, agreement
between our results and the earlier calculations of Wu and

Hayes is quite satisfactory. For higher-lying bound states and
resonances, these are the first reported results. The results
indicate that the unimolecular dissociation of HO2 is domi-
nated by numerous resonances starting just above dissocia-
tion threshold forJ.0. Most of these resonances are over-
lapping ones, and the interferences among them lead to
complicated dissociation dynamics. The resonance widths
~rates! show strong fluctuations, which indicate there is an
intricate coupling between the internal degrees of freedom in
dissociation, and that the HO2 dissociation is essentially ir-
regular.

An V assignment has been attempted to investigate the
importance of the Coriolis coupling. While this assignment is
successful for the low bound states, for the higher-lying
bound states and resonances the assignment is unsuccessful.
This indicates that mixing of differentV components is
strong and Coriolis coupling cannot be ignored for this sys-
tem ~V is no longer a good quantum number!, especially for
resonance calculations.

Several interesting issues concerning HO2 dissociation
suggest themselves for future work and are under investiga-
tion in our group. First, inspired by the work of Goldfield
and co-workers,39–41 we are extending ourJ.0 bound and
resonance calculations to highJ values through parallel com-
puting. We are also performing a comparative study of the
Lanczos subspace FD method with the real Chebyshev FD
method72 for J values ranging 1 through 5 and the prelimi-
nary results are encouraging.73 In addition, it will be inter-
esting to compare ther-embedding resonances~O–O bond
as thez axis of the body-fixed frame! with the R-embedding
results of this paper, since it has been suggested that ther
axis may be a better quantization axis~in the sense of pre-
servingV as a good quantum number!. For the reactive scat-
tering case, such a comparison has been made to investigate
the importance of the Coriolis coupling.41 In that study, it
was found thatV is not a good quantum number for either
embedding, however, whether this conclusion also holds for
high-lying bound states and resonances remains to be seen.
Finally we are implementing the pseudo-spectral transforma-
tion representation into our algorithms for efficiently imple-
menting the Hamiltonian matrix vector multiplications~see,
e.g., Refs. 51, 52!, which is essential in all iterative quantum
methods and in particular forJ.0 calculations.

ACKNOWLEDGMENTS

We are grateful to the Australian Research Council for
supporting this work~Large Grant No. A29937112 and Dis-
covery Project Grant No. DP0211019!. We thank Dr. An-
thony Rasmussen and Dr. Hua-Gen Yu for helpful discus-
sions. We also acknowledge the grants of high performance
computer time from both The University of Queensland and
the Australian Partnership for Advanced Computing~APAC!
National facility.

1G. Jolicard, C. Leforestier, and E. J. Austin, J. Chem. Phys.88, 1026
~1988!.

2G. Jolicard and E. J. Austin, Chem. Phys. Lett.121, 106 ~1985!.
3G. Jolicard and E. J. Austin, Chem. Phys.103, 295 ~1986!.
4D. Neuhauser and M. Baer, J. Chem. Phys.90, 4351~1989!.
5R. Kosloff and D. Kosloff, J. Comput. Phys.63, 363 ~1986!.

FIG. 2. ~a! Plot of the logarithmic resonance widths, log10 (width), versus
resonance energy in the low part of the resonance energies fromJ51 cal-
culations. Resonances from both odd symmetry and even symmetry have
been included.~b! Same as previous figure, except fromJ52 calculations.
~c! Same as previous figure, except fromJ53 calculations.

10049J. Chem. Phys., Vol. 118, No. 22, 8 June 2003 Bound and resonance states of HO2

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  130.102.82.69 On: Fri, 07 Oct 2016

05:31:59



6U. V. Riss and H.-D. Meyer, J. Phys. B26, 4503~1993!.
7J. Aguilar and J. M. Combes, Commun. Math. Phys.22, 269 ~1971!.
8B. Simon, Ann. Math.97, 247 ~1973!.
9N. Moiseyev, P. R. Certain, and F. Weinhold, Mol. Phys.36, 1613~1978!.

10N. Moiseyev, Phys. Rep.302, 211 ~1998!.
11K. T. Lee and J. M. Bowman, J. Chem. Phys.85, 6225~1986!.
12H. W. Jang and J. C. Light, J. Chem. Phys.102, 3262~1995!.
13A. J. Dobbyn, M. Stumpf, H.-M. Keller, and R. Schinke, J. Chem. Phys.

104, 8357~1996!.
14R. Schinke, H.-M. Keller, M. Stumpf, and A. J. Dobbyn, J. Phys. B28,

3081 ~1995!.
15M. Stumpf, A. J. Dobbyn, D. H. Mordaunt, H.-M. Keller, H. Fluethmann,

and R. Schinke, Faraday Discuss.102, 193 ~1995!.
16F. Fernandez-Alonso and R. N. Zare, Annu. Rev. Phys. Chem.53, 67

~2002!.
17K. Liu, Annu. Rev. Phys. Chem.52, 139 ~2001!.
18S. A. Reid and H. Reisler, Annu. Rev. Phys. Chem.47, 495 ~1996!.
19R. Schinke, H.-M. Keller, H. Flothmann, M. Stumpf, C. Beck, D. H.

Mordaunt, and A. J. Dobbyn, Adv. Chem. Phys.101, 745 ~1997!.
20J. M. Bowman, J. Phys. Chem. A102, 3006~1998!.
21R. Schinke, C. Beck, S. Y. Grebenshchikov, and H. M. Keller, Ber. Bun-

senges. Phys. Chem.102, 593 ~1998!.
22W. H. Miller, Annu. Rev. Phys. Chem.41, 245 ~1990!.
23G. C. Schatz, Science288, 1599–1600~2000!.
24H. Zhang and S. C. Smith, Phys. Chem. Chem. Phys.3, 2282~2001!.
25H. Zhang and S. C. Smith, J. Chem. Phys.115, 5751~2001!.
26V. A. Mandelshtam, T. P. Grozdanov, and H. S. Taylor, J. Chem. Phys.

103, 10074~1995!.
27B. Kendrick and R. T Pack, Chem. Phys. Lett.235, 291 ~1995!.
28B. Kendrick and R. T Pack, J. Chem. Phys.104, 7475~1996!.
29J. Dai and J. Z. H. Zhang, J. Phys. Chem.100, 6899~1996!.
30D. H. Zhang and J. Z. H. Zhang, J. Chem. Phys.101, 3671~1994!.
31A. J. Dobbyn, M. Stumpf, H.-M. Keller, W. L. Hase, and R. Schinke, J.

Chem. Phys.102, 5867~1995!.
32H. Zhang and S. C. Smith, Chem. Phys. Lett.347, 211 ~2001!.
33H. G. Yu and S. C. Smith, Chem. Phys. Lett.283, 69 ~1998!.
34X. T. Wu and E. F. Hayes, J. Chem. Phys.107, 2705~1997!.
35C. Leforestier and W. H. Miller, J. Chem. Phys.100, 733 ~1994!.
36J. Q. Dai and J. Z. H. Zhang, J. Chem. Phys.104, 3664~1996!.
37R. T Pack, E. A. Butcher, and G. A. Parker, J. Chem. Phys.99, 9310

~1993!.
38R. T Pack, E. A. Butcher, and G. A. Parker, J. Chem. Phys.102, 5998

~1995!.
39E. M. Goldfield and A. J. H. M. Meijer, J. Chem. Phys.113, 11055~2000!.

40A. Meijer and E. M. Goldfield, J. Chem. Phys.108, 5404~1998!.
41A. Meijer and E. M. Goldfield, J. Chem. Phys.110, 870 ~1999!.
42H. Zhang and S. C. Smith, J. Chem. Phys.116, 2354~2002!.
43H. Zhang and S. C. Smith, J. Chem. Phys.117, 5174~2002!.
44W. C. Gardiner,Combustion Chemistry~Springer, Berlin, 1984!.
45D. G. Truhlar, Comput. Phys. Commun.84, 78 ~1994!.
46J. M. Bowman, Chem. Phys. Lett.217, 36 ~1993!.
47J. M. Bowman, J. Phys. Chem.95, 4960~1991!.
48D. E. Skinner, T. C. German, and W. H. Miller, J. Phys. Chem. A102,

3828 ~1998!.
49R. C. Mowrey and D. J. Kouri, J. Chem. Phys.84, 6466~1986!.
50J. C. Light, I. P. Hamilton, and J. V. Lill, J. Chem. Phys.82, 1400~1985!.
51G. Corey and D. Lemoine, J. Chem. Phys.97, 4115~1992!.
52A. J. Rasmussen, K. E. Gates, and S. C. Smith, J. Chem. Phys.110, 1354

~1999!.
53C. Lanczos, J. Res. Natl. Bur. Stand.45, 255 ~1950!.
54J. K. Cullum and R. A. Willoughby,Lanczos Algorithms for Large Sym-

metric Eigenvalue Computations~Birkhauser, Boston, 1985!.
55H. G. Yu and S. C. Smith, Ber. Bunsenges. Phys. Chem.101, 400 ~1997!.
56H. G. Yu and S. C. Smith, J. Chem. Phys.107, 9985~1997!.
57H. G. Yu and S. C. Smith, J. Comput. Phys.143, 484 ~1998!.
58S. E. Choi and J. C. Light, J. Chem. Phys.92, 2129~1990!.
59C. Leforestier, J. Chem. Phys.94, 6388~1991!.
60S. M. Auerbach and W. H. Miller, J. Chem. Phys.100, 1103~1994!.
61W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,Nu-

merical Recipes in Fortran~Cambridge University Press, Cambridge,
1992!.

62J. Echave and D. Clary, Chem. Phys. Lett.190, 225 ~1992!.
63G. Moro and J. H. Freed, J. Chem. Phys.74, 3757~1981!.
64M. R. Pastrana, L. A. M. Quintales, J. Brandao, and A. J. C. Varandas, J.

Phys. Chem.94, 8073~1990!.
65D. T. Colbert and W. H. Miller, J. Chem. Phys.96, 1982~1992!.
66A. Geers, J. Kappert, F. Temps, and J. W. Wiebrecht, J. Chem. Phys.99,

2271 ~1993!.
67W. H. Miller, R. Hernandez, C. B. Moore, and W. F. Polik, J. Chem. Phys.

93, 5657~1990!.
68S. A. Reid and H. Reisler, J. Phys. Chem.100, 474 ~1996!.
69A. J. H. M. Meijer and E. M. Goldfield, Phys. Chem. Chem. Phys.3, 2811

~2001!.
70S. K. Gray, E. M. Goldfield, G. C. Schatz, and G. G. Balint-Kurtii, Phys.

Chem. Chem. Phys.1, 1141~1999!.
71T. E. Carroll and E. M. Goldfield, J. Phys. Chem. A105, 2251~2001!.
72V. A. Mandelshtam and H. S. Taylor, J. Chem. Phys.107, 6756~1997!.
73H. Zhang and S. C. Smith, J. Chem. Phys.~to be published!.

10050 J. Chem. Phys., Vol. 118, No. 22, 8 June 2003 H. Zhang and S. C. Smith

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  130.102.82.69 On: Fri, 07 Oct 2016

05:31:59


