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A new approach to the solution of
Maxwell’s equations for low frequency

and high-resolution biomedical problems
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Abstract

High spatial resolution studies of the interaction of the
human body with electromagnetic waves of low frequency
presents a difficult computational problem. As these studies
typically require at least 104 points per wavelength, a huge
number of time steps would be needed to be able to use the
finite difference time domain method (fdtd). In this paper,
a new technique is described, which allows the fdtd method
to be efficiently applied over a very large frequency range, in-
cluding low frequencies. In the method, no alterations to the
properties of either the source or the transmission media are
required. The method is essentially frequency independent
and has been verified against analytical solutions within the
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frequency range 50 Hertz to 1 Gigahertz. As an example of
the lower frequency range, the method has been applied to
the simulation of electromagnetic field behavior in the hu-
man body exposed to the pulsed magnetic field gradients of
a magnetic resonance image (mri) system.
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1 Introduction

The applications of electromagnetic (em) radiation are everywhere
in the modern world, from personal wireless communication ser-
vices (for example, cellular phones, paging systems, wireless Inter-
net devices, etc), microwave heating processes, military systems and
medicine. Since A’Arsonval’s first use of magnetic fields to treat a
number of medical conditions in the late 19th century, there has
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been a fascination with the interaction of these fields with biologi-
cal systems and the human body [2, 6]. Today, there are numerous
and diverse applications of time-varying magnetic fields in medical
research and clinical practice. With the current surge of research
and development in the field of Bioelectromagnetics (bioem), many
applications remain in their infancy and, in many cases, both the
scientific and clinical evidence of their effects is questionable.

Since 1982, magnetic resonance imaging (mri) has been avail-
able clinically with the first publication of the nuclear magnetic
resonance (nmr) images of the human body. nmr imaging pro-
vides superior detection capabilities of abnormal tissue structures
occurring in the brain, spinal cord, various abdominal regions, the
breast, and the cardiovascular and musculoskeletal system. As sci-
entists and engineers develop mr designs with higher field strengths
and faster scanning, the complexity of the interaction between the
em field and the human body increases [7].

In an mri, short and intense current pulses (that is, within the
micro- to millisecond range) are supplied to one or more coils to pro-
duce rapidly switched strong magnetic fields. These fields may have
the unfortunate side effect of stimulating nerve fibers in the cerebral
cortex or in the peripheral nerves of the test subject. The pulses
are repeated at low rates of tens per second. mri and mrs involve
two types of time-varying fields: a slowly time-varying non-uniform
field (that is, of a frequency below 3T/s) and a radio frequency (rf)
field (that is, in the megahertz frequency range) with moderate in-
tensities.

In most cases it is almost impossible to perform experimenta-
tion to study the interactions between em fields and the human
body on both physical and ethical grounds. In instrument design,
an mr engineer concentrates on physical performance, cost mini-
mization and efficiency, with little consideration of the effects of
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human interaction with the em field. In order to completely quan-
tify the interaction of em field interactions with the human body,
a complete description of the em field at every point in the system,
including at every point of the human body, is necessary for the
further development of mr technology. This kind of detail cannot
be derived experimentally and the only way that this can be ap-
proximated is through the use of a sophisticated three-dimensional
computational model.

The finite difference time domain (fdtd) technique is a well
established numerical technique for computationally modeling em
problems. It is applicable for very complicated, inhomogeneous di-
electric structures. The technique was first proposed by Yee [9] and
later developed by Umashankar and Taflove [8]. Recently, there
has been increased research in applying the fdtd technique to ob-
tain a high-resolution (hr) (in the order of points per wavelength)
solution for a diverse range of bioem problems [3, 5]. However,
current applications of the conventional fdtd technique can be
hampered by the intrinsic time stepping stability criterion (∆t ≤
1/{c

√
1/∆x2 + 1/∆y2 + 1/∆z2}), where c is the speed of light. If

the required resolution is in the order of 102 m or less and the wave-
length is in the order of 103 m, the conventional application of the
fdtd technique results in a high definition problem that is notori-
ously difficult to solve due to the significant computation expense
required.

For example, to obtain the steady state sinusoidal fdtd tech-
nique solution for microwaves in the conventional manner, computa-
tional times in the order of several periods of the source are needed.
In this case, approximately ten points per wavelength would be used
and for high definition problems, the resolution required is in the
order of 104 points per wavelength. If a frequency of 100Hz (or
equivalently a wavelength of 3× 106 m in free space) with a spatial
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discretization of ∆x = ∆y = ∆z = 0.01m is required, the intrinsic
time stepping stability criterion dictates that the duration of one
time step would be ∆t ≤ ∆x/(

√
3c) = 1.9× 10−11 s. Thus, for only

a single period of the source field, the number of time steps required
for the simulation would be approximately 5.3× 108 . To apply this
approach to the study of the interactions between em fields and the
human body would result in a computational time in the order of
one hundred years (with current computational technology).

Hence, the challenge for the fdtd technique is to meet practi-
cal computational requirements and deliver a hr solution for the
computational model. In the past, various approximations have
been used so that fdtd methods could operate at low frequen-
cies [3, 5, 4, 2]. For the complex system of the electromagnetic fields
generated by an mri system interacting with the human body, it is
advantageous to run the model at a variety of frequencies without
changing any of the physical properties of the system. Specifically,
the induced fields due to pulsed gradient coils are in the low fre-
quency regime and, at the other extreme, the radio frequency fields
used in mri may be up to 340MHz. Naturally, the dielectric and
conductive properties of tissue change markedly with frequency and
our model of the human body has frequency dependent parame-
ters for each tissue type. We have therefore developed a new model
for these applications in which frequency scaling, dielectric constant
alteration, or modification of the input source have not been used.

2 The HR-FDTD method

The Faraday and Ampere Laws provide a system of equations that
form an independent set of coupled relationships between the time-
varying electric field and magnetic field quantities. The time-varying



2 The HR-FDTD method C856

em field is described by Maxwell’s equation in their vector form:

∂F

∂t
+∇×G = I , (1)

where, with parentheses denoting a column vector, F = (D,B),
G = (−H,E), and I = (−J,0). D is the electric displacement, B is
the magnetic flux density, E is the electric field intensity, H is the
magnetic field intensity, and J is the current density. The constitu-
tive relation is F = a ·G where

a =

[
0 ε
−µ 0

]
,

ε is the permittivity and µ is the permeability. The electric current
density J = σE, and σ is the conductivity.

In general, a field in the solution space of equation (1) can be
represented as

f(r, t) =
n∑

i=1

Ai(r) sin(ωit+ φi(r)) , (2)

where A is the amplitude of the field, φ is the phase, r is the po-
sition vector, and f(r, t) represents electric or magnetic fields. In
equation (2), ω is the frequency of the source field. At any point
in space, if Ai and φi were known, then the behaviour of the full,
temporal field could be described.

For high frequency problems, the time domain solution of the
general field f(r, t) can be obtained by first applying the conven-
tional fdtd technique and then using the appropriate Fourier trans-
form to find the amplitude and phase terms. However, for low fre-
quency problems, it is not feasible to run the conventional fdtd
technique for a full period. Since em field behavior is periodic as
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shown in equation (2), the full solution should be obtained imme-
diately after the transient state. Therefore, the simulation time is
only dependent on the transient response time. Furthermore, there
are two types of transient behaviors, oscillations due to numeri-
cal instability and those due to the physical em wave. Numerical
oscillations are mainly caused by the rapid transition of the lead-
ing edge of the input source waveform and discontinuous interfaces
within the media. These oscillations appear as high frequency con-
taminations of the real field and are normally present only at the
wavefront. In general, these instabilities die out before the physi-
cal field reaches a steady state. Moreover, applying a “soft start”
treatment [5] can significantly reduce the numerical instabilities. In
this case, the transient response time is overwhelmingly dependent
on the physical field. The physical field transient behavior decay is
dominated by the multiple reflections of the waves. If the numeri-
cal scheme is able to instantaneously detect amplitude and phase,
then, a large number of iterations are not required to obtain a so-
lution. The number of iterations required for the simulation only
depends on the time point at which the transient response decays
to a stable level.

In order to instantaneously detect amplitude and phases, a dif-
ferent time-frequency conversion technique has to be adopted. In
our proposed method, only a finite number of solutions are needed
in time domain, and then an inverse approach is used to calculate Ai

and φi.

Assume that the transient response will die out after tt. If a se-
quence of instantaneous solutions, f = (f1, f2, . . . , fm), are recorded
with respect to time t1, t2, . . . , tm , t1 ≥ tt and ti < tj (if i < j, for
all i and j ∈ m) at a point in space, then a system of non-linear
equation is

fj(r, t) =
n∑

i=1

Ai(r) sin(ωitj + φi(r)) , (3)
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for j = 1, 2, . . . ,m , and m ≥ 2n . Expanding the functions in
equation (3), and changing the variables

x2i−1 = Ai sinφi , x2i = Ai cosφi , i = 1, 2, . . . , n , (4)

and

φi = tan−1
(
x2i−1

x2i

)
, Ai =

√
x2

2i−1 + x2
2i ; (5)

equation (4) is then written as

Ax = f , (6)

where the matrix A has the elements in the form of

ai(2j−1) = cos(ωjti) , ai(2j) = sin(ωjti) , (7)

for i = 1, 2, . . . ,m , j = 1, 2, . . . , n . Since the components of the
matrix are in the form of cos(ωt) and sin(ωt), and where ωt is very
small, consequently these components are either close to one or close
to zero, therefore, the matrix A is nearly singular. However, in
bioem problems, as the dielectric property of the human body is
frequency dependent, it is better to simulate the em separately for
each individual frequency. In this case, for a single frequency source,
the solution of (6) is explicitly written as

φ = tan−1

(
ξ

η

)
, A =

√
ξ2 + η2

ψ
, (8)

where ξ = cos(ωt2)f1 − cos(ωt1)f2 , η = sin(ωt2)f2 − sin(ωt2)f1 and
ψ = sin(ω(t1− t2)) . Equation (8) can be accurately solved without
difficulty.
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Figure 1: The topology of the test model.

3 Verification

To verify the proposed hr-fdtd method, firstly, we describe a loop
time TL of the field in the longest path in the system, which relates
the state of convergence to the number of reflections

TL = ∆t×NL = (2∆t×
√
i2max + j2

max + k2
max)/Cfl , (9)

where: imax, jmax, and kmax are the maximum mesh sizes of the
system, NL is the total number of iterations required for the signal
to travel one loop, and Cfl (≤ 1) is the stability control number.

Consider a one-dimensional plane wave problem as shown in Fig-
ure 1. This is a simple problem, for which the analytical solution
is available. Berenger’s pml [1] was placed on both the left and
right ends to absorb the transmitted wave. Numerical simulations
of electric fields were performed at two different frequencies, 1GHz
and 50Hz. In all the numerical simulations, the physical time of the
solutions obtained refer to t2 with t2 − t1 = 100∆tn.

Firstly, a 1GHz pure travelling wave problem was analyzed. The
wavelength is λ ≈ 0.3m and the space dimension is 1m without any
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dielectric material. To test the hr-fdtd scheme, the space step size
∆ = 1.11mm was used with 900 points in the solution domain. Two
solutions were obtained (see Figure 2a and b), one was recorded at
526 iterations and one at 1095 iterations. Since there is no reflection
activity involved, a transient response should not be observed in
the system. This behavior is confirmed by there results in both
the amplitude and phase at the time of solution. A true solution
is obtained as soon as the field signal reached the end of physical
space (Figure 2a and b) at the loop time, which is defined as a time
of a wave from its source to the end of computational domain.

In the second case, the hr-fdtd scheme is tested at 50Hz. The
space dimension was 3.0m, with a 1.0m lossy dielectric material,
ε = 80 and σ = 0.5, located in the centre of the model (see Fig-
ure 1). The space discretization size was ∆ = 1.0 cm. According to
stability criterion, for a signal travelling one complete loop, a loop
time of TL = 635∆t was required. This loop time is in the order
of 10−6 of the source period time. The results of the convergence his-
tory are given in Figure 2, where Figure 2c presents the amplitude
and Figure 2d the phase. The solutions were calculated at 1 loop,
5 loops, 10 loops and 30 loops, in which the iteration numbers were
635, 3175, 6350 and 19, 050 respectively. Accurate solutions were
obtained after 30 loops (19, 050 iterations).

Note that the frequency change has effected both the amplitude
and the phase of the field. This is important and demonstrates
that this method should be more accurate than frequency-scaled
approximations and similar methods. From the above results, see
that the hr-fdtd algorithm is independent of frequency, they are
consistent in both cases. In the above cases, the total computation
time on a sun Enterprise 450 was less than 1 second.
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Figure 2: The calculated E-field amplitude and phase, (a) and (b)
for a 1 GHz case; (c) and (d) for a 50Hz case.
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4 Modeling the gradient coil in MRI

system

There are two types of gradient coils used in mri, namely, the axial
coil (Z-coil) and the transverse coils (X- and Y -coils). In a clinical
mri system, three gradient fields work together. However, X-coil
and Y -coil has the same current pattern with π/2 rotation about
Z-axis. In this section, the performance of the Z-coil and Y -coil
are tested separately within an mri system to demonstrate the hr-
fdtd method. The coil is placed in the centre of a magnet as the
input current source, the magnet is treated as a perfectly conducting
wall boundary, and pml (perfectly match layer) absorbing bound-
aries are used to truncate the two open ends of the magnet. The
system was discretized using 133×133×260 mesh points. The total
computer memory requirement is 1.8Gb, and the solution was ob-
tained after 10, 000 iteration that required approximately 15 hours
on a sun Enterprise 450.

For the Z-coil, the typical clinical coil profiles are shown in Fig-
ure 3a. The basic magnetic field Z component (Bz) is required in a
uniform distribution in the X and Y direction and a linear change
in the Z direction in the centre image region. The field patterns in
the X-Z plane are shown in Figure 3b, which are in close agreement
with Biot-Savart summations. For the Y -coil, the basic magnetic
field should be uniform in the Z and X direction and change linearly
in the Y direction in the centre image region. The coil profile is
shown in Figure 3c, which is more complex than the Z-coil. After
hr-fdtd simulation, the final steady-state fields are presented in
Figure 3d. These results highlight that the steady-state solution of
the magnetic fields match the exact coil design performance. The
expected behaviour of the induced electric field during the gradient
switch change can be shown in details.
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Figure 3: (a) Z-gradient coil profile; (b) magnetic field pattern in
the centre X-Z cross-section; (c) Y -gradient coil profile; (d) mag-
netic field pattern in the centre X-Y cross-section.
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5 Simulation of the human body in an

MR scanner

Gradient coils in mri enable spatial encoding of the Magnetic Reso-
nance signal and therefore provide the capacity to generate images.
When a gradient coil is rapidly pulsed, however, eddy currents in-
duced in the human body can be sufficient to cause peripheral nerve
stimulation [7]. It is therefore important to be able to model induced
currents in the body in this situation.

A human body in a magnet system with a ”streamline” Y -
gradient coil is shown in figure 4. A frequency dependent tissue
model, developed by the United States Air Force Research Labora-
tory (http://www.brooks.af.mil/AFRL/HED/hedr), was used for
these calculations. The inner surface of the magnet was treated
as a perfectly conducting wall. A pml absorbing boundary, which
truncates computational domain, was used to surround the human
body. The current source Jin = J0 sin(2πf × t) with f = 833Hz
was used to drive the gradient coil. In the body model, equal space
discretization was used with ∆x = ∆y = ∆z = 0.8 cm, resulting in
a total of 158× 158× 276 = 6, 890, 064 mesh points, which requires
2.6 Gb computer memory. In this system, one loop required about
820 iterations. After the hd-fdtd algorithm ran for 40, 000 itera-
tions, the eddy current density was obtained according to J = σE .

A box with i × j × k = 72 × 42 × 234 mesh cells was used to
cover the human body. The maximum eddy current density along
the human body (Z-direction) is shown in Figure 5a. Details of
eddy current density in X-Z cross section are given in Figure 5b.

This study highlights that the hr-fdtd method is capable of
solving high resolution problems in complex situations. The physical
time required for a stable solution is only about 0.3% of the source

http://www.brooks.af.mil/AFRL/HED/hedr
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Figure 4: An outline of the body model inside an mri system
and surrounded by a Y -gradient coil.
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Figure 5: (a) The maximum eddy current density along the hu-
man body (Z-direction) produced by a 40mT/m Y -gradient oscil-
lating at 833Hz. (b) A coronal section of the complete solution with
white is high density and dark is lower density.
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period. The accuracy and the efficiency of the model are satisfactory
for further investigation of biological effects in mri systems. These
results were obtained after approximately 24 hrs of computation on
a sun Enterprise 450.

6 Conclusion

A new high resolution fdtd method has been described. The
method is essentially frequency independent, having been tested
over an extended frequency range (50Hz–1GHz). As an example
of a bioelectromagnetic application, the hr-fdtd method has been
used to compute eddy-current induction in a human body model
due to gradient coil pulsing in an mri system.

It is hoped that further studies, which include more complex
source functions, will be presented in the near future.

References

[1] J. P. Berenger. A perfectly matched layer for the absorption
of electromagnetic waves. Journal of Computational Physics,
114, 185–200, 1994. C859

[2] C. M. Furse and O. P. Gandhi. Calculation of electric fields
and currents induced in a millimeter-resolution human model
at 60Hz using the fdtd method. Bioelectromagnetics,
19,293–299, 1998. C853, C855



References C867

[3] R. Holland. Finite-difference time-domain (fdtd) analysis of
magnetic diffusion. ieee Trans. Electromagnetic
Compatibility, 36, 1, 32–39, 1994. C854, C855

[4] W. L. Ko and R. Mittra. Extremely low frequency modeling
in lossy media using fdtd with application in seafloor
characterization. Electromagnetics, 15: 587–602,1995. C855

[5] J. D. Moerloose, T. W. Dawson, and M. A. Stuchly.
Application of the finite difference time domain algorithm to
a quasi-static field analysis. Radio Science, 32(2),
329–341,1997. C854, C855, C857

[6] W. C. Parkinson. Electromagnetic fields in biological studies.
Annals of Biomedical Engineering, 3, 491–514, 1985. C853

[7] J. P. Reilly. Peripheral nerve stimulation by induced electric
currents: exposure to time-varying magnetic fields. Medical
and Biological Engineering and Computing, 27, 101–110, 1989.
C853, C864

[8] K. Umashankar and A. Taflove. A novel method to analyze
electromagnetic scattering of complex objects. ieee Trans.
Electromagnetic Compatibility, 24, 397–405, 1982. C854

[9] K. S. Yee. Numerical solution of initial boundary value
problems involving Maxwell’s equations in isotropic media.
ieee Trans. Antennas Propagat., 14, 302–307, 1966. C854


	Introduction
	The HR-FDTD method
	Verification
	Modeling the gradient coil in MRI system
	Simulation of the human body in an MR scanner
	Conclusion
	References

