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Introduction
HE shock standoff distance §; in a blunt-body stagnation re-

shock layer' and, hence, an important observable in hypervelocity

BODY

Fig. 1 Schematic of blunt-body stagnation shock layer.

Eq. (1) yields simply pV = — pooUoon. Because pV = —poUq, be-
hind the shock, n =1 is, thus, the shock location regardless of the

ow chemistry or dimensionalify. The physical standoif distance
8s = (¥)p=1 by Eq. (2) is then

test facilities.”” Although numerical codes are available to predict
d5, they are expensive for engineering parametric studies and do not
yield physical insight and similitude laws needed for experimental
design and data interpretation. On the other hand, existing analyti-
cal methods may not permit extension to include multitemperature
ionization. The present paper examines a new analytical theory3
of shock standoff with a nonequilibrium-dissociated shock layer to
demonstrate a generalized binary scaling property for high-altitude
hypervelocity flight simulation work.

Theoretical Formulation

We consider a blunt nose region at zero angle of attack under the
following assumptions (Fig. 1): 1) The postshock static pressure is
a known constant across the shock layer. 2) The tangential velocity
component is of the form U ~ Bsx, where B; is an appropriately de-
fined known constant equal to the effective stagnation point velocity
‘gradient reflecting the U.(y) variation. 3) Low Reynolds number vis-
cous shock layer effects are negligible. For shock layer Reynolds
numbers above 300 (pertaining to many applications), these assump-
tions are sufficient to model the main aerothermochemical aspects
of the flow along the stagnation line x — 0.

Regardless of the gas or its chemistry, continuity yields the normal
velocity component V' as

Yy
p(y)V(y)=—(1+J)ﬂsf pdy ¢9)
0

where J =0, 1 for two-dimensional or axisymmetric flow, respec-
tively. When the density-stretched coordinate 7 is introduced,

BsRs [ » y
=1+J —d| = 2
n=(1+ )Uoo /; = (Rs) 2
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Equation (3) shows that once the density profile p(n) is found using
the species, energy, and state equations, one integration yields §; in
a convenient nondimensional form.

For dissociation involving the net formation of an atom mass
fraction «, we have along the stagnation line (neglecting diffusion)
that pV da/dy = w,, where 1, is the net chemical rate of atom
mass formation per unit volume. Then applying Eq. (2), we obtain
the nondimensional equation

,d2 _ —G/p) | —(RoUs)(iep)
dp  A+)Bs (A +J)BsRe/Usx)

where both w,/p and Uy /Rp have the same units of reciprocal
time.

“@

Application to Dissociating Diatomic Gases
‘We now consider the specific case of a diatomic gas that undergoes
the dissociation—-recombination reaction

kp
A+ M 224+ M )
kr

where M is a third body (molecule A, or atom A), kp is the dis-
sociation rate, and ky is the recombination rate. The corresponding
W, is formulated from the law of mass action combined with the
principle of detailed balancing and the use of the usual mole-mass
fraction relationship, giving Eq. (4) as®

d_a/_ —kpa2PooRpUs [ (1 —&p) 1+]2 kpa 1l
Ta = 20+ DRIA N~ 2¢r ko2

x (1+<x)"{(1 —a)— (4'0[1;—"2T>a2} ©)
eq

~Tp/T

where &r = poo/0F, kpar=CTNe , ¢; are mass fractions
[ca=a, cpo=(1—a)], and Keq = pref(T/Tref)xe_(TD/T) in terms
of the parameters pres, Tret, 5, and the dissociation temperature Tp.

The density p can be expressed in terms of «, the pressure p, and
the mixture temperature T' by the equation of state, which on use of
Dalton’s law becomes

p=pR/M)T(1 + ) @)
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Here p ~ po,U%(1. — €r) and BsRp /Uso = /[26r (1 — £F)]A from
constant density shocklayer Newtonian theory (see Ref. 4),
where A =k/arcsink with k =../(1 —3ef)//(3¢F) for J =0 and
A=[1+./(8er/3)1/+/(8er/3) for J =1. The corresponding en-
ergy conservation equation for steady, adiabatic, nonradiating shock
layer (constant total enthalpy) at hypersonic flight conditions
(UL > R4, Too) is®

@+ 3(T/To)[1+a+ 301 -a)Uy + D]~ (U3 /2hp) + e
®)

where hp = R4, Tp =R, Tp/M4,, My, is the molecular weight and
Jy is an index that indicates the fraction of classical vibrational
internal molecular energy assumed to be activated, for example,
Jy =1 for complete activation, Jy =0 for negligible vibration, and
Jy = % for the Lighthill ideal dissociating gas model.

Similitude Properties and Binary Scaling
The foregoing indicates that the shock properties obey
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Fig. 2 Correlation of nondimensional shock standoff distance vs
Damkéhler number.

the following general similitude law for dissociating di- 12 -
atomic gases: 0‘(77),9(77),5(71) = fnS[FD$ TD» ®oos (1 - 8F)p00/pref]1
where 0=T/Tp, IT=p/pe(l —er) and tp=UZ%/2hp. Here 1.0 4 . ':gl
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when [/ is an integral function of the indicated scaling parameters
and the last term on the right derives from the recombination term
~a? in Eq. (6).

The practical utility of Eq. (10) obtains in those high-altitude/
hypervelocity regimes of flight where recombination is negligible
and the last parameter drops out. Then the appropriately nondimen-
sionalized standoff distance depends for a given «, only on the
Damkéhler number I', and the parameter tp, regardless of altitude
Do, flight velocity, or body size. A particular version of this binary
scaling for fixed Uy and po, + Rp has in fact been used for some
time>® to simulate nonequilibrium flows. A second and newer as-
pect, which we will discuss, deals with the roles:of the parameters
o, and (especially) 7p. In particular, we examine when 7 ceases to
be influential and, hence, no-longer restricts the usual binary scaling
to require a fixed type of gas and/or flight velocity. Such a situa-
tion is important in hypervelocity testing because then the simili-
tude requirements are unhooked from the need to duplicate tp and,
hence, Uy.

Parametric Study Results

Damkohler Number Correlation

Based on the chemical kinetic data of Park’ and the as-
sumption that J,=1, Fig. 2 shows the Damkéhler number
effect in terms of the nondimensional standoff distance ratio
rs = (85 — 85,69)/(85,F — 85,eq), Where the subscripts eq. and F
denote equilibrium and frozen shock layer values, respectively.
These results are plotted vs the modified Damkohler number
(proportional to I'p) defined by Q=65 ~'e~/%F (1 — ) [p{1 +
[2(kpa/kpa2) — o}/ (1 4+ as). When it is noted that rg always
lies between 0 in-the equilibrium limit and -unity in the opposite
chemically frozen limit; this presentation efficiently collapses.both
theory and experimént to nearly universal sets of curves. Also shown
is the envelope of combined experimental data/numerical compu-
tational fluid dynamic calculations.®' It is seen that the present
theory is in-good-agreement in predicting a significant decrease in
rg as S increases from the chemically frozen limit (2 — 0, rs=1)

Fig. 3a Effect of freestream dissociation on the rs(Q2) correlation.
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Fig. 3b Influence of the similitude parameter 7p on the ry(£2)
correlation.

to the equilibrium-dissociated limit (€ — oo, rs =0). The various
analyses lie within the experimental accuracy (+10%) of the avail-
able data; indeed, the present theory lies near its center.

Freestream Dissociation Effect

The effect of nonequilibrium freestream dissociation &, on rg
over the entire nonequilibrium range is shown in ‘Fig. 3a. For
0 < oo < 0.4,itis seen that o, has anegligible effect up to Q < 100;
within the experimental uncertainty, the o-effect has, thus, been
almost completely accounted for in the 85 .q and 857 values involved
in rg and its influence on 2.

Nondimensional'l{inetic Energy Parameter 7p

The similitude parameter tp represents the ratio of the flight ki-
netic energy to the dissociation energy of the gas; its influence on
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the rg vs Q variation is shown in Fig. 3b. For 7p « 1, it has a sig-
nificant influence on rg by decreasing the relative nonequilibrium
effect with increasing tp. However, when tp > 1, the rg vs Q corre-
lation becomes insensitive to tp. Indeed, for Tp > 1, its parametric
effect is far smaller than the typical experimental data uncertainty,
and, thus, 7p ceases to be relevant. In such cases, which embrace a
wide range of planetary entry vehicle conditions, we, thus, obtain
the generalized binary scaling that the ratio rs depends only on 2
regardless of the specific values of ps, Rp, U, and o, Or type of
gas.

With regard to practical applications, the following simple closed-
form expression has been found to fit the curve (Fig. 3) throughout
the entire nonequilibrium regime:

_6V/T+560-1

~ 1
! 5+ 200 an

Equation (11) yields the linear function r; = 1 — 0.70€2 in the nearly
frozen limit © < 1, and the inverse square root r, =0.70Q~'/2 for
nearly equilibrium flow Q> 1.

Conclusion
We have presented some new parametric study results from a
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