Skolem-type Difference Sets for Cycle Systems

Darryn Bryant
Department of Mathematics
University of Queensland
Qld 4072
Australia
Heather Gavlas
Department of Mathematics
Illinois State University
Campus Box 4520
Normal, IL 61790-4520
USA

Alan C. H. Ling
Department of Computer Science
University of Vermont
Burlington, Vermont 05405
USA

Submitted: May 24, 2002; Accepted: Sep 3, 2003; Published: Oct 6, 2003
MR Subject Classifications: 05C70, 05C38

Abstract

Cyclic m-cycle systems of order v are constructed for all $m \geq 3$, and all $v \equiv$ $1(\bmod 2 m)$. This result has been settled previously by several authors. In this paper, we provide a different solution, as a consequence of a more general result, which handles all cases using similar methods and which also allows us to prove necessary and sufficient conditions for the existence of a cyclic m-cycle system of $K_{v}-F$ for all $m \geq 3$, and all $v \equiv 2(\bmod 2 m)$.

1 Introduction

Throughout this paper, K_{v} will denote the complete graph on v vertices and C_{m} will denote the m-cycle $\left(v_{1}, v_{2}, \ldots, v_{m}\right)$. An m-cycle system of a graph G is a set \mathcal{C} of m-cycles in G whose edges partition the edge set of G. A survey on cycle systems is given in [12] and necessary and sufficient conditions for the existence of an m-cycle system of G in the cases $G=K_{v}$ and $G=K_{v}-F$ (the complete graph of order v with a 1-factor removed) were given in $[1,15]$. Such m-cycle systems exist if and only if $v \geq m$, every vertex of G has even degree, and m divides the number of edges in G.

Let ρ denote the permutation $(0,1, \ldots, v-1)$. An m-cycle system \mathcal{C} of a graph G with vertex set \mathbb{Z}_{v} is cyclic if for every m-cycle $C=\left(v_{1}, v_{2}, \ldots, v_{m}\right)$ in \mathcal{C}, the m-cycle $\rho(C)=\left(\rho\left(v_{1}\right), \rho\left(v_{2}\right), \ldots, \rho\left(v_{m}\right)\right)$ is also in \mathcal{C}. If X is a set of m-cycles in a graph G with vertex set \mathbb{Z}_{v} such that $\mathcal{C}=\left\{\rho^{\alpha}(C) \mid C \in X, \alpha=0,1, \ldots, v-1\right\}$ is an m-cycle system of G, then X is called a starter set for \mathcal{C}, the m-cycles in X are called starter cycles, and \mathcal{C} is said to be cyclically generated, or just generated, by the m-cycles in X.

The existence question for cyclic m-cycle systems of complete graphs has attracted much interest, and a complete answer for $m=3$ [11], 5 and 7 [13] has been found. For m even and $v \equiv 1(\bmod 2 m)$, cyclic m-cycle systems of K_{v} are constructed for $m \equiv 0(\bmod 4)$ in [10] and for $m \equiv 2(\bmod 4)$ in [13]. Both of these cases are also handled in [7]. For m odd and $v \equiv 1(\bmod 2 m)$, cyclic m-cycle systems of K_{v} are found using different methods in $[4,3,8]$, and, for $v \equiv m(\bmod 2 m)$ cyclic m-cycle systems of K_{v} are given [5] for $m \notin M$, where $M=\left\{p^{e} \mid p\right.$ is prime, $\left.e>1\right\} \cup\{15\}$, and in [18] for $m \in M$. In this paper, as a consequence of a more general result, we find cyclic m-cycle systems of K_{v} for all positive integers m and $v \equiv 1(\bmod 2 m)$ with $v \geq m \geq 4$ using similar methods. We also settle the existence question for cyclic m-cycle systems of $K_{v}-F$ for $v \equiv 2(\bmod 2 m)$.

For $x \not \equiv 0(\bmod v)$, the modulo v length of an integer x, denoted $|x|_{v}$, is defined to be the smallest positive integer y such that $x \equiv y(\bmod v)$ or $x \equiv-y(\bmod v)$. Note that for any integer $x \not \equiv 0(\bmod v)$, it follows that $|x|_{v} \in\left\{1,2, \ldots,\left\lfloor\frac{v}{2}\right\rfloor\right\}$. If L is a set of modulo v lengths, we define $\langle L\rangle_{v}$ to be the graph with vertex set \mathbb{Z}_{v} and edge set $\left\{\{i, j\}\left||i-j|_{v} \in L\right\}\right.$. Observe that $K_{v} \cong\langle\{1,2, \ldots,\lfloor v / 2\rfloor\}\rangle_{v}$. An edge $\{i, j\}$ in a graph with vertex set \mathbb{Z}_{v} is called an edge of length $|i-j|_{v}$.

Let $v>0$ be an integer and suppose there exists an ordered m-tuple $\left(d_{1}, d_{2}, \ldots, d_{m}\right)$ satisfying each of the following:
(i) d_{i} is an integer for $i=1,2, \ldots, m$;
(ii) $\left|d_{i}\right|_{v} \neq\left|d_{j}\right|_{v}$ for $1 \leq i<j \leq m$;
(iii) $d_{1}+d_{2}+\ldots+d_{m} \equiv 0(\bmod v)$; and
(iv) $d_{1}+d_{2}+\ldots+d_{r} \not \equiv d_{1}+d_{2}+\ldots+d_{s}(\bmod v)$ for $1 \leq r<s \leq m$.

Then $\left(0, d_{1}, d_{1}+d_{2}, \ldots, d_{1}+d_{2}+\ldots+d_{m-1}\right)$ generates a cyclic m-cycle system of the graph $\left\langle\left\{\left|d_{1}\right|_{v},\left|d_{2}\right|_{v}, \ldots,\left|d_{m}\right|_{v}\right\}\right\rangle_{v}$. An m-tuple satisfying (i)-(iv) is called a modulo v difference m-tuple, it corresponds to the starter m-cycle $\left\{\left(0, d_{1}, d_{1}+d_{2}, \ldots, d_{1}+d_{2}+\ldots+d_{m-1}\right)\right\}$,
and it uses edges of lengths $\left|d_{1}\right|_{v},\left|d_{2}\right|_{v}, \ldots,\left|d_{m}\right|_{v}$. A modulo $v m$-cycle difference set of size t, or an m-cycle difference set of size t when the value of v is understood, is a set consisting of t modulo v difference m-tuples that use edges of distinct lengths $l_{1}, l_{2}, \ldots, l_{t m}$; the m-cycles corresponding to the difference m-tuples generate a cyclic m-cycle system \mathcal{C} of $\left\langle\left\{l_{1}, l_{2}, \ldots, l_{t m}\right\}\right\rangle_{v}$. Thus the modulo $v m$-cycle difference set generates \mathcal{C}.

A Skolem sequence of order t is a sequence $S=\left(s_{1}, s_{2}, \ldots, s_{2 t}\right)$ of $2 t$ integers satisfying the conditions
(S1) for every $k \in\{1,2, \ldots, t\}$ there exist exactly two elements $s_{i}, s_{j} \in S$ such that $s_{i}=s_{j}=k ;$
(S2) if $s_{i}=s_{j}=k$ with $i<j$, then $j-i=k$.
It is well-known that a Skolem sequence of order t exists if and only if $t \equiv 0,1(\bmod 4)$ [17]. For $t \equiv 2,3(\bmod 4)$, the natural alternative is a hooked Skolem sequence. A hooked Skolem sequence of order t is a sequence $H S=\left(s_{1}, s_{2}, \ldots, s_{2 t+1}\right)$ of $2 t+1$ integers satisfying conditions (S1) and (S2) above and
(S3) $s_{2 t}=0$.
It is well-known that a hooked Skolem sequence of order t exists if and only if $t \equiv$ $2,3(\bmod 4)[9]$.

Skolem sequences and their generalisations have been used widely in the construction of combinatorial designs, a survey on Skolem sequences can be found in [6], and perhaps the most well-known use of Skolem sequences is in the construction of cyclic Steiner triple systems. A Steiner triple system of order v is a pair (V, B) where V is a v-set and B is a set of 3 -subsets, called triples, of V such that every 2 -subset of V occurs in exactly one triple of B. A Steiner triple system of order v is equivalent to a 3 -cycle system of K_{v}, and a Skolem sequence $S=\left(s_{1}, s_{2}, \ldots, s_{2 t}\right)$ or a hooked Skolem sequence $H S=\left(s_{1}, s_{2}, \ldots, s_{2 t+1}\right)$ of order t can be used to construct the 3-cycle difference set

$$
\left\{(k, t+i,-(t+j)) \mid k=1,2, \ldots, t, s_{i}=s_{j}=k, i<j\right\}
$$

of size t which generates a cyclic 3 -cycle system of $K_{6 t+1}$ (the m-tuple $(k, 3 t+1-k$, $-(3 t+$ 1)) obtained from a hooked Skolem sequence of order t uses edges of lengths $k, 3 t+1-k$ and $3 t$).

Notice that if $\left(d_{1}, d_{2}, \ldots, d_{m}\right)$ is a modulo v difference m-tuple with $d_{1}+d_{2}+\ldots+d_{m}=$ 0 , not just $d_{1}+d_{2}+\ldots+d_{m} \equiv 0(\bmod v)$, then $\left(d_{1}, d_{2}, \ldots, d_{m}\right)$ is a modulo w difference m-tuple for all $w \geq M / 2+1$ where $M=\left|d_{1}\right|+\left|d_{2}\right|+\cdots+\left|d_{m}\right|$. All the difference triples obtained from Skolem sequences and hooked Skolem sequences are of the form $\left(d_{1}, d_{2}, d_{3}\right)$ with $d_{1}+d_{2}+d_{3}=0$. In the literature, difference triples obtained from Skolem sequences are usually written (a, b, c) with $a+b=c$. However, the equivalent representation we are using here, with c replaced by $-c$ so that $a+b+c=0$, is more convenient for the purpose of extending these ideas to m-cycle systems with $m>3$. We make the following definition.

Definition 1.1 A difference m-tuple $\left(d_{1}, d_{2}, \ldots, d_{m}\right)$ is of Skolem-type if $d_{1}+d_{2}+\ldots+$ $d_{m}=0$. An m-cycle difference set using edges of lengths $1,2, \ldots, m t$, and in which all of the m-tuples are of Skolem type, is called a Skolem-type m-cycle difference set of size t. An m-cycle difference set using edges of lengths $1,2, \ldots, m t-1, m t+1$, and in which all of the m-tuples are of Skolem type, is called a hooked Skolem-type m-cycle difference set of size t.

Clearly, (hooked) Skolem sequences of order t yield (hooked) Skolem-type 3-cycle difference sets of size t. In this paper, we prove necessary and sufficient conditions for the existence of Skolem-type and hooked Skolem-type m-cycle difference sets of size t for all $m \geq 3$ and all $t \geq 1$ (see Theorem 2.3). As a corollary, we obtain several existence results on cyclic m-cycle systems. These include necessary and sufficient conditions for the existence of cyclic m-cycle systems of K_{v} for all $v \equiv 1(\bmod 2 m)$ and $K_{v}-F$ for all $v \equiv 2(\bmod 2 m)$.

As remarked earlier, several cases of these results have been settled previously. However, in this paper, we provide a complete solution in which all of the cases are dealt with using similar methods. Moreover, since the difference sets are of Skolem-type, we also obtain cyclic m-cycle systems of $\left\langle\left\{1,2, \ldots,\left\lfloor\frac{v}{2}\right\rfloor\right\}\right\rangle_{w}$ or $\left\langle\left\{1,2, \ldots, \frac{v}{2}-1,\left\lfloor\frac{v}{2}\right\rfloor+1\right\}\right\rangle_{w}$ for infinitely many values of w, which have not been previously found. All of our Skolemtype m-cycle difference sets will have the additional property that the number of positive integers in each m-tuple differs from the number of negative integers by at most one. In other words, when m is even the number of positive integers equals the number of negative integers, and when m is odd the number of positive integers and the number of negative integers differ by one.

To construct our sets of Skolem-type difference tuples we will use Langford sequences. A Langford sequence of order t and defect d is a sequence $L=\left(\ell_{1}, \ell_{2}, \ldots, \ell_{2 t}\right)$ of $2 t$ integers satisfying the conditions
(L1) for every $k \in\{d, d+1, \ldots, d+t-1\}$ there exists exactly two elements $\ell_{i}, \ell_{j} \in L$ such that $\ell_{i}=\ell_{j}=k$, and
(L2) if $\ell_{i}=\ell_{j}=k$ with $i<j$, then $j-i=k$.
A hooked Langford sequence of order t and defect d is a sequence $L=\left(\ell_{1}, \ell_{2}, \ldots, \ell_{2 t+1}\right)$ of $2 t+1$ integers satisfying conditions (L1) and (L2) above and
(L3) $\ell_{2 t}=0$.
Clearly, a (hooked) Langford sequence with defect 1 is a (hooked) Skolem sequence. The following theorem gives necessary and sufficient conditions for the existence of Langford sequences.

Theorem 1.2 [16] There exists a Langford sequence of order t and defect d if and only if
(1) $t \geq 2 d-1$, and
(2) $t \equiv 0,1(\bmod 4)$ and d is odd, or $t \equiv 0,3(\bmod 4)$ and d is even.

There exists a hooked Langford sequence of order t and defect d if and only if
(1) $t(t-2 d+1)+2 \geq 0$, and
(2) $t \equiv 2,3(\bmod 4)$ and d is odd, or $t \equiv 1,2(\bmod 4)$ and d is even.

In a similar manner to which 3-cycle difference sets are constructed from Skolem and hooked Skolem sequences, a Langford sequence or hooked Langford sequence of order t can be used to construct a 3-cycle difference set of size t that uses edges of lengths $d, d+1, d+2, \ldots, d+3 t-1$ or $d, d+1, d+2, \ldots, d+3 t-2, d+3 t$ respectively.

2 Construction of Difference Sets for Cycle Systems

Before proving the main theorem, we need the following two lemmas which are used in extending m-cycle difference sets of size t to $(m+4)$-cycle difference sets of size t. Lemma 2.1 is for ordinary Skolem-type m-cycle difference sets and Lemma 2.2 is for hooked Skolem-type m-cycle difference sets.

Lemma 2.1 Let n, r and t be positive integers. There exists a $t \times 4 r$ matrix $Y(r, n, t)=$ [$\left.y_{i, j}\right]$ such that $\left\{\left|y_{i, j}\right| \mid 1 \leq i \leq t, 1 \leq j \leq 4 r\right\}=\{n+1, n+2, \ldots, n+4 r t\}$, the sum of the entries in each row of $Y(r, n, t)$ is zero, and $\left|y_{i, 1}\right|<\left|y_{i, 2}\right|<\ldots<\left|y_{i, 4 r}\right|$ for $i=1,2, \ldots, t$.

Proof. Let $Y^{\prime}(r, n, t)$ be the matrix

$$
\left[\begin{array}{llllll}
2 t-1 & 2 t & 4 t-1 & 4 t & & 4 r t-1 \\
2 r t \\
2 t-3 & 2 t-2 & 4 t-3 & 4 t-2 & 4 r t-3 & 4 r t-2 \\
\vdots & \vdots & \vdots & \vdots & \cdots & \vdots \\
3 & 4 & 2 t+3 & 2 t+4 & & (4 r-2) t+3 \\
1 & 2 & 2 t+1 & 2 t+2 & & (4 r-2) t+4 \\
1 & & (4 r-2) t+1 & (4 r-2) t+2
\end{array}\right]+\left[\begin{array}{lll}
n & \cdots & n \\
& & \\
\vdots & \ddots & \vdots \\
n & \cdots & n
\end{array}\right]
$$

and let Y be the matrix obtained from Y^{\prime} by multiplying by -1 each entry in column j for all $j \equiv 2,3(\bmod 4)$. It is straightforward to verify that Y has the required properties.

Lemma 2.2 Let n, r and t be positive integers. There exists a $t \times 4 r$ matrix $Y(r, n, t)=$ $\left[y_{i, j}\right]$ such that $\left\{\left|y_{i, j}\right| \mid 1 \leq i \leq t, 1 \leq j \leq 4 r\right\}=\{n, n+2, n+3, \ldots, n+4 r t-1, n+4 r t+1\}$, the sum of the entries in each row is zero, and $\left|y_{i, 1}\right|<\left|y_{i, 2}\right|<\ldots<\left|y_{i, 4 r}\right|$ for $i=1,2, \ldots, t$.

Proof. Let $Y^{\prime}(r, n, t)$ be the matrix

$$
\left[\begin{array}{llllll}
0 & 2 & 4 t-1 & 4 t & & 4 r t-1 \\
4 r t+1 \\
2 t-1 & 2 t & 4 t-3 & 4 t-2 & & 4 r t-3 \\
\vdots & \vdots & \vdots & \vdots & \cdots & \vdots \\
5 & 6 & 2 t+3 & 2 t+4 & & (4 r-2) t+3 \\
\vdots & 4 & 2 t+1 & 2 t+2 & & (4 r-2) t+4 \\
3 & 4 & (4 r-2) t+1 & (4 r-2) t+2
\end{array}\right]+\left[\begin{array}{lll}
n & \cdots & n \\
& & \\
\vdots & \ddots & \vdots \\
n & \cdots & n
\end{array}\right]
$$

and let Y be the matrix obtained from Y^{\prime} by multiplying by -1 each entry in column j for all $j \equiv 2,3(\bmod 4)$. It is straightforward to verify that Y has the required properties.

We are now ready to prove necessary and sufficient conditions for the existence of Skolem-type and hooked Skolem-type m-cycle difference sets of size t.

Theorem 2.3 Let m and t be integers with $m \geq 3$ and $t \geq 1$. There exists a Skolem-type m-cycle difference set of size t if and only if $m t \equiv 0,3(\bmod 4)$. There exists a hooked Skolem-type m-cycle difference set of size t if and only if $m t \equiv 1,2(\bmod 4)$.

Proof. If $m t \equiv 1,2(\bmod 4)$ and $\left\{\left|x_{1}\right|,\left|x_{2}\right|, \ldots,\left|x_{m t}\right|\right\}=\{1,2, \ldots, m t\}$ then $x_{1}+x_{2}+\ldots+$ $x_{m t}$ is odd, and it follows that there is no Skolem-type m-cycle difference set of size t. Similarly, if $m t \equiv 0,3(\bmod 4)$ and $\left\{\left|x_{1}\right|,\left|x_{2}\right|, \ldots,\left|x_{m t}\right|\right\}=\{1,2, \ldots, m t-1, m t+1\}$ then $x_{1}+x_{2}+\ldots+x_{m t}$ is odd, and it follows that there is no hooked Skolem-type m-cycle difference set of size t. Hence it remains to construct a Skolem-type m-cycle difference set of size t whenever $m t \equiv 0,3(\bmod 4)$ and a hooked Skolem-type m-cycle difference set of size t whenever $m t \equiv 1,2(\bmod 4)$.

The proof splits into four cases depending on the congruence class of m modulo 4 . For each case we construct a $t \times m$ matrix $X=\left[x_{i, j}\right]$ with entries $1,2, \ldots, m t$ when $m t \equiv 0,3(\bmod 4)$ or with entries $1,2, \ldots, m t-1, m t+1$ when $m t \equiv 1,2(\bmod 4)$ such that for each $i=1,2, \ldots, t$, we have

$$
\sum_{j=1}^{m} x_{i, j}=0
$$

The entries in each row of our matrices will also satisfy various inequalities which will allow us to arrange them so that for $1 \leq r<s \leq m$ and $v \geq 2 m t+1$, we have $d_{1}+d_{2}+\ldots, d_{r} \not \equiv d_{1}+d_{2}+\ldots, d_{s}(\bmod v)$, so that a Skolem-type m-cycle difference set of size t can be obtained.

CASE 1. Suppose that $m \equiv 0(\bmod 4)$. In this case, $m t \equiv 0(\bmod 4)$ for all t and let $X=\left[x_{i, j}\right]$ be the $t \times m$ matrix $Y\left(\frac{m}{4}, 0, t\right)$ given by Lemma 2.1. For $i=1,2, \ldots, t$, we have $\left|x_{i, 1}\right|<\left|x_{i, 2}\right|<\cdots<\left|x_{i, m}\right|$ and $x_{i, j}<0$ precisely when $j \equiv 2,3(\bmod 4)$. Hence the required set of m-tuples can be constructed directly from the rows of X by including the m-tuple

$$
\left(x_{i, 1}, x_{i, 3}, x_{i, 5}, x_{i, 7}, \ldots, x_{i, m-3}, x_{i, m-1}, x_{i, m-2}, x_{i, m-4}, x_{i, m-6}, \ldots, x_{i, 6}, x_{i, 4}, x_{i, 2}, x_{i, m}\right)
$$

for $i=1,2, \ldots, t$.

Case 2. Suppose that $m \equiv 2(\bmod 4)$. In this case, $m t \equiv 0(\bmod 4)$ when t is even and $m t \equiv 2(\bmod 4)$ when t is odd. If t is even, let

$$
X=\left[\begin{array}{lllllll}
1 & -2 & 3 & -4 & -5 & 7 & \\
6 & -8 & 10 & -9 & -11 & 12 & \\
13 & -14 & 15 & -16 & -17 & 19 & \\
18 & -20 & 22 & -21 & -23 & 24 & \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & Y\left(\frac{m-6}{4}, 6 t, t\right) \\
6 t-12 & -(6 t-10) & 6 t-8 & -(6 t-9) & -(6 t-7) & 6 t-6 & \\
6 t-5 & -(6 t-4) & 6 t-3 & -(6 t-2) & -(6 t-1) & 6 t+1 &
\end{array}\right]
$$

where $Y\left(\frac{m-6}{4}, 6 t, t\right)$ is the $t \times \frac{m-6}{4}$ matrix given by Lemma 2.1, and if t is odd, let

$$
X=\left[\begin{array}{lllllll}
1 & -2 & 3 & -4 & -5 & 7 & \\
6 & -8 & 10 & -9 & -11 & 12 & \\
13 & -14 & 15 & -16 & -17 & 19 & \\
18 & -20 & 22 & -21 & -23 & 24 & \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & Y\left(\frac{m-6}{4}, 6 t, t\right) \\
6 t-11 & -(6 t-10) & 6 t-9 & -(6 t-8) & -(6 t-7) & 6 t-5 & \\
6 t-6 & -(6 t-4) & 6 t-2 & -(6 t-3) & -(6 t-1) & 6 t &
\end{array}\right]
$$

where $Y\left(\frac{m-6}{4}, 6 t, t\right)$ is the $t \times \frac{m-6}{4}$ matrix given by Lemma 2.2. For $i=1,2, \ldots, t$, we have $\left|x_{i, 1}\right|<\left|x_{i, 2}\right|<\left|x_{i, 4}\right|<\left|x_{i, 5}\right|<\left|x_{i, 6}\right|<\cdots<\left|x_{i, m}\right|,\left|x_{i, 2}\right|<\left|x_{i, 3}\right|<\left|x_{i, 5}\right|$, and $x_{i, j}<0$ precisely when $j=2$ and when $j \equiv 0,1(\bmod 4)$ with $j \geq 4$. Hence, the required set of m-tuples can be constructed directly from the rows of X by including the m-tuple

$$
\left(x_{i, 1}, x_{i, 2}, x_{i, 3}, x_{i, 5}, x_{i, 7} \ldots, x_{i, m-3}, x_{i, m-1}, x_{i, m-2}, x_{i, m-4}, x_{i, m-6}, \ldots, x_{i, 6}, x_{i, 4}, x_{i, m}\right)
$$

for $i=1,2, \ldots, t$.
CASE 3. Suppose that $m \equiv 3(\bmod 4)$. In this case, $m t \equiv 0,3(\bmod 4)$ when $t \equiv 0,1(\bmod 4)$ and $m t \equiv 1,2(\bmod 4)$ when $t \equiv 2,3(\bmod 4)$. If $t \equiv 0,1(\bmod 4)$, there exists a Skolem sequence of order t, and let $\left\{\left\{a_{i}, b_{i}, c_{i}\right\} \mid 1 \leq i \leq t\right\}$ be a set of t difference triples using edges of lengths $\{1,2, \ldots, 3 t\}$ constructed from such a sequence. If $t \equiv 2,3(\bmod 4)$, there exists a hooked Skolem sequence of order t, and let $\left\{\left\{a_{i}, b_{i}, c_{i}\right\} \mid 1 \leq i \leq t\right\}$ be a set of t difference triples using edges of lengths $\{1,2, \ldots, 3 t-1,3 t+1\}$ constructed from such a sequence. Furthermore, when $t \equiv 2,3(\bmod 4)$, we ensure that $3 t+1 \notin\left\{a_{1}, b_{1}, c_{1}\right\}$. Let

$$
X=\left[\begin{array}{llll}
a_{1} & c_{1} & b_{1} & \\
a_{2} & c_{2} & b_{2} & \\
\vdots & \vdots & \vdots & Y\left(\frac{m-3}{4}, 3 t, t\right) \\
a_{t} & c_{t} & b_{t} &
\end{array}\right]
$$

where $Y\left(\frac{m-3}{4}, 3 t, t\right)$ is the $t \times \frac{m-3}{4}$ matrix given by Lemma 2.1 or 2.2 if $t \equiv 0,1(\bmod 4)$ or $t \equiv 2,3(\bmod 4)$ respectively. For $i=1,2, \ldots, t$, we have $\left|x_{i, 1}\right|<\left|x_{i, 2}\right|<\left|x_{i, 4}\right|<\left|x_{i, 5}\right|<$
$\left|x_{i, 6}\right|<\cdots<\left|x_{i, m}\right|,\left|x_{i, 3}\right|<\left|x_{i, 5}\right|$, and $x_{i, j}<0$ precisely when $j \geq 2$ and $j \equiv 1,2(\bmod 4)$. Hence, the required set of m-tuples can be constructed directly from the rows of X by including the m-tuple

$$
\left(x_{i, 1}, x_{i, 2}, x_{i, 4}, x_{i, 6}, x_{i, 8}, \ldots, x_{i, m-3}, x_{i, m-1}, x_{i, m-2}, x_{i, m-4}, x_{i, m-6}, \ldots, x_{i, 5}, x_{i, 3}, x_{i, m}\right)
$$

for $i=1,2, \ldots, t$.
CASE 4. Suppose that $m \equiv 1(\bmod 4)$. In this case, $m t \equiv 0,3(\bmod 4)$ when $t \equiv 0,3(\bmod 4)$ and $m t \equiv 1,2(\bmod 4)$ when $t \equiv 1,2(\bmod 4)$. The matrix X is slightly different for each of the four congruence classes of t modulo 4 .

When $t \equiv 0(\bmod 4)$, there exists a Langford sequence of order $t-1$ and defect 2 , and let $\left\{\left\{a_{i}, b_{i}, c_{i}\right\} \mid 1 \leq i \leq t-1\right\}$ be a set of $t-1$ difference triples using edges of lengths $2,3, \ldots, 3 t-2$ constructed from such a sequence. Let

$$
X=\left[\begin{array}{llllll}
1 & -2 & 3 & 5 t-2 & -(5 t) & \\
a_{1}+2 & c_{1}-2 & b_{1}+2 & 5 t-6 & -(5 t-4) & \\
a_{2}+2 & c_{2}-2 & b_{2}+2 & 5 t-10 & -(5 t-8) & \\
& & & \vdots & \vdots & \\
& & & 3 t+2 & -(3 t+4) & \\
\vdots & \vdots & \vdots & 5 t-3 & -(5 t-1) & Y\left(\frac{m-5}{4}, 5 t, t\right) \\
& & & 5 t-7 & -(5 t-5) & \\
& & & \vdots & \vdots &
\end{array}\right]
$$

where $Y\left(\frac{m-5}{4}, 5 t, t\right)$ is the $t \times \frac{m-5}{4}$ matrix given by Lemma 2.1.
When $t \equiv 3(\bmod 4)$, there exists a hooked Langford sequence of order $t-1$ and defect 2 and let $\left\{\left\{a_{i}, b_{i}, c_{i}\right\} \mid 1 \leq i \leq t-1\right\}$ be a set of $t-1$ difference triples using edges of lengths $2,3, \ldots, 3 t-3,3 t-1$ constructed from such a sequence. Let

$$
X=\left[\begin{array}{llllll}
a_{1}+2 & c_{1}-2 & b_{1}+2 & 5 t-3 & -(5 t-1) & \\
a_{2}+2 & c_{2}-2 & b_{2}+2 & 5 t-7 & -(5 t-5) & \\
& & & \vdots & \vdots & \\
& & & 3 t+3 & -(3 t+5) & \\
\vdots & \vdots & \vdots & 5 t-2 & -(5 t) & Y\left(\frac{m-5}{4}, 5 t, t\right) \\
& & & 5 t-6 & -(5 t-4) & \\
a_{t-1}+2 & c_{t-1}-2 & b_{t-1}+2 & 3 t+4 & -(3 t+6) & \\
1 & -2 & 3 & 3 t & -(3 t+2) &
\end{array}\right]
$$

where $Y\left(\frac{m-5}{4}, 5 t, t\right)$ is the $t \times \frac{m-5}{4}$ matrix given by Lemma 2.1.
When $t=1$, let $X=\left[1-234-6 Y\left(\frac{m-5}{4}, 5,1\right)\right]$ where $Y((m-5) / 4,5,1)$ is the $1 \times \frac{m-5}{4}$ matrix given by Lemma 2.2. For $t \equiv 1(\bmod 4), t \geq 5$, there exists a Langford
sequence of order $t-1$ and defect 2 , and let $\left\{\left\{a_{i}, b_{i}, c_{i}\right\} \mid 1 \leq i \leq t-1\right\}$ be a set of $t-1$ difference triples using edges of lengths $2,3, \ldots, 3 t-2$ constructed from such a sequence. Let

$$
X=\left[\begin{array}{lllll}
1 & -2 & 3 & 5 t-1 & -(5 t+1) \\
a_{1}+2 & c_{1}-2 & b_{1}+2 & 5 t-4 & -(5 t-2) \\
a_{2}+2 & c_{2}-2 & b_{2}+2 & 5 t-8 & -(5 t-6) \\
& & & \vdots & \vdots \\
& & & 3 t+2 & -(3 t+4) \\
& \vdots & \vdots & 5 t-5 & -(5 t-3)
\end{array} \quad Y\left(\frac{m-5}{4}, 5 t, t\right]\right.
$$

where $Y\left(\frac{m-5}{4}, 5 t, t\right)$ is the $t \times \frac{m-5}{4}$ matrix given by Lemma 2.2.
When $t=2$, let

$$
X=\left[\begin{array}{cccccc}
1 & -5 & 6 & 7 & -9 & Y\left(\frac{m-5}{4}, 10,2\right) \\
2 & -3 & 4 & 8 & -11 &
\end{array}\right]
$$

where $Y\left(\frac{m-5}{4}, 10,2\right)$ is the $2 \times \frac{m-5}{4}$ matrix given by Lemma 2.2 . For $t \equiv 2(\bmod 4)$, $t \geq 6$, there exists a hooked Langford sequence of order $t-1$ and defect 2 , and let $\left\{\left\{a_{i}, b_{i}, c_{i}\right\} \mid 1 \leq i \leq t-1\right\}$ be a set of $t-1$ difference triples using edges of lengths $2,3, \ldots, 3 t-3,3 t-1$ constructed from such a sequence. Let

$$
X=\left[\begin{array}{llllll}
a_{1}+2 & c_{1}-2 & b_{1}+2 & 5 t-1 & -(5 t+1) \\
a_{2}+2 & c_{2}-2 & b_{2}+2 & 5 t-5 & -(5 t-3) & \\
& & & 5 t-9 & -(5 t-7) & \\
& & & \vdots & \vdots & \\
& & & 3 t+3 & -(3 t+5) & \\
\vdots & \vdots & \vdots & 5 t-4 & -(5 t-2) & Y\left(\frac{m-5}{4}, 5 t, t\right. \\
& & & 5 t-8 & -(5 t-6) & \\
& & & \vdots & \vdots & \\
a_{t-1}+2 & c_{t-1}-2 & b_{t-1}+2 & 3 t+4 & -(3 t+6) \\
1 & -2 & 3 & 3 t & -(3 t+2)
\end{array}\right.
$$

where $Y\left(\frac{m-5}{4}, 5 t, t\right)$ is the $t \times \frac{m-5}{4}$ matrix given by Lemma 2.2.
For $i=1,2, \ldots, t$, we have $\left|x_{i, 1}\right|<\left|x_{i, 2}\right|<\left|x_{i, 4}\right|<\left|x_{i, 5}\right|<\left|x_{i, 6}\right|<\cdots<\left|x_{i, m}\right|$, $\left|x_{i, 3}\right|<\left|x_{i, 5}\right|$, and $x_{i, j}<0$ precisely when $j=2, j=5$ and when $j \equiv 0,3(\bmod 4)$ with $j>5$. Hence, the required set of m-tuples can be constructed directly from the rows of X by including the m-tuple

$$
\left(x_{i, 1}, x_{i, 2}, x_{i, 4}, x_{i, 6}, x_{i, 8}, \ldots, x_{i, m-3}, x_{i, m-1}, x_{i, m-2}, x_{i, m-4}, x_{i, m-6}, \ldots, x_{i, 5}, x_{i, 3}, x_{i, m}\right)
$$

for $i=1,2, \ldots, t$.

3 Cyclic Cycle Systems

Theorem 2.3 has the following three theorems on cyclic m-cycle systems as immediate corollaries.

Theorem 3.1 Let $t \geq 1$ and $m \geq 3$. Then
(1) for $m t \equiv 0,3(\bmod 4)$ and all $v \geq 2 m t+1$, there exists a cyclic m-cycle system of $\langle\{1,2, \ldots, m t\}\rangle_{v}$; and
(2) for $m t \equiv 1,2(\bmod 4)$ and all $v \geq 2 m t+3$, there exists a cyclic m-cycle system of $\langle\{1,2, \ldots, m t-1, m t+1\}\rangle_{v}$.

Proof. When $m t \equiv 0,3(\bmod 4)$, the required cyclic m-cycle system is generated from a Skolem-type m-cycle difference set of order t. When $m t \equiv 1,2(\bmod 4)$, the required cyclic m-cycle system is generated from a hooked Skolem-type m-cycle difference set of order t.

Theorem 3.2 For all integers $m \geq 3$ and $t \geq 1$, there exists a cyclic m-cycle system of $K_{2 m t+1}$.

Proof. If $m t \equiv 0,3(\bmod 4)$, then the result follows immediately from Theorem 3.1 since $\langle\{1,2, \ldots, m t\}\rangle_{v} \cong K_{v}$ when $v=2 m t+1$. If $m t \equiv 1,2(\bmod 4)$ then since $|m t+1|_{2 m t+1}=$ $m t$, the difference m-tuples obtained from a hooked Skolem-type m-cycle difference set of order t form a modulo v difference set that uses edges of lengths $1,2, \ldots, m t$.

Theorem 3.3 For all integers $m \geq 3$ and $t \geq 1$, there exists a cyclic m-cycle system of $K_{2 m t+2}-F$ if and only if $m t \equiv 0,3(\bmod 4)$.

Proof. The required cyclic m-cycle systems exist by Theorem 3.1 , since $\langle\{1,2, \ldots, m t\}\rangle_{v} \cong$ $K_{v}-F$ when $v=2 m t+2$. Hence it remains to prove that there is no cyclic m-cycle system of $K_{2 m t+2}-F$ when $m t \equiv 1,2(\bmod 4)$. Suppose \mathcal{C} is a cyclic m-cycle system of $K_{v}-F$ with $m t \equiv 1,2(\bmod 4)$, suppose $C \in \mathcal{C}$ has an orbit of length r, and let $s=\frac{v}{r}$. Let P be a path in C such that the only two vertices a and b on P for which $|a-b|_{v} \equiv 0(\bmod r)$ are the endvertices of P. It follows that P has $\frac{m}{s}$ edges. Hence s divides m and s divides $2 m t+2$, and so $s=1$ or $s=2$. That is, $r=v$ or $r=\frac{v}{2}$.

We will now show that C does not contain an edge of length $\frac{v}{2}$. Since there are only $\frac{v}{2}$ edges of length $\frac{v}{2}$, we cannot have $r=v$. If $r=\frac{v}{2}$ then consideration of the path P consisting of a single edge of length $\frac{v}{2}$ tells us that $\frac{m}{2}=1$, which is impossible. Hence the 1-factor F consists of the edges of length $\frac{v}{2}$.

Now, if $r=v$, then C contains edges of distinct lengths $l_{1}, l_{2}, \ldots, l_{m}$ such that $l_{1}+l_{2}+$ $\ldots+l_{m}$ is even, and if $r=\frac{v}{2}$ then C contains edges of distinct lengths $l_{1}, l_{2}, \ldots, l_{\frac{m}{2}}$ such that $l_{1}+l_{2}+\ldots+l_{\frac{m}{2}} \equiv \frac{v}{2}(\bmod 2)$. However, the sum of all the orbit lengths is $v t$ and so the number of orbits of length $=\frac{v}{2}$ is even. It follows that there are an even number of odd edge lengths, which is a contradiction when $m t \equiv 1,2(\bmod 4)$.

ACKNOWLEDGMENT

The research of the first author is supported by the Australian Research Council.
The research of the third author is sponsored by ARO grant DAAD19-01-1-0406 and by DOE EPSCoR.

References

[1] B. Alspach and H. Gavlas, Cycle decompositions of K_{n} and $K_{n}-I$, J. Combin. Theory Ser. B 81 (2001), 77-99.
[2] C.A. Baker, Extended Skolem sequences, J. Combin. Des. 5 (1995), 363-379.
[3] A. Blinco, S. El Zanati and C. Vanden Eynden, On the cyclic decomposition of complete graphs into almost complete graphs, Discrete Math., to appear.
[4] M. Buratti and A. Del Fra, Existence of cyclic k-cycle systems of the complete graph, Discrete Math. 261 (2003), 113-125.
[5] M. Buratti and A. Del Fra, Cyclic Hamiltonian cycle systems of the complete graph, Discrete Math., to appear.
[6] The CRC Handbook of Combinatorial Designs, C. J. Colbourn and J. H. Dinitz (eds), CRC Press, Boca Raton FL, (1996).
[7] S.I. El-Zanati, N. Punnim, C. Vanden Eynden, On the cyclic decomposition of complete graphs into bipartite graphs, Austral. J. Combin. 24 (2001), 209-219.
[8] H. Fu and S. Wu, Cyclically decomposing complete graphs into cycles, preprint.
[9] E.S. O'Keefe, Verification of a conjecture of Th Skolem, Math. Scand. 9 (1961), 80-82.
[10] A. Kotzig, On decompositions of the complete graph into $4 k$-gons, Mat.-Fyz. Cas. 15 (1965), 227-233.
[11] R. Peltesohn, Eine Losung der beiden Heffterschen Differenzenprobleme, Compos. Math. 6 (1938), 251-257.
[12] C. A. Rodger, Cycle Systems, in the CRC Handbook of Combinatorial Designs, (eds. C.J. Colbourn and J.H. Dinitz), CRC Press, Boca Raton FL (1996).
[13] A. Rosa, On cyclic decompositions of the complete graph into $(4 m+2)$-gons, Mat.Fyz. Cas. 16 (1966), 349-352.
[14] A. Rosa, On the cyclic decompositions of the complete graph into polygons with an odd number of edges, Časopis Pěst. Math. 91 (1966) 53-63.
[15] M. Šajna, Cycle Decompositions III: Complete graphs and fixed length cycles, J. Combin. Des. 10 (2002), 27-78.
[16] J.E. Simpson, Langford sequences: perfect and hooked, Discrete Math. 44 (1983), 97-104.
[17] Th. Skolem, On certain distributions of integers in pairs with given difference, Math. Scand. 5 (1957), 57-68.
[18] A. Vietri, Cyclic k-Cycle Systems of order $2 k n+k$; a solution of the last open cases, preprint.

