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Calculation of bound and resonance states of HO  , for nonzero total
angular momentum
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Bound and resonance states of Hikave been calculated quantum mechanically by the Lanczos
homogeneous filter diagonalization metH@hang and Smith, Phys. Chem. Chem. PI8;2282

(2002); J. Chem. Physl15 5751(2001)] for nonzero total angular momentuis=1,2,3. For lower

bound states, agreement between the results in this paper and previous work is quite satisfactory;
while for high lying bound states and resonances these are the first reported results. A helicity
quantum numbef) assignmengtwithin the helicity conserving approximatipis performed and the
results indicate that for lower bound states it is possible to assignOthguantum numbers
unambiguously, but for resonances it is impossible to assigfthelicity quantum numbers due to
strong mixing. In fact, for the high-lying bound states, the mixing has already appeared. These
results indicate that the helicity conserving approximation is not good for the resonance state
calculations and exact quantum calculations are needed to accurately describe the reaction dynamics
for HO, system. Analysis of the resonance widths shows that most of the resonances are overlapping
and the interferences between them lead to large fluctuations from one resonance to another. In
accord with the conclusions from earlié=0 calculations, this indicates that the dissociation of
HO, is essentially irregular. €003 American Institute of Physics.

[DOI: 10.1063/1.1572132

I. INTRODUCTION will reflect the resonance structures in their energy dependent
profiles. Analysis of the profiles can lead to resonance ener-
Resonances are temporarily trapped meta-stable statesies as well as widths.
which are formed by bound-free excitations or by collisions  Resonances can be generally classified into three catego-
between reactants. After some finite time they will decay intories according to the shapes of the potential energy surfaces
products. In essence, resonances are quantum mechani¢@ES, namely, unbound, weakly bound, and strongly bound
phenomena because they occur at discrete enefgies-  systems. Three typical examples are, respectivehy,Hd,
nance positions but unlike bound states they have a finite HCO, and HQ (or their isotopes which have been exten-
width (resonance width Resonances are more difficult to sively investigated both theoretically and experimentally, and
characterize computationally than bound states, not only beseveral review articles have appeared over the past
cause of the progressive increase in computational demandecades?~2*Among the three types of resonances, complex
as one moves up into denser regions of the spectrum, bfigrming systems are more difficult to compute. This is be-
also because of the nonlocalization of their wave functiongause the PES generally has a deep well supporting a dense
(extending to infinity. Though long recognized in the litera- spectrum and thus more iterations are needed in time-
ture, the quantitative determination of resonances started iadependentTl) quantum iterative methods, or alternatively
appear only during past two decades for triatomic systemsnore time is needed in time-dependéifD) wave packet
There are basically two ways to determine the resonancmethods. The potential well on the ground state PES of HO
energies and widths. The first one can be described as the 2.38 eV deep, supporting over 350 bound states of odd
boundlike eigenvalue problem. In this method, the resonancexchange parityfor J=0). It therefore has a relatively high
positions and widths are, respectively, associated with thdensity of states, making this system a very complicated and
real and imaginary part of the complex eigenvalues of thehallenging one to characterize. For this system, there have
absorbing potential augmented Hamiltorighor complex  been several reports of total angular momentli0 bound
scaled Hamiltoniad=*° The second one is the so-called scat-and resonance calculatioh2*~33There is only one report
tering method, which rely on the scatterin§ matrix  of calculations of the low-lying bound states for small non-
calculations~*® Resonance states are associated with thgeroJ values®* and no reports of resonance calculations for
complex poles of thés matrix and thus alls matrix related  nonzerol. There have been several reports detailing calcula-
quantities such as lifetime matrix or scattering probabilitiestions of the initial-state-resolved reaction probability for H
+ 0, reaction?®3%-35-43\hile most of the calculations focus

aAuthor to whom correspondence should be addressed. Fax: 61-7-3368N J=0, ‘]_>0 total reaCtiﬁn probability Calcu'_ations have
4623. Electronic mail: s.smith@uq.edu.au appeared in recent reals.*! TheseJ>0 calculations focus
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mainly on the total angular momentum dependence of th@lex symmetric Lanczos methtitP* to calculate the eigen-
global shape of the reaction probabilities and of the mechavalues. However, Lanczos subspace filter diagonalization
nisms governing the reaction, and the details of the indi{LSFD) method§"?323355=57recently developed in this
vidual resonances are not considered. In particular, there agroup may have many advantages over the standard Lanczos
no reported calculations focusing on the energy region irmethod. First, LSFD is more efficient than standard Lanczos
which only one arrangement channel is open, i.e., above theethod because only a small sized generalized eigen-
first reaction threshold and below the second reaction threstproblem needs to be solved in LSFD. It is relatively easy to
old, which is the main focus in this paper. The continuingset up the small eigen-problem since representing the Hamil-
interest in the H@ system is motivated not only by its im- tonian tridiagonally makes it a straightforward exercise to
portance as a benchmark system for computational methodgenerate a set of filtered states for each energy window
but also by its importance in combustion and atmospherigvithin the Lanczos subspace. For challenging molecular ap-
chemistry** plications the rank of the tridiagonal representatiottoéan
ExactJ>0 calculations are essential in fully understand-typically be in the range of 78-1¢, in which case the di-
ing quantum reaction dynamics. For example, in unimolecuagonalization to extract eigenvalues using standard Lanczos
lar dissociation, to understand the temperature variation afnethod can consume significant amounts of cpu tinw to
rate constants, it is important to implement 0 calculations mention many additional diagonalisations used for conver-
as accurately as possible. In bimolecular reactions, the dgence checking as the size of the Lanczos basis inceases
tailed cross sections can only be obtained after summingSFD is especially useful when one only considers a small
over many manifolds of scattering matrix elements associsection of the entire spectrum as in most applications. In
ated with nonzeral. However, thesel>0 calculations are addition, LSFD has the desirable property of avoiding most
still very challenging even for triatomic reactions, especiallyof the ghost eigenvalues that will appear in standard Lanczos
when dealing with complex-forming systems. The major readiagonalization. Different Lanczos FD versions have been
son for this situation is the so-called “angular momentumproposed such as quasiminimum residdé@VR) FD or
catastrophe:*® many J>0 calculations have to be per- minimum residualMINRES) FD approached’*>**Very re-
formed, and the size of the Hamiltonian matrix increasesently we have developed a simpler and more efficient Lanc-
linearly with J. Thus approximate quantum methods such ag0s homogeneous filter diagonalizatinHFD) algorithm
adiabatic rotatiof® J-shifting*’ and helicity conserving bPased on a very simple homogeneous filtering recursion
(HC)* approximations are commonly used. As important aghithin the Lanczos representatiéh’® This LHFD method
exact quantum methods may be, approximations may pdlas been employed ah=0 bound and resonance state cal-
come unavoidable for complex or/and large systems. Howeulations for HQ systent:* In this report, we will extend the
ever, for the complex forming reaction such as HOt LHFD method into exac>0 calculations for this system
seems that the Coriolis coupling is important due to its flop-for J=123. . S )
piness, and these approximations might cause some inaccu- The rgst of this amclg is organized as follows: In Sec. II-
racies, even errors. In another word, is there a reasonabKf€ describe the theoretical methods needed to characterize
good quantum numbeR associated with the projection of both bound and resonance states_for nonzero total a_ngular
total angular momentum on a body fixed axis? If the Sub_momentum. In Sec. lll we shall give some computational
statesQ) of the wave function fod>0 are heavily coupled, details z';md present the resultsd#0 bound anql resonance
the Coriolis coupling between the states cannot be ignore§2iculations performed on the H@ystem. Section IV con-
and any attempts to assign the helicity quantum nunfber cludes.
will fail. We will examine this issue by a helicity quantum
number() assignment for both bound and resonance states.
If this assignment is successful, the approximate helicity
cqnservin_g calculations may be applied, otherwise the Coril—l_ THEORETICAL METHODS
olis coupling should not be ignored and exact quantum meth-
ods have to be used. A. Hamiltonian

For exact quantum methods, there are several represen- |n general, we treat the three internal Jacobi coordinates
tations which can be utilized, such as close-coupled repreR r,y) on discrete grids, while the three Eulerian andles
sentations(CCR),*® finite basis representatio&BR), dis- ¢, ) are described in a basis set. This procedure is very
crete variable representatiof®VR),>® and pseudo-spectral efficient because the potential part of the Hamiltonian matrix
transformation representatiofRSTR.>>*? These represen- s diagonal, which can reduce the memory requirement sub-
tations are closely related, and each has its advantages @ntially. The following presentations follow the basic defi-
well as its disadvantages. In this paper we will use a DVRnitions, and our purpose is to reduce the 6D Hamiltonian into
for the internal Jacobi coordinates. The advantage of DVR& 4D tridiagonal block matrix for each singlevalue. Here
is that the potential matrix is diagonal, which will reduce thewe do not give more details, and for that purpose the reader
memory requirement substantially. For the three Eulerians referred to earlier work2-6°
angles we employ a FBR. After setting up the Hamiltonian  The triatomic Hamiltonian in Jacobi coordinates for {0
matrix, one can use iterative methods such as standard corsystem in body fixed frame is given by
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Expressing the angular momentum parts of the Hamiltonian
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with m=0 for A, ., andm=1 forH, ,_;. Such coupled
equations can be represented in any one of the four represen-
tations mentioned above. In our calculations, we use DVR:

1 1
2u 2 2
20218, 8010

)

tn 0=1=—(1+8g )2 2R

In Eq.(7), we have usefl-dependent DVR fory coordinate,

I+ -QQ+1)Vj(j+1)—Q(Q=1).

points and weights, respectively, which can be obtained from

which is obtained by either diagonalizing the coordinate op-standard method®.In a direct diagonalization scheme, the

erator K= cosy) matrix Q’VA“,—fl 10] (y)x@“(y)dx or
by a Gauss-Jacobi quadrature schem8 YA
=fl,1W(X)@jQ('y)X@?,(‘y)dX. Here ©*(y) is the associ-
ated Legendre polynomial, the weight functiov(x)=(1
—x3)®, and 0 (7)=07(»)/(1-x%)%. In Gauss—Jacobi

DVR points and the transformation matrix are simply the
eigenvalues and the eigenvector matrix of the coordinate op-
erator matrix. We have compared the two DVR schemes, and
the DVR points as well as the transformation maffikrom

the two methods are nearly the same. Roandr coordi-
nates, we have used potential optimized D&Rhe details

quadrature scheme the transformation matrix is set up agy the DVRs will be given in Sec. Ill. The final Hamiltonian

cording to Tj; = JVw,®;'(x,). Here\ is used to label the

matrix-vector multiplication for even spectroscopic symme-

DVR in the 'y coordinate, and, andw, are the quadrature try looks like
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Ho Hpt O O ba-o ba-o0 (i) Construct the overlap matrix with element;,
Hio Hy Hyp O Yao=1 ba-1 =(¢(Ej)|¢(E;)) and subspace Hamiltonian matrix
_ Yoo | =| ba=2], ) with elementsW;;, = (#(E;)|Tu|#(E;/)). Note that
0 Hxu Hyp ™ W;j;, can be calculated using a three-term summation:
0 o . - : : M

W :kzl [ A(E)) Brd—1(Ej) + A Ej) awepi(Ejr)

which is a very sparse and large tridiagonal block matrix. For
odd spectroscopic symmetry, the Hamiltonian matrix is the

same excepf2=1,2,....J). The spectroscopic symmetry parity +@(Ei)ﬁk+19_bk+1(Ei’)]' o (13
is defined as € 1)°*P, with p being the parity of the wave (iv)  Solve the generalized complex-symmetric eigenvalue
function under inversion of the space fixed nuclear coordi- problemWB=SBe to obtain the complex energies,

nates. We calculate at the outset and then store the neighbor- {e}. ) o )
ing Coriolis coupling matricefsee the last two terms in Eq. (V) ~ Span the energy domain by repeatifig—(iv) win-
(7) for the details of the matrix elementior eachQ) com- dow by window.

ponent. The memory requirement for the coupling matrices

is not large, and whenever they are needed in the iteration:a,]e
we use them to perform the Hamiltonian matrix vector mul-
tiplications directly within the DVR. Although it is imple-
mented as a single matrix multiply, the Coriolis coupling
matrix multiplication onto the coupling wave packgt, ., a(E)=[(Tm—E)J(E)| (14

can be interpreted as first transforming the DVR wave pack- : .
etsiyq -4 into the FBR, then acting with the Coriolis operator where the Lanczos eigenvectfE) is cheaply regenerated

. . . : for each complex eigenenergy using E#0). Clearly, true
in the FBR, and finally transforming back into thé- eigenvalues should have small error norms and can thus be
dependentDVR.

distinguished from any unconverged/spurious eigenvalues.

To check the convergence of the eigenvalues as well as
quality of the eigenpairs generated by the above iterative
methods, one can typically compute the error norm about the
eigenenergy,

B. Lanczos homogeneous filter diagonalization Ill. RESULTS

After setting up Hamiltonian matrix, we use complex A. Calculational details

symmetric Lanczos algorithm to generate the Lanczos sub-  The triatomic HQ Hamiltonian matrix was set up in
space, and then perform LHFD inside the subspace to extragt s of reactant Jacobi coordinates, and the BOIBE IV

the bound and resonance information for chosen energy wirbg 4 a5 employed as we did faf=0 bound and reso-
dows. The LHFD algorithm for characterizing bound stateS,snce calculations. For the two radial coordinates, a

as well as resonances can be summarized as follows: potential-optimized  discrete  variable  represent&fion

(i) Choose a normalized, randomly generated initial vec-

tor v1#0 and setB;=0 and v,=0. Then use the

: . . TABLE I. Selected low lying bound state energies in energy window 1 for
three-term Lanczos algorithm for complex-symmetric 4
9 P y J=1 and even spectroscopic symmetry. The results of Wu and H&edfs

matr'ce§3 34) are also included for comparison. LHFD indicates this work, &nhd
,3k+1Vk+1:|:|,Vk_ a4V~ BiVi-1 (9) indicates the helicity quantum number assignménmeans even spectro-
scopic symmetry and” means odd spectroscopic symmetry. The ro-
to project the non-Hermitian absorbing potential aug-vibrational ground state energy was calculatee-at015 861 eV relative to
mented Hamiltonian into a Krylov subspace. Thethe dissociation limit of H-O,, which is referred to as the zero energy

M X M tridiagonal representation of the Hamiltonian, POt All energy units are in ev.

Tw. has diagonal elements,= (v |A’|v,) and sub- n LHFD Ref.34 Q n LHFD Ref. 34 Q
; _ "y
diagonal elementsB; = (v,-1/H'[»). Note that @ 1 000271 0000270 © 18 0422581 0422618 1
complex-symmetric inner product is uséde., bra 2 0.002668 0.002668 "1 19 0.445320 0.445347 "0
vectors are not complex conjugajed 3 0132352 0.132368 0 20 0447875 0.447903 "1
(i) For all j=1,2,...j max, generate filtered states(E)) 4 0134720 0.134736 % 21 0462197 0.462211 1(1)
: ; 5 0.160996 0.161003 22 0.464906 0.464921
by solving the homogeneous linear system 6 0163488 0.163496 1 23 0.501247 0501304 ™
(E:—Tw)|#(E))=0. (10) 7 0259495 0259525 0 24 0503535 0.503592 1
! ! 8 0261834 0261865 "1 25 0541845 0541891 0
Here a backward substitution recursion is employed: 9 0.292789 0.292812 0 26 0544223 0.544269 *1
Choosegy, theMth element ofg(E;). to be arbi- - 33 021500 0200 %s © 25 ossoris ossorar 4
trary (but nonzero; usually set,,=1), and calculate 17 0314885 0314898 1 29 0572484 0572523 O
1 E 11 13 0.382208 0.382252 0 30 0574994 0.575033 ‘1
¢M—1_E( b~ Py)- (1D 14 0.384520 0.384564 "1 31 0581538 0.581552 0
15 0.413593 0.413598 0 32 0583961 0.583976 1
Fork=M—-1M-2,...,2, update scalapy_: 16 0.415892 0.415896 *1 33 0.597478 0.597507 0
0420161 0.420197 ‘0 34 0.600120 0.600151 1

Bk 1=Ej— ax— B 1P+1- (12
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TABLE Il. Selected low bound state energies from energy window 1 from TABLE IV. Selected low bound state energies from energy window 1 from
J=1 and odd spectroscopic symmetry calculations. All other symbols areJ=2 and odd spectroscopic symmetry calculations. Other symbols are the

the same as in Table I. same as in Table I.
n LHFD Ref. 34 QO n LHFD Ref. 34 QO n LHFD Ref. 34 9) n LHFD Ref. 34 9)
1 0.002675 0.002675 1 9 0.422589 0.422627 1 1 0.003224 0.003224 1 11 0.315450 0.315462 1
2 0.134728 0.134744 1 10 0.447884 0.447912 1 2 0.010408 0.010410 2 12 0.323228 0.323241 2
3 0.163496 0.163505 1 11 0.464913 0.464931 1 3 0135264 0.135280 1 13 0.385041 0.385086 1
4 0.261842 0.261872 1 12 0503543 0.503600 1 4 0.142362 0.142379 2 14 0.391974 0.392019 2
5 0.295257 0.295281 1 13 0.544231 0.544278 1 5 0.164049 0.164057 1 15 0.416453 0.416456 1
6 0.314893 0.314907 1 14 0550726 0550749 1 6 0.171519 0.171528 2 16 0.423119 0.423156 2
7 0384527 0.384572 1 15 0.575002 0.575043 1 7 0262366 0.262397 1 17 0.423337 0.423344 1
8 0415902 0415904 1 16 0583969 0.583985 1 8 0.269379 0.269410 2 18 0.430377 0.430414 2
9 0.295798 0.295821 1 19 0.448428 0.448456 1
10 0.303170 0.303194 2 20 0.456087 0.456115 2

(PODVR) was utilized to reduce the size of the Hamiltonian

matrix. For the R coordinate, we have useBlz=110 WwhereR,~=11.0a,, andV, and\ are two adjusting param-
PODVR points, which were contracted from 315 evenly-éters. For our purposes we talg=2.0 eV and\ =0.53a,.
spaced primitive sinc DVR poirftdspanning the range from

0.5a, to 11.0a, with the one-dimensional reference poten-B. Bound and resonance energies

tial V(Rire,0e). Similarly, for ther coordinate, N, =50 We have employed the LHFD methods described in de-
PODVR points were obtained from 150 primary DVR points 4| apove to compute the bound state energies as well as the
spanning the range from 1 to 5.0, using the reference rosonance energies and widths for two chosen energy win-
potential V(Re,r,0¢). For the y variable, -dependent o5 for lowd values 1, 2, 3. The first energy window is for
symmetry-adapted DVR functions, defined by correspondinghe owest bound state energies frond.08 eV to 0.92 eV.
associated Gauss-Legendre quadrature points, were eMgre the zero energy point is referred to as the ground state
ployed to take account of the odd O-O exchange paritygnergy of HQ for J=0, which is—2.015 861 eV relative to
Another kind of symmetry originated from the Wigner y,e 14 o, dissociation limit. For this energy window we can
D-functions, i.e., spectroscopic symmetry, has also been congsq compare our results with the early calculated results

sidered. The re_sulting_ direct prodgct basis set was furthefrom wu and Haye& This energy window is relatively easy
contracted by discarding those points whose potential enefy c5iculate and a Lanczos subspace Bze5000 is enough

gies were higher than the cutoff eneriy,o=2.0 8V, re- 5 converge all the energies in this window. In Tables VI
sulting in the final basis size of 110 78QJ+1) for even e have listed the bound state energies for each symmetry of
spectroscopic symmetry and 110200 for odd spectro-  j_1 2 and 3 separately. Inspection of the energies shows
scopic symmetry. _ ) .. that the agreement between our results and the earlier ones
For the LHFD calculations, the absorbing potential in 5re quite satisfactory and four digits of relative accuracy has
the dissociation channel of HO, takes the following form:  paan achieved for most of the energies.
R Vo The second energy window we have chosen is close to
VapdR) = coSR[(Ro RI/N]" (15  and above dissociation threshold, namely, the highest lying
max . .
bound state energies and lowest resonance energies and
widths from 2.10 eV to 2.18 eV. Since these are the first

TABLE lll. Selected low bound state energies from energy window 1 from

J=2 and even spectroscopic symmetry calculations. Other symbols are thPABLE V. Selected low bound state energies from energy window 1 from
same as in Table I. J=3 and even spectroscopic symmetry calculations. Other symbols are the
same as in Table I.

n LHFD Ref. 34 Q n LHFD Ref. 34 Q)
n LHFD Ref. 34 0 n LHFD Ref. 34 O

1 0.000811 0.000811 ™ 16 0.312835 0.312848 ™

2 0.003200 0.003201 1 17 0.315425 0.315434 ™1 1 0001622 0.001623 ™© 15 0.270154 0.270186 2
3 0.010408 0.010410 2 18 0.323229 0.323241 ™2 2 0.004000 0.004000 "1 16 0.281844 0.281877 3
4 0132881 0.132897 0 19 0.382714 0.382758 0 3 0.011219 0.011221 2 17 0.294119 0.294142 "0
5 0.135241 0.135257 "1 20 0.385019 0.385063 '1 4 0.023195 0.023198 '3 18 0.296557 0.296580 "1
6 0.142362 0.142379 ™ 21 0.391974 0.392019 ™2 5 0.133674 0.133690 0 19 0.303967 0.303992 2
7 0.161540 0.161547 0 22 0.414139 0414142 0 6 0.136023 0.136039 "1 20 0.313655 0.313667 3
8 0.164025 0.164031 "1 23 0.416425 0.416432 '1 7 0143155 0.143172 2 21 0.316228 0.316240 0
9 0.171520 0.171528 2 24 0.420681 0.420718 ™2 8 0.154986 0.155005 "3 22 0.316253 0.316279 "1
10 0.260012 0.260043 0 25 0.423094 0.423130 "0 9 0.162356 0.162363 0 23 0.324047 0.324060 ™2
11 0.262343 0.262374 "1 26 0.423336 0.423344 "1 10 0.164827 0.164834 1 24 0.337002 0.337018 3
12 0.269379 0.269410 2 27 0.430377 0.430414 ™2 11 0.172335 0.172344 2 25 0.383474 0.383518 ™0
13 0.293321 0.293344 0 28 0.445853 0.445880 0 12 0.184783 0.184793 "3 26 0.385767 0.385812 "1
14 0295772 0.295795 "1 29 0.448401 0.448427 1 13 0.260788 0.260819 0 27 0.392733 0.392778 2
15 0.303170 0.303194 2 30 0.456087 0.456115 ™2 14 0.263108 0.263139 "1 28 0.404289 0.404336 3
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TABLE VI. Selected low bound state energies from energy window 1 from TABLE VII. Selected resonance energies and widths from energy window 2
J=3 and odd spectroscopic symmetry calculations. Other symbols are thfom J=1 and even spectroscopic symmetry calculations. All results are

same as in Table I. from this work. The resonance energies are relative to the ro-vibrational
ground state energy of 2.015861 eV fra0 calculations. All energy
n LHFD Ref. 34 Q n LHFD Ref. 34 Q units are in eV.
1 0.004046 0.004047 1 9 0.184783 0.184793 3 Energy Width Energy Width
2 0.011219 0.011221 2 10 0.263154 0.263185 1 n (LHFD) (LHFD) n (LHFD) (LHFD)
3 0.023195 0.023198 3 11 0.270154 0.270186 2
4 0136069 0.136085 1 12 0.281844 0.281877 3 1 2.115615 0.96—04 15 2123716 0.&—-05
5 0143155 0.143172 2 13 0.296609 0.296632 1 2 2.115940 0.28—-04 16 2.124 557 0.5-04
6 0.154986 0.155005 3 14 0.303967 0.303992 2 3 2.116 007 0.58—04 17 2.125 397 0.H-04
7 0164878 0.16488 1 15 0.316253 0.316279 3 4 2.117 532 0.72—04 18 2.126 727 0.66—-03
8 0.172334 0.172344 2 16 0.316284 0.31629% 1 5 2.117 632 0.1B—03 19 2.127 894 0.83-04
6 2.118151 0.15—-06 20 2.129 499 0.B-02
7 2.118 766 0.1#-03 21 2.129 565 0.20-05

8 2.119 246 0.78—04 22 2.130381 0.3-05

calculated results, the convergence has been carefully tested® 2120072 056-03 23 2130942  0.38-04
. . 2120213  0.15-04 24 2131559 0.H-03
and in Fig. 1 we have plotted the convergence behavior for 1; 57951811  o0e@-04 25 2132133 09903
one resonance &=2.13396 eV forJ=1 (odd symmetry. 12 2121944  0.45—03 26 2133084 0.13-04
From this figure one can see thdt=100 000 Lanczos itera- 13 2122115 025-03 27 2133194 0.3-04
tions can well converge most of the resonances in this energyl4 ~ 2123205  0.88-06 28 2134299 0.B-03
rage and in all our calculations we have used a laiger
=150000 Lanczos subspace size. In Tables VII-XII we
present the resonance energies and widths for each symmetry
of J=1, 2, and 3, respectively. These resonances are reldapping resonances. This fluctuating behavior has also been
tively narrow ones and broader resonances cannot be exbtained from)=0 theoretical calculations on HQ@lissocia-
tracted from the spectrum, simply because they are hidden ition by several groups:?®3!which indicates that the disso-
the background. Also we do not attempt to perform stabili-ciation of HG, is essentially irregular. Although experimen-
zation calculations for each resonance due to too large deal data are still not available for this system, fluctuating
manding on the computational resources. resonance rates have been observed for several other disso-
Analysis of the resonance widths shows that most of theziation systems including 4O, CH0O, and NG .%6-68
resonances are overlapping ones. In Fig. 2 we have plotted Finally, in Tables I-VI an unambiguouQ assignment
the resonance widths versus energiesJerl, 2, 3 (reso-  has been given for the low-lying bound states, supposing that
nances from both even and odd symmetries are put togethethe helicity conserving approximation holdisecause there
Our considered energy range is relative small, but the flucexist near degeneracies for the safdecomponents from
tuations from the three figures are not small at all. It seem$&oth symmetries, it is possible to assign them by comparing
that the quantum widthgelated to unimolecular dissociation the calculated energies from even and odd symmetilds
rates fluctuate from one resonance to another in a randonpurpose of() assignment is to investigate the importance of
and an unpredictable way. Such a fluctuation is a manifestahe Coriolis coupling for this system. If this assignment is
tion of prominent quantum interference effects between oversuccessful, then helicity conservifigC) calculations should
be accurate, which will save quite a lot of computational
time. For the high-lying bound states as well as for the reso-

3 T T : T T nances, we have failed to assign them unambiguously. For
example, we have analyzed the high-lying bound state ener-
4} - gies near the dissociation threshold fras 1 calculations

for both even and odd spectroscopic symmetries, respec-

TABLE VIII. Selected resonance energies and widths from energy window
6 7 2 from J=1 and odd spectroscopic symmetry calculations. Other symbols
are the same as in Table VII.

log ] 0(error)

Tr 1 Energy Width Energy Width

n (LHFD) (LHFD) n (LHFD) (LHFD)
-8 1 1 L 1 1 1 2.115124 0.3—04 9 2.124 787 0.33-03
0 510 110° 1.510° 210° 2510° 310° 2 2116654 0.1B-03 10 2125180 0.H-03
Lanczos iterations 3 2118201 0.88-04 11 2126976 0.52-03
4 2.119 989 0.32-03 12 2.127 957 0.43-03
FIG. 1. Plot of the logarithmic relative errors, lggerror), versus Lanczos 5 2.120155 0.18—-03 13 2.130 496 0.23-03
iteration sizes at one resonance endfgy2.133 96 eV fromJ=1 odd sym- 6 2.120 639 0.38—-03 14 2.132 355 0.18—-03
metry calculations. All errors are relative to the reference energy of 7 2.121 335 0.356—-03 15 2.133304 0.18-02
=2.133957 694 6 eV from the largest subspace #ize 300 000 calcula- 8 2.123094 0.18—-03 16 2.133 958 0.16-04

tions.
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TABLE IX. Selected resonance energies and widths from energy window 2ZTABLE XI. Selected resonance energies and widths from energy window 2
from J=2 and even spectroscopic symmetry calculations. Other symbolérom J=3 and even spectroscopic symmetry calculations. Other symbols

are the same as in Table VII. are the same as in Table VII.
Energy Width Energy Width Energy Width Energy Width

n (LHFD) (LHFD) n (LHFD) (LHFD) n (LHFD) (LHFD) n (LHFD) (LHFD)

1 2.115111 0.66—05 21 2.123 966 0.89—-03 1 2.114 890 0.2E—-04 21 2.123 500 0.40-03
2 2.115438 0.12—-04 22 2.124 270 0.2-04 2 2.115 157 0.16—04 22 2.124 398 0.1B-04
3 2.115799 0.98-05 23 2.125191 0.1-03 3 2.116 115 0.28—06 23 2.125038 0.68—-05
4 2.116 490 0.26—-04 24 2.125 260 0.88-04 4 2.116 582 0.68—05 24 2.125702 0.27-03
5 2.116 649 0.38—-05 25 2.125 840 0.97-03 5 2.116 830 0.42—-04 25 2126171 0.99-04
6 2.117 014 0.48—-03 26 2.126 601 0.2-03 6 2.117 415 0.12—-04 26 2.126 612 0.65— 04
7 2117971 0.38—-03 27 2.126 638 0.44-03 7 2.117 513 0.18—-03 27 2.127 339 0.3#-04
8 2.118494 0.58—-04 28 2.126 871 0.66—04 8 2.117 638 0.28—-03 28 2.127 699 0.46—05
9 2.118 581 0.92—-04 29 2.126 889 0.4-03 9 2.117 936 0.56—03 29 2.128 075 0.H2-04
10 2.118964 0.38—-04 30 2.127 681 0.38-04 10 2.118 330 0.52-04 30 2.128 473 0.R2-02
11 2.119 042 0.883—03 31 2.128 527 0.F7—-03 11 2.118 967 0.718—04 31 2.129215 0.12-03
12 2.119 276 0.16—-03 32 2.129 272 0.15-04 12 2.119 048 0.15—-04 32 2.129 751 0.8-03
13 2.120 353 0.28—-04 33 2.129 329 0.R-04 13 2.119 506 0.18—-02 33 2.130537 0.48—03
14 2.120670 0.H-04 34 2.130 435 0.2-04 14 2.119 829 0.98—-04 34 2.130 736 0.67—-04
15 2.121 447 0.62—04 35 2.130 675 0.3—-04 15 2.120 150 0.2—-04 35 2.131 283 0.H-04
16 2.121 541 0.1#—-03 36 2131177 0.44-04 16 2.121 257 0.52-04 36 2.132 044 0.3-04
17 2.121 696 0.2B—04 37 2.131 484 0.10-03 17 2121417 0.56—04 37 2.132 124 0.65—-04
18 2.123 237 0.2-04 38 2.131530 0.B-04 18 2.122 265 0.42—-03 38 2.132 497 0.39-03
19 2.123 409 0.16—-03 39 2.131 838 0.15-02 19 2.122 916 0.32-03 39 2.133 296 0.15—-02
20 2.123 660 0.58—-04 40 2.132128 0.18B-05 20 2.123 335 0.1#-03 40 2.134151 0.l7-04

tively. (The results for the high-lying bound state energiesresonance states, i.e., at resonance energy, other neighboring
are not shown here, and they can be acquired from us upaesonances might interfere with this “main” resonance. For
requesd. While only several of them frord=1 even sym- this system, it seems that HC calculations can give reason-
metry calculations can be assigned tentatively, most of therably accurate results only for low bound state energies. This
cannot be assigned with confidenéer J=1 odd symmetry observation is in consistent with the previously reporfed
results there is no need to assign because only one compp-0 total reaction probability calculations for this system,
nentQ=1 exist3. The indication is that the mixing of dif- which show that for HQ the Coriolis coupling is important
ferent () components is so strong for them th@tis no  and cannot be ignoret. Interestingly, this situation is in
longer a good quantum number. Of course, the difficulties ircontrast to the KO system, for which HC calculations can
assignment also arise from the fact that the spacings betwegmedict quite accurate total reaction probabiliti&&!

these high-lying bound states and resonance states are be-

coming smaller and smaller. For overlapping resonances, the

assignment is further complicated by the mixing of different _ _ _
TABLE XIlI. Selected resonance energies and widths from energy window 2

from J=3 and odd spectroscopic symmetry calculations. Other symbols are
the same as in Table VII.

TABLE X. Selected resonance energies and widths from energy window
from J=2 and odd spectroscopic symmetry calculations. Other symbols are Energy Width Energy Width
the same as in Table VII. (LHFD) (LHFD) n (LHFD) (LHFD)

=}

Energy Width Energy Width 1 2114837 04B-05 19 2124190 0.F-04
n  (LHFD)  (LHFD) n  (LHFD)  (LHFD) 2 2115698 0.1B-05 20 2124864 0.98-04

3 2116131 0.9E-05 21 2125135 O0.H-04
1 2114868 01E-05 16 2124291 0.58-04 4 2116308 022-05 22 2126286 0.8-04
2 2115574 058-05 17 2124380  0.49-03 5 2117299 0IF-06 23 2126588 0.A-03
3 2116195 0.25-05 18 2125595  0.19-02 6 2118239 0.25-03 24 2127464 0.45-04
4 21164290 0.15-04 19 2125853 0.20-04 7 2118494 04B-03 25 2127961 0.3-05
5 2116728 0.58-04 20 2126950 0.93-04 8 2118646 096-05 26 2128120 0.58-03
6 2117200 0.68-03 21 2127115 0.58-01 9 2119368 018-03 27 2128637 0./5-07
7 2117740 0.6E-04 22 2127474 0.65-03 10 2119731 0.4B-03 28 2129578  0.99-03
8 2118729 0.9E-04 23 2128793  0.83-04 11 2120174 0.62-04 29 2130126  0.45-04
9 2119612 0.7B-04 24 2130450 0.2-03 12 2121093 0.8-03 30 2130932 0.F-03
10 2120857 0.8-03 25 2130836 0.FH-05 13 2121352 0R-04 31 2131309  0.B-03
11 2121512 03-03 26 2131321 0.43-05 14 2121626 088-03 32 2131807 0.33-04
12 2121778 04B-02 27 2132097  0.483-03 15 2121946 0.35-03 33 2132399  0.38-04
13 2122184 048-03 28 2132892 0.55-02 16 2122469 059-05 34 2133563  0.39-04
14 2122643 0.68-05 29 2133648  0.83-05 17 2123365 098-03 35 2133686  0.95-04

15 2.124 159 0.33-03 30 2.134 665 0.15—-04 18 2.123570 0.36—03 36 2.133 876 0.12-04




J. Chem. Phys., Vol. 118, No. 22, 8 June 2003

Iogmwidth(eV)

log ] 0width(eV)

log ; 0width(eV)

FIG. 2. (a) Plot of the logarithmic resonance widths, Jggwidth), versus
resonance energy in the low part of the resonance energiesJfroincal-
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Hayes is quite satisfactory. For higher-lying bound states and
resonances, these are the first reported results. The results
indicate that the unimolecular dissociation of H{© domi-
nated by numerous resonances starting just above dissocia-
tion threshold forJ>0. Most of these resonances are over-
lapping ones, and the interferences among them lead to
complicated dissociation dynamics. The resonance widths
(rateg show strong fluctuations, which indicate there is an
intricate coupling between the internal degrees of freedom in
dissociation, and that the HQlissociation is essentially ir-
regular.

An Q) assignment has been attempted to investigate the
importance of the Coriolis coupling. While this assignment is
successful for the low bound states, for the higher-lying
bound states and resonances the assignment is unsuccessful.
This indicates that mixing of differenf) components is
strong and Coriolis coupling cannot be ignored for this sys-
tem (€2 is no longer a good quantum numbeespecially for
resonance calculations.

Several interesting issues concerning JHéissociation
suggest themselves for future work and are under investiga-
tion in our group. First, inspired by the work of Goldfield
and co-worker$®~*'we are extending oud>0 bound and
resonance calculations to hidtvalues through parallel com-
puting. We are also performing a comparative study of the
Lanczos subspace FD method with the real Chebyshev FD
method? for J values ranging 1 through 5 and the prelimi-
nary results are encouragifigin addition, it will be inter-
esting to compare theeembedding resonancé®-0O bond
as thez axis of the body-fixed framewith the R-embedding
results of this paper, since it has been suggested that the
axis may be a better quantization axis the sense of pre-
serving() as a good quantum numbeFor the reactive scat-
tering case, such a comparison has been made to investigate
the importance of the Coriolis couplifg.In that study, it
was found that) is not a good quantum number for either
embedding, however, whether this conclusion also holds for
high-lying bound states and resonances remains to be seen.
Finally we are implementing the pseudo-spectral transforma-
tion representation into our algorithms for efficiently imple-
menting the Hamiltonian matrix vector multiplicatiofsee,

e.g., Refs. 51, 52 which is essential in all iterative quantum
methods and in particular fa>0 calculations.
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