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Fast, scalable master equation solution algorithms. IV. Lanczos iteration
with diffusion approximation preconditioned iterative inversion

Terry J. Frankcombea) and Sean C. Smithb)

Centre for Computational Molecular Science, Chemistry Building 68, University of Queensland,
Brisbane, 4072, Australia

~Received 25 July 2003; accepted 30 September 2003!

In this paper we propose a second linearly scalable method for solving large master equations
arising in the context of gas-phase reactive systems. The new method is based on the well-known
shift-invert Lanczos iteration using the GMRES iteration preconditioned using the diffusion
approximation to the master equation to provide the inverse of the master equation matrix. In this
way we avoid the cubic scaling of traditional master equation solution methods while maintaining
the speed of a partial spectral decomposition. The method is tested using a master equation
modeling the formation of propargyl from the reaction of singlet methylene with acetylene,
proceeding through long-lived isomerizing intermediates. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1628214#

I. INTRODUCTION

The master equation~ME! formulation for solving gas-
phase chemical kinetics problems is well-known and com-
monly employed.1–5 While the smallest eigenvalue of the
energy grained ME matrix is often all that is required in
simpler applications, the transient behavior of the system
commonly becomes the primary focus in more complex ap-
plications. Determining the transient behavior requires far
more information than just the smallest eigenvalue and cor-
responding eigenvector~which only describe the long-time
behavior!, usually with a disproportionate increase in the
amount of computational effort required. Determining tran-
sient behavior is particularly important in multi-well systems
describing isomerization between a number of isomers,
which are increasingly being modeled with ME methods.6–13

The matrices arising from multi-well MEs are signifi-
cantly larger than unimolecular ME matrices, as are the ma-
trices arising from two-dimensional~2-D! MEs resolved in
angular momentum as well as energy.14–19 One can easily
construct a 2-D or multi-well ME discretized over tens of
thousands of points. The potential also exists to construct
2-D multi-well MEs, with a corresponding further increase in
the size of the discretization. For such large problems to be
tractable requires an effective method requiring calculation
time that isscalable. That is, one needs a method that not
only works, but also one that does not result in a vast in-
crease in the computational effort required for a modest in-
crease in the size of the problem. Throughout this work, we
use the termscalable methodloosely to mean a method that
scales significantly better than the cubic scaling of traditional
ME solution methods. While scaling with the square of the
size of the system/discretization falls into this loose catego-
rization, we aim for global linear scaling. Specifically, we
consider the matrix-vector product with its linear dependence
on the number of isomers being modeled and, at worst, qua-

dratic dependence on the number of energy grains to be a
scalable operation.

In this series of papers we have made significant
progress toward general scalable ME solution methods. The
first paper20 presented one of the first successful scalable
methods by generalizing the well-known and highly success-
ful Nesbet method. However this method, denoted the
HONE method, has the deficiency that some high-quality
initial data must be available. Specifically, the eigenvalues
and the relatively large magnitude elements of the eigenvec-
tors must be known. In that regard, multi-well systems are
particularly problematic as there may be multiple numeri-
cally difficult small eigenvalues. The second paper21 served
largely to set the scene for what was to come by surveying
the effectiveness and speed of a number of standard methods
used for solving multi-well MEs. The conclusions of the sec-
ond paper were that the fastest method that was robust over
all the temperature and pressure ranges tested was direct time
propagation using a stiff ordinary differential equation
~ODE! integration algorithm, while in high temperature
cases a spectral approach using a shift-invert Lanczos itera-
tion could be orders of magnitude faster. All of the methods
tested in Paper II formally scale withn3 @denoted asO(n3)
operations, wheren is the size of the ME matrix# and are
hence inappropriate for solving large problems.

In Paper III22 we proposed a method that maintains the
robustness of standard direct time propagation with a stiff
ODE integrator while maintaining scalability for large prob-
lems. The component of a stiff ODE integrator which im-
poses theO(n3) scaling on the calculation is solving the
nonlinear correction equation by Newton’s method. In the
first-order linear case of the ME,

dr

dt
5Br, ~1!

applying Newton’s method to the correction equation re-
quires solving the linear system,

~ I 2gB!z5b, ~2!
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with arbitraryg andb. The standard approach is to factorize
I 2gB with a dense factorization before solving forz—an
O(n3) operation and the lion’s share of the computational
effort in the numerical integration. In the work of Paper III,
the direct solution of Eq.~2! was replaced by using a pre-
conditioned iterative solver, with the preconditioning being
provided by direct factorization of the matrix arising from
the diffusion approximation to the ME. Thus theO(n3) di-
rect solution was replaced by a method that scales with the
same scaling as the matrix-vector product: better thanO(n2)
and approximately linearly with the number of isomers in the
system being modeled. The direct factorization of the diffu-
sion approximation matrix required for the preconditioning
can be achieved withO(n) computational effort. Although
derived independently, it turns out that using an iterative so-
lution method within Newton’s method for solving a nonlin-
ear system has been used previously in the context of solving
multicomponent solidification and fluid flow problems.23,24

While Paper III aimed for a robust and scalable method
by building on the best robust method identified in Paper II,
the current work starts with the fastest available method at
the expense of robustness. To that end, the starting point will
be partial spectral decomposition using a shift-invert Lanc-
zos iteration, the fastest of the methods tested in Paper II.
Once more, the most time-consuming part of the calculation
is finding the solution to a linear system. In the shift-invert
Lanczos case the system to be solved is similar to that for the
Newton’s method case of Paper III@Eq. ~2!#, taking the form

~B2sI !z5b, ~3!

where s is the spectral shift and againb is arbitrary. The
obvious approach to solving Eq.~3! is by direct factorization
and triangular solves, similar to the standard approach to
solving Eq. ~2! used in a stiff ODE integrator. This is the
approach taken in the work of Paper II. As in Paper III, this
linear system solve can be replaced by a preconditioned it-
erative method.

In this work and that presented in Paper III, we utilize
the diffusion approximation to the ME to speed the solution
of the full ME by using it as a preconditioner. Unlike previ-
ous applications of the diffusion approximation to the ME,
the problem ultimately being solved is the full ME, not the
diffusion approximation to the ME. The diffusion approxi-
mation matrix is a very good candidate for applying as a
preconditioner: the approximation is quite good, yet the nu-
merical effort required to perform operations such as inver-
sion is much lower than for the full ME matrix. As a precon-
ditioner the diffusion approximation is used selectively.
Rather than precondition the whole problem—the solution of
the ME—we focus on a specific bottleneck in a well-known
solution method and use the diffusion approximation to pre-
condition that step. Without the preconditioning the problem-
atic step~in this case a linear system solve! cannot be com-
pleted in a fast and efficient manner.

To test the new method developed here, we model the
reaction between singlet methylene and acetylene. This reac-
tion is believed to be an important source of propargyl radi-
cals (C3H3) in flames.25,26 The formation of propargyl is
believed to be a significant step in the formation of simple

aromatic hydrocarbons and thus polycyclic aromatic hydro-
carbons and soot.25–32The major route to propargyl proposed
by Miller and Melius25 involves the insertion of singlet me-
thylene into acetylene to form C3H4, which isomerizes be-
fore decomposing to propargyl:

1CH21C2H2
C3H4→C3H31H. ~4!

The rate constant for the reaction of singlet methylene with
acetylene to form C3H4 and eventually propargyl has been
measured experimentally by several different methods over
the past 20 years. A good summary is given by Blitzet al.33

While it appears that a single time-independent bimolecular
rate constant is appropriate for the disappearance of1CH2

under pulsed conditions, the behavior of the remainder of the
system is not yet well established. The modeling of the
1CH21C2H2 system in this work is similar to that used in
previous ME studies6,7,33,34and identical to the test problems
used in Papers II and III.

The structure of the paper is as follows: In the next sec-
tion we review the ME generally, including an overview of
the diffusion approximation. In Sec. III we develop the new
method, replacing the linear system solve in the shift-invert
Lanczos algorithm. In Sec. IV we discuss the application of
the new method to the1CH21C2H2 system. In Sec. V we
discuss the new method specifically in terms of the amount
of computer time required to solve ME problems. In Sec. VI
we sum up, including a concise recap of the method.

II. REVIEW OF THE MASTER EQUATION

The ME is well-known and described in detail
elsewhere,1–5,7,8so only some details pertinent to the current
case shall be pointed out here. The energy grained multi-well
ME discretized over a set of energy grainspi ~with each
isomer described by a subset of then grains pi) can be
written as a series of equations of the form

dpi

dt
5v dE(

j
Pi j pj2vpi2pi(

r
ki

(L,r )1(
r

ki
(G,r )pi ri

,

~5!

wherev is the collision frequency,dE is the energy grain
size andPi j describes collisional energy transfer within each
species. Theki

(L,r ) andki
(G,r ) are microscopic rate constants

for the interconversion reactions, withki
(L,r ) describing the

rate of loss of population from graini andki
(G,r ) describing

the rate of gain of population to graini from grain i ri .
Clearly,ki

(L,r ) andki
(G,r ) are related by detailed balance. The

sum overj is over all energy grains belonging to the same
species as graini while the sums overr are over all reactive
channels. For notational simplicity the explicit time depen-
dence ofpi has not been shown.

Bimolecular reactions are easily incorporated if they are
modeled under pseudo-first-order conditions~which makes
the reaction linear inpi).

13 The first two terms on the right of
Eq. ~5! do not apply in the bimolecular case if the reactant
not in excess is assumed to maintain its equilibrium distribu-
tion, which is a reasonable assumption. Theki

(L,r ) andki
(G,r )

terms for reactions from bimolecular states are then formed
by the microscopic rate constant for the reaction multiplied
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by the total population of the bimolecular species assumed to
be in excess and the normalized Boltzmann population of the
reactant not in excess. As usual, detailed balance can be in-
voked to determine the rate constants for the reverse reac-
tion.

Equation~5! can be written as a simple first-order linear
matrix ODE to facilitate matrix analysis methods. Particu-
larly when employing spectral solution methods, the effi-
ciency and stability of the solution can be improved by sym-
metrizing the coefficient matrix before solving the ME
~though the symmetric form of the ME is not automatically
the best choice20,35!. If f is the vector describing the Boltz-
mann population of the system and the diagonal matrixS is
given by

Sii 5 f i
21/2, ~6!

then transforming the original population vectorp and ME
ODE coefficient matrixA according to

r5Sp ~7!

and

B5SAS21 ~8!

yields the ODE already given as Eq.~1!, with the matrixB
symmetric~such thatB5BT). When the symmetrized ME is
solved, it yields transformed ‘‘populations’’r(t), which are
transformed back to the real, observable population distribu-
tions via

p~ t !5S21r~ t !. ~9!

In this work, the symmetrized representation of the matrix is
used to improve the stability of the spectral decomposition.
~Symmetric matrices are guaranteed to have purely real ei-
genvalues and eigenvectors.!

The first term on the right of Eq.~5! describes collisional
energy transfer~CET! within each isomer and manifests it-
self within the ME matrix as a dense block. Invoking the
diffusion approximation describes CET as derivatives of par-
ticular energy-dependent functions. Using finite differences
to approximate the derivatives gives CET modeled by a
purely local process,

(
j

Pi j pj'aipi 211bipi1cipi 11 , ~10!

where the constantsai , bi andci depend on the particulars
of the diffusion approximation and finite difference scheme
used. Green, Robertson and Pilling36 concluded that of the
various diffusion approximation formulations available,
drift-determined diffusion gave the best results for unimo-
lecular MEs. Substituting Eq.~10! into Eq. ~5! yields tridi-
agonal blocks replacing the dense blocks in the ME matrix.
The well-defined sparse structure of the diffusion approxima-
tion matrix allows matrix-vector products with both the ma-
trix and its inverse to be calculated very quickly. While solv-
ing the diffusion version of the ME is clearly an
approximation to the solution of the full ME, this approxi-
mation has proved useful.6,7,16,36–39

One of the keys to the scalability of the methods pre-
sented in the current work is the inversion of the diffusion

approximation matrix. As described elsewhere,6,7 rearranging
the ordering of the energy grains within the state spacep to
bring grains of the same energy together results in a banded
matrix with the bandwidth equal to the number of isomers
being modeled,p. A banded matrix of this type can be fac-
torized with computational effort scaling atO(np2), a vast
improvement over theO(n3) standard solve as usuallyp
!n. The increased well-structured sparsity of the matrix also
leads to a significant reduction in the memory needed to
store the matrix, with the required storage scaling atO(np).

Including linearized bimolecular reactions changes the
banded matrix arising from the diffusion approximation to a
banded ‘‘arrowhead’’ matrix, with nonzero rows and col-
umns added to the bottom and right of the banded matrix.
Critically, the factorization of such an arrowhead matrix does
not lead to fill-in outside of the arrowhead structure so that
bimolecular channels do not alter the basic scaling of solving
linear systems involving the diffusion approximation ME.6,7

III. DEVELOPING THE SOLUTION METHOD

Rather than develop an entirely new methodology, in
this work we aim to adapt and combine existing techniques
to yield a fast and scalable method. A key component of our
approach is the utilization of the diffusion approximation to
the ME.36 While using the diffusion model to approximate
the full ME has shown promise6,7,16,36–39it has not previ-
ously been used to facilitate the fast and accurate solution of
the full, dense ME.

A. The diffusion approximation matrix

As one would expect, the matrix derived from the diffu-
sion approximation to the full ME is an approximation to the
matrix derived from the full ME. While one could consider
this approximation from the point of view of the individual
elements of the matrices, it is more useful to consider the
action of the matrix. IfB is the full ME matrix, D is the
symmetrized diffusion approximation ME matrix andv is
some vector, thenD is an approximation toB in the sense
that

Dv'Bv. ~11!

Similarly, the inverseD21 is an approximation toB21. The
value in using the diffusion approximation to the full ME
comes from the fact that bothDv and D21v can be calcu-
lated much faster thanBv andB21v, and with much better
scaling as the size of the discretization of the ME increases.

Generally speaking, there are two subtly different ap-
proaches to using such an approximation to speed up the
solution of a problem. While you could use a solution to the
approximation to the original problem to build a solution to
the original problem, in this work we use the widely known
technique of preconditioning. The philosophy behind precon-
ditioning is simple: use an available approximation to trans-
form a problem that is hard to solve into a problem that is
easier to solve.
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B. Iterative inversion of B for shift-invert Lanczos

We showed in Paper II that a very fast way of solving
multi-well ME problems—provided the temperature being
modeled is high enough—is to generate a partial spectral
decomposition of the population evolution operator using the
Lanczos iteration. The full spectral expansion is given by

r~ t !5(
i 51

n

a i exp~l i t !yi , ~12!

wherel i andyi are then eigenvalues and eigenvectors ofB
and a i5^yi ,r(0)&. While Eq. ~12! is exact for all timest,
for medium- to long-time behavior only a limited number of
the eigenpairs ofB are required, being those with the small-
est eigenvalues.

Krylov subspace based methods, such as the Lanczos
method, tend to converge the extremes of the eigenvalue
spectrum first, particularly for large magnitude eigenvalues.
It has been found that despite the desired smallest eigenval-
ues being extremal, the fact that these eigenvalues are so
many orders of magnitude smaller than the eigenvalues at the
other extreme of the spectrum, combined with the spread of
magnitudes in the eigenvectors, means that full convergence
of these eigenpairs is nearly impossible to achieve.21 To
combat this, we turn to a shift-invert spectral
transformation.40,41As an eigenvaluel of B becomes an ei-
genvalue 1/(l2s) of (B2s)21 with an unchanged eigen-
vector, the shift-invert transformation transforms eigenvalues
of B near s to be those of largest magnitude of (B
2sI )21, and hence those expected to converge the fastest. A
shift-invert strategy is often used to find eigenpairs on the
interior of the spectrum, as these normally converge slowly
with Krylov subspace based methods. In this case the small-
est eigenvalues are problematic. Hence we wish to transform
the matrix so that the eigenpairs with the smallest eigenval-
ues become those with the largest eigenvalues, making a
selection ofs50 appropriate. In difficult cases when con-
vergence of required interior eigenpairs is problematic,s can
be set appropriately to focus on these slowly converging
eigenpairs. We demonstrated in Paper II that the zero-shift
shift-invert transformation makes the application of the
Lanczos method to this ME possible, and in fact leads to fast
convergence of the Lanczos iteration, at the cost of solving
Eq. ~3! at each iteration. Despite the lack of a spectral shift,
we continue to refer to the zero-shift case as a shift-invert
method and generally present the method retaining theB
2sI andD2sI notation.

In Paper II theARPACK40 package was used as the imple-
mentation of the Lanczos method as this package has several
useful features such as implicit restarting and eigenpair lock-
ing. The zero-shift case of Eq.~3! was solved directly via a
general triangular factorization. Similarly to Paper III, here
we replace this direct linear system solve with an iterative
method. Generally, iterative solution methods require little
more than the matrix-vector product, giving them similar
scaling. In this case the matrix-vector product involving the
full ME matrix scales well: approximately linearly with the
number of isomers being modeled. In this work we use the

GMRES method,42,43 as implemented in the Sparse Linear
Algebra Package~SLAP! of SLATEC.44

In its pure form, the GMRES algorithm requires only the
matrix-vector product and some relatively minor operations
to build and solve the system in a small Krylov subspace. A
ME solution methodology can then be implemented as code
to first construct the ME matrix~using whatever storage
scheme or decompositions are required to fit the matrix into
the available memory and give a fast matrix-vector multiply
routine! before commencing the Lanczos iteration. At each
iteration of the Lanczos method, the GMRES routine is
called to solve Eq.~3! using the matrix-vector product spe-
cific to the implementation of the ME matrix. This approach
will be denoted the Lanczos/GMRES method. As the size of
the ME being solved changes, the scaling of such a scheme
is dominated by the scaling of the specific matrix-vector
product routine, or approximately linearly with the number
of isomers being modeled.

When an easily inverted approximation is available, it is
standard practice to use that approximation to precondition
the iterative solution.43 This is particularly common in quan-
tum scattering calculations,45,46 where the shift-invert spec-
tral transformation is known as applying Green’s operator
and many different forms of preconditioning are used, both
physically based~similar to the current case! and chosen on
purely mathematical or numerical grounds.

To precondition a linear system solve of the form of
Az5b one wants a preconditioning matrixM that is an ap-
proximation toA so that

M 21A'I . ~13!

If the available approximation is not easy to invert then it is
not useful—formingM 21 must be significantly faster than
forming A21, as the latter is the problem we are trying to
accelerate. In the current case an easily inverted approxima-
tion is readily available in the banded arrowhead matrix de-
rived from the diffusion approximation.D is a sparse ap-
proximation toB, so that

~D2sI !21~B2sI !'I , ~14!

to give an appropriate preconditioning matrix asD2sI .
Specifically, the preconditioned GMRES method requires the
solution of

~D2sI !c5d, ~15!

for c. In the general case, the presence of a nonzeros does
not alter the structure of the diffusion approximation matrix
so thatD2sI can still be permuted to banded arrowhead
form, factorized and solved quickly and with good scalabil-
ity. In this work the asymmetricLU factorization was used
to factorizeD2sI rather than the faster Cholesky factoriza-
tion. While the Cholesky factorization is only appropriate for
definitematrices~matrices whose eigenvalues are all of the
same sign and nonzero! which is not guaranteed for general
s, recall that we takes50 here, exposing the underlying
definiteness ofD. TheLU factorization is much more toler-
ant of near singularity than the Cholesky factorization and
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was found to be much more stable. The extra work required
in not exploiting symmetry was not significant to the overall
calculation time.

Each GMRES iteration requires one matrix-vector mul-
tiply with B2sI and one solution of Eq.~15!, the latter
effectively two band triangular substitutions. Provided the
number of isomers is smaller than the number of energy
grains describing each isomer, theB2sI matrix-vector mul-
tiply is the more computationally demanding of the two and
dominates the calculation time required. Thus the computa-
tional effort required for each GMRES iteration scales in a
similar manner to theB2sI matrix-vector multiply: ap-
proximately linearly with the number of isomers being mod-
eled. This scaling dominates the solution of Eq.~3!, and
hence the Lanczos iteration and overall master equation so-
lution.

While using a preconditioned GMRES iteration to re-
place the inversions required for shift-invert Lanczos and
those required for stiff ODE integration~as per Paper III! are
similar in principle, there is at least one significant differ-
ence. In the stiff integration case, the matrix being inverted
changes for each inversion, as theg of Eq. ~2! generally
changes for each successive right hand sideb. On the other
hand, in the current shift-invert Lanczos case the shift re-
mains fixed for the duration of the calculation. Hence when
using direct factorization in the shift-invert Lanczos case the
matrix B2sI need be factorized once only, whereas for the
stiff integration the matrixI 2gB must be factorized for each
time step. While the factorization will dominate for large
systems in the shift-invert Lanczos case, a much greater pro-
portion of the calculation will be spent doingO(n2) triangu-
lar system solves than for the stiff integration case. This
means that while the scaling of the method will be improved
by replacing direct factorization with preconditioned
GMRES in the present case, the resulting method is less
likely to be significantly faster than the direct factorization
version than was the case for the stiff ODE integrator results
of Paper III.

IV. RESULTS FOR THE 1CH2¿C2H2 REACTION

A. The model

In previous work7,8,21,22,34we have modeled the propar-
gyl formation reaction@Eq. ~4!# using various multi-well ME
methods. The reaction proceeds through a multi-well colli-
sion complex. The C3H4 species exists as three interconvert-
ing isomers:

propyne
cyclopropene
allene. ~16!

The 1CH21C2H2 reaction produces the cyclopropene iso-
mer, which must isomerize to allene or propyne before irre-
versibly decomposing to the propargyl product. This reaction
scheme is summarized in Fig. 1.

An energy grain size of 200 cm21 was used throughout,
giving a matrix of order 714. The collision frequency was
taken as the Lennard-Jones value. The rotational constants
and vibrational frequencies were taken from Karniet al.47

The 1CH21C2H2 microscopic rate constants were derived
from the data of Blitzet al.33 The propargyl formation from

allene and propyne was modeled according to the expres-
sions of Harding and Klippenstein.48 In all cases, the initial
population represented the dissociated state of singlet meth-
ylene with no C3H4 present. Under all of the conditions
tested in this work~300–2000 K and 1–1000 Torr!, the
population profiles of the five species involved can readily be
calculated by other means, as demonstrated in Paper II.

While the methylene plus acetylene channel was linear-
ized and treated reversibly under pseudo-first-order condi-
tions, our previous work shows that at low temperatures
treating the propargyl formation reaction in a similar manner
significantly alters the dynamics through the reformation of
C3H4 .8 Explicitly including the products of irreversible re-
actions prevents the symmetrization of the ME matrix and
excludes spectral approaches to solving the ME.7 Thus the
propargyl population was calculated by consideration of con-
servation of the total population.

B. Lanczos ÕGMRES solution in double precision

Fresh modeling based on the full eigendecomposition of
the ME calculated in high precision indicates that 10 eigen-
pairs is sufficient to yield accurate population profiles over a
reasonable range of times at all temperatures and pressures
modeled in this work. Throughout this work, theARPACK

routines were called with the arguments set to calculate the
ten largest magnitude eigenvalues of (B2sI )21 with the
corresponding eigenvectors, from a Krylov subspace of di-
mension 20. This is different to the 5 or 25 eigenpairs used in
Paper II and was chosen for consistency across the pressure
regime. As previously stated,s50 was used throughout this
work.

One would expect that the capabilities of the Lanczos/
GMRES method be similar to those reported in Paper II for
the zero-shift shift-invert Lanczos method with the standard
solution by triangular factorization. That is, in double preci-
sion arithmetic the method should be accurate at high tem-
peratures and pressures, but less reliable at lower tempera-
tures and pressures unless one resorts to increasing the
precision of the entire calculation.

For the double precision calculations, the GMRES solu-
tion was deemed converged when the error norm was less
than 10213. Unless otherwise stated, all GMRES calculations

FIG. 1. Schematic reaction scheme for the modeled1CH21C2H2 reaction.
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were restarted after 20 iterations. This should be considered a
very frequently restarted GMRES calculation, which in gen-
eral can lead to convergence difficulties.

The behavior of the GMRES solution of Eq.~3! was
similar to that reported in Paper III for the solution of Eq.
~2!. That is, without preconditioning tens of thousands of
iterations were required to converge the solution, even with
very loose convergence criteria and irrespective of the re-
starting strategy. Preconditioning the iterative solution with
the arrowhead diffusion approximation matrix lead to rapid
convergence, taking between 20 and 500 iterations to con-
verge in all cases.

Figure 2 shows the population profiles for the system at
1000 Torr and 1600 K modeled using the new Lanczos/
GMRES method in double precision. The results shown in
Fig. 2 are typical of the results of modeling at 100 Torr or
1000 Torr and 1200, 1600, or 2000 K. In all of these cases
the population profiles calculated with the Lanczos/GMRES
method are indistinguishable from those calculated via stan-
dard shift-invert Lanczos with the inversion being performed
through a dense factorization. That is, the deviation from the
accurate model population profiles at short times~at times
shorter than around 10210 s for the 1000 Torr and 1600 K
case shown in Fig. 2! is due to the truncation of Eq.~12!, not
any effect of using GMRES iteration to solve Eq.~3!.

With some caveats, the double precision implementation
of the Lanczos/GMRES method behaves similarly when
modeling pressures of 10 or 1 Torr to when modeling higher
pressures. When modeling 1200 K or above, the method per-
forms reasonably well. Typical results are shown in Fig. 3 for
1200 K and 1 Torr.

The long-time behavior is not being accurately modeled.
This is a common mode of failure of this type of multi-well
ME including a bimolecular reactant source, where the ex-
pansion coefficientsa i in Eq. ~12! are determined solely by
the element of the eigenvector corresponding to the bimo-
lecular species. When this particular element is determined
inaccurately, as in this case, the calculated population pro-
files exhibit systematic errors, sometimes globally, some-
times in particular regimes. In this case, the long-time popu-
lations are inaccurate, giving too large and sometimes
negative populations. As indicated in Fig. 3, while the long-

time populations of the C3H4 isomers are significantly in
error, the calculated long-time populations are very low and
are likely to be insignificant in any practical application.

C. Using higher precision to model lower
temperatures

When the temperature being modeled was reduced to
900 K, the double precision Lanczos/GMRES calculated so-
lution was slightly less stable than the standard full inversion
shift-invert Lanczos approach. In the 1000 Torr case, while
the calculated population profiles of propyne, allene, the pro-
pargyl product and the methylene reactant were accurate
from times around 10210 s, the calculated population of cy-
clopropene, significantly lower than the other isomers, was
generally in error by around an order of magnitude. When
the cyclopropene population was calculated to be larger than
531027 at simulation times in the region of 1026– 1023 s
the error was smaller. At 100 Torr, the 900 K results were
less reliable still, with all three C3H4 isomer population pro-
files being significantly in error for at least some significant
portion of the chemically interesting timescales. At tempera-
tures lower than 900 K the population profiles calculated in
double precision were erroneous.

At both 10 and 1 Torr and temperatures of 900 K or less
the calculated populations were largely spurious. At 900 K
only the C3H4 isomer populations were affected, with the
methylene reactant disappearance and the propargyl product
production not significantly in error. At lower temperatures
no accurate population profiles were produced.

Implementing the Lanczos/GMRES method in qua-
druple precision gives the same range of applicability as the
standard shift-invert Lanczos indicated in Paper II. That is,
the method produces accurate population profiles~within the
truncated spectral expansion! at temperatures down to 600 K.
For these calculations the error norm convergence tolerance
was maintained at 10213. The population profiles were not
significantly different to those calculated using the triangular
factorization inversion reported in Paper II, meaning that
even at 1 Torr the last 15 of the 25 eigenpairs included in the
truncated spectral expansion of the work in Paper II had little
effect.

Achieving accurate modeling of the population profiles
at a temperature of 300 K required a very substantial invest-
ment in computational effort. Increasing the numerical pre-

FIG. 2. Population profiles for the five species involved in the1CH2

1C2H2 reaction modeled at 1600 K and 1000 Torr. Accurate populations
from the full spectral solution and populations calculated with the truncated
expansion from the Lanczos/GMRES method.

FIG. 3. As per Fig. 2 but modeling 1200 K and 1 Torr using double preci-
sion arithmetic.~Sections of the population profiles that were calculated as
being negative are not shown.!
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cision well beyond quadruple precision was required. The
MPFUN package of Bailey49 was used to implement the
Lanczos/GMRES method with arbitrary floating point preci-
sion. We have usedMPFUN in the past to circumvent extreme
ill-conditioning in spectral solutions to MEs, with 50 decimal
digits of precision usually being sufficient to solve room
temperature problems, including the current1CH21C2H2

multi-well system.8,20,21,34In the current case at 300 K the
GMRES iteration would not converge to a solution with the
specified error norm of 10213 when 50 digit arithmetic was
used, even when 200 GMRES iterations were allowed before
restarting. The GMRES method did achieve convergence to
the 10213 error norm level when 100 digit arithmetic was
used and the restart frequency was increased to 200 itera-
tions. Shifting the calculated spectrum away from zero
~through a nonzeros parameter! did not lead to an easier
calculation. Despite the relatively low GMRES convergence
threshold of 10213 ~compared to the numerical model main-
taining precision to approximately one part in 10100), the
population profiles calculated at 300 K were accurate.

V. SPEED OF THE NEW METHOD

When implemented in double precision, the Lanczos/
GMRES method is indeed fast. Figure 4 shows sample tim-
ings of the Lanczos/GMRES method to solve the model
problem when implemented on an Intel Pentium 4 1.9 GHz
CPU. Shown for comparison are the times published in paper
III for the stiff ODE integrator using the GMRES iteration to
solve the correction equation. Note that the vertical CPU
time axis of Fig. 4 is a logarithmic axis.

In double precision, the Lanczos/GMRES method is
much faster than the integration method of Paper III, taking
around 5 s of CPUtime compared to the latter’s 30–50 s.
Both of these methods should have similar scaling, approxi-
mately that of the matrix-vector product or approximately
linear in the number of isomers being modeled. This 5 s
execution time is significantly slower than the standard shift-
invert Lanczos method reported in Paper II, which required
around 0.5 s to solve the ME. When one considers the scal-
ing of solving Eq.~3! for the two approaches, the current
Lanczos/GMRES should be faster than the standard shift-

invert Lanczos approach when solving problems three to
nine times larger than the current three isomer, 714 energy
grain case.

Once the temperature being modeled is decreased to a
point where the double precision implementation of the
Lanczos/GMRES method is unable to accurately model the
population profiles, a large penalty is paid in terms of execu-
tion time. The CPU time required for the quadruple precision
solution was over 1000 s, more than 30 times greater than
that required to solve the problem with the stiff integrator
using GMRES. However, it should be recalled that the re-
sults presented in Paper II show the penalty for moving to
quadruple precision is not nearly as high on a 64 bit proces-
sor ~such as the HP Alpha or SGI R14000! as on the 32 bit
Pentium processors used in this work.

VI. SUMMARY

To aid in the implementation of the new Lanczos/
GMRES method, our procedure is restated here@bearing in
mind when referring back to Eqs.~3! and ~15! that s50].

~1! Set up multi-well ME, storing only the dense blocks on
the main diagonal of the ME matrix, the off-block-
diagonal interconversion terms and the ‘‘arrowhead’’
terms associated with the bimolecular reactions for an
efficient and fast specialized matrix-vector product.

~2! Set up the diffusion approximation matrix from the full
matrix, storing the matrix permuted to a banded arrow-
head matrix in a number of vectors.

~3! Factorize the diffusion approximation using a nonsym-
metric LU factorization, overwriting the diffusion ap-
proximation storage.

~4! Loop over calls to theARPACK driver routine, requesting
convergence of the largest magnitude eigenvalues~of the
inverted matrix! with corresponding eigenvectors.

~5! When theARPACK routine returns and requests a matrix-
vector multiplication, call theSLAP GMRES routine to
solve Eq.~3!.

~6! The matrix-vector multiply routine passed to the
GMRES routine should utilize the structure of the multi-
well matrix to calculateBv as quickly as possible.

~7! The preconditioning routine passed to the GMRES rou-
tine to solve Eq.~15! should first permuted to the order
giving the banded arrowhead structure of the diffusion
approximation matrix before solving Eq.~15! from the
factorized D and permuting the solution back to the
original ordering.

~8! After convergence of the Lanczos iteration, call the
ARPACK post-processing routine and propagate the initial
population vector using a truncated version of Eq.~12!.

The importance of an algorithm to solve the ME at or
near linear scaling with the system size cannot be overstated
in the context of solving large problems. CurrentO(n3) al-
gorithms simply cannot be used effectively when dealing
with 2-D, multi-well or even 2-D multi-well MEs discretized
over tens of thousands of points. The methods presented here
and in Paper III are very significant steps toward solving
large ME problems. The key to these new methods is using

FIG. 4. CPU time required to solve the1CH21C2H2 ME as a function of
the modeled temperature at 1000 Torr. The fainter dashed lines indicate the
CPU times for the method at various precisions. The solid line indicates the
times required for accurate modeling, taking into consideration the level of
numerical precision required as the temperature changes. The time required
for modeling using the stiff ODE integrator with the GMRES solve of Paper
III shown for reference. Intel Pentium 4 1.9 GHz CPU.
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the GMRES method to iteratively solve linear systems in-
volving the ME matrix, which is only feasible when using
the diffusion approximation to provide fast and effective pre-
conditioning. While not as robust as the method based on
direct integration presented in Paper III, the Lanczos/
GMRES method presented here is an order of magnitude
faster with the same scaling when the conditions being mod-
eled are sufficiently high in temperature and pressure to al-
low an accurate solution to be calculated in double precision.
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