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Abstract

Cyclic m-cycle systems of order v are constructed for all m ≥ 3, and all v ≡
1(mod 2m). This result has been settled previously by several authors. In this
paper, we provide a different solution, as a consequence of a more general result,
which handles all cases using similar methods and which also allows us to prove
necessary and sufficient conditions for the existence of a cyclic m-cycle system of
Kv − F for all m ≥ 3, and all v ≡ 2(mod 2m).
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1 Introduction

Throughout this paper, Kv will denote the complete graph on v vertices and Cm will
denote the m-cycle (v1, v2, . . . , vm). An m-cycle system of a graph G is a set C of m-cycles
in G whose edges partition the edge set of G. A survey on cycle systems is given in [12]
and necessary and sufficient conditions for the existence of an m-cycle system of G in the
cases G = Kv and G = Kv − F (the complete graph of order v with a 1-factor removed)
were given in [1, 15]. Such m-cycle systems exist if and only if v ≥ m, every vertex of G
has even degree, and m divides the number of edges in G.

Let ρ denote the permutation (0, 1, . . . , v − 1). An m-cycle system C of a graph G
with vertex set Zv is cyclic if for every m-cycle C = (v1, v2, . . . , vm) in C, the m-cycle
ρ(C) = (ρ(v1), ρ(v2), . . . , ρ(vm)) is also in C. If X is a set of m-cycles in a graph G with
vertex set Zv such that C = {ρα(C) | C ∈ X, α = 0, 1, . . . , v − 1} is an m-cycle system of
G, then X is called a starter set for C, the m-cycles in X are called starter cycles, and C
is said to be cyclically generated, or just generated, by the m-cycles in X.

The existence question for cyclic m-cycle systems of complete graphs has attracted
much interest, and a complete answer for m = 3 [11], 5 and 7 [13] has been found. For m
even and v ≡ 1(mod 2m), cyclic m-cycle systems of Kv are constructed for m ≡ 0(mod 4)
in [10] and for m ≡ 2(mod 4) in [13]. Both of these cases are also handled in [7]. For m
odd and v ≡ 1(mod 2m), cyclic m-cycle systems of Kv are found using different methods
in [4, 3, 8], and, for v ≡ m(mod 2m) cyclic m-cycle systems of Kv are given [5] for m 6∈ M ,
where M = {pe | p is prime, e > 1} ∪ {15}, and in [18] for m ∈ M . In this paper, as a
consequence of a more general result, we find cyclic m-cycle systems of Kv for all positive
integers m and v ≡ 1(mod 2m) with v ≥ m ≥ 4 using similar methods. We also settle the
existence question for cyclic m-cycle systems of Kv − F for v ≡ 2(mod 2m).

For x 6≡ 0(mod v), the modulo v length of an integer x, denoted |x|v, is defined to
be the smallest positive integer y such that x ≡ y(mod v) or x ≡ −y(mod v). Note
that for any integer x 6≡ 0(mod v), it follows that |x|v ∈ {1, 2, . . . , bv

2
c}. If L is a set

of modulo v lengths, we define 〈L〉v to be the graph with vertex set Zv and edge set
{{i, j} | |i − j|v ∈ L}. Observe that Kv

∼= 〈{1, 2, . . . , bv/2c}〉v. An edge {i, j} in a graph
with vertex set Zv is called an edge of length |i − j|v.

Let v > 0 be an integer and suppose there exists an ordered m-tuple (d1, d2, . . . , dm)
satisfying each of the following:

(i) di is an integer for i = 1, 2, . . . , m;

(ii) |di|v 6= |dj|v for 1 ≤ i < j ≤ m;

(iii) d1 + d2 + . . . + dm ≡ 0(mod v); and

(iv) d1 + d2 + . . . + dr 6≡ d1 + d2 + . . . + ds(mod v) for 1 ≤ r < s ≤ m.

Then (0, d1, d1+d2, . . . , d1+d2+. . .+dm−1) generates a cyclic m-cycle system of the graph
〈{|d1|v, |d2|v, . . . , |dm|v}〉v. An m-tuple satisfying (i)-(iv) is called a modulo v difference
m-tuple, it corresponds to the starter m-cycle {(0, d1, d1 + d2, . . . , d1 + d2 + . . . + dm−1)},
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and it uses edges of lengths |d1|v, |d2|v, . . . , |dm|v. A modulo v m-cycle difference set of
size t, or an m-cycle difference set of size t when the value of v is understood, is a set
consisting of t modulo v difference m-tuples that use edges of distinct lengths l1, l2, . . . , ltm;
the m-cycles corresponding to the difference m-tuples generate a cyclic m-cycle system C
of 〈{l1, l2, . . . , ltm}〉v. Thus the modulo v m-cycle difference set generates C.

A Skolem sequence of order t is a sequence S = (s1, s2, . . . , s2t) of 2t integers satisfying
the conditions

(S1) for every k ∈ {1, 2, . . . , t} there exist exactly two elements si, sj ∈ S such that
si = sj = k;

(S2) if si = sj = k with i < j, then j − i = k.

It is well-known that a Skolem sequence of order t exists if and only if t ≡ 0, 1(mod4)
[17]. For t ≡ 2, 3(mod 4), the natural alternative is a hooked Skolem sequence. A hooked
Skolem sequence of order t is a sequence HS = (s1, s2, . . . , s2t+1) of 2t+1 integers satisfying
conditions (S1) and (S2) above and

(S3) s2t = 0.

It is well-known that a hooked Skolem sequence of order t exists if and only if t ≡
2, 3(mod 4) [9].

Skolem sequences and their generalisations have been used widely in the construction
of combinatorial designs, a survey on Skolem sequences can be found in [6], and perhaps
the most well-known use of Skolem sequences is in the construction of cyclic Steiner triple
systems. A Steiner triple system of order v is a pair (V, B) where V is a v-set and B is a
set of 3-subsets, called triples, of V such that every 2-subset of V occurs in exactly one
triple of B. A Steiner triple system of order v is equivalent to a 3-cycle system of Kv, and a
Skolem sequence S = (s1, s2, . . . , s2t) or a hooked Skolem sequence HS = (s1, s2, . . . , s2t+1)
of order t can be used to construct the 3-cycle difference set

{(k, t + i,−(t + j)) | k = 1, 2, . . . , t, si = sj = k, i < j}

of size t which generates a cyclic 3-cycle system of K6t+1 (the m-tuple (k, 3t+1−k,−(3t+
1)) obtained from a hooked Skolem sequence of order t uses edges of lengths k, 3t + 1− k
and 3t).

Notice that if (d1, d2, . . . , dm) is a modulo v difference m-tuple with d1+d2+ . . .+dm =
0, not just d1 + d2 + . . . + dm ≡ 0(mod v), then (d1, d2, . . . , dm) is a modulo w difference
m-tuple for all w ≥ M/2 + 1 where M = |d1|+ |d2|+ · · ·+ |dm|. All the difference triples
obtained from Skolem sequences and hooked Skolem sequences are of the form (d1, d2, d3)
with d1 +d2 +d3 = 0. In the literature, difference triples obtained from Skolem sequences
are usually written (a, b, c) with a + b = c. However, the equivalent representation we
are using here, with c replaced by −c so that a + b + c = 0, is more convenient for the
purpose of extending these ideas to m-cycle systems with m > 3. We make the following
definition.
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Definition 1.1 A difference m-tuple (d1, d2, . . . , dm) is of Skolem-type if d1 + d2 + . . . +
dm = 0. An m-cycle difference set using edges of lengths 1, 2, . . . , mt, and in which all of
the m-tuples are of Skolem type, is called a Skolem-type m-cycle difference set of size t.
An m-cycle difference set using edges of lengths 1, 2, . . . , mt− 1, mt + 1, and in which all
of the m-tuples are of Skolem type, is called a hooked Skolem-type m-cycle difference set
of size t.

Clearly, (hooked) Skolem sequences of order t yield (hooked) Skolem-type 3-cycle
difference sets of size t. In this paper, we prove necessary and sufficient conditions for
the existence of Skolem-type and hooked Skolem-type m-cycle difference sets of size t for
all m ≥ 3 and all t ≥ 1 (see Theorem 2.3). As a corollary, we obtain several existence
results on cyclic m-cycle systems. These include necessary and sufficient conditions for
the existence of cyclic m-cycle systems of Kv for all v ≡ 1(mod 2m) and Kv − F for all
v ≡ 2(mod 2m).

As remarked earlier, several cases of these results have been settled previously. How-
ever, in this paper, we provide a complete solution in which all of the cases are dealt
with using similar methods. Moreover, since the difference sets are of Skolem-type, we
also obtain cyclic m-cycle systems of 〈{1, 2, . . . , bv

2
c}〉w or 〈{1, 2, . . . , v

2
− 1, bv

2
c+ 1}〉w for

infinitely many values of w, which have not been previously found. All of our Skolem-
type m-cycle difference sets will have the additional property that the number of positive
integers in each m-tuple differs from the number of negative integers by at most one. In
other words, when m is even the number of positive integers equals the number of negative
integers, and when m is odd the number of positive integers and the number of negative
integers differ by one.

To construct our sets of Skolem-type difference tuples we will use Langford sequences.
A Langford sequence of order t and defect d is a sequence L = (`1, `2, . . . , `2t) of 2t integers
satisfying the conditions

(L1) for every k ∈ {d, d + 1, . . . , d + t − 1} there exists exactly two elements `i, `j ∈ L
such that `i = `j = k, and

(L2) if `i = `j = k with i < j, then j − i = k.

A hooked Langford sequence of order t and defect d is a sequence L = (`1, `2, . . . , `2t+1) of
2t + 1 integers satisfying conditions (L1) and (L2) above and

(L3) `2t = 0.

Clearly, a (hooked) Langford sequence with defect 1 is a (hooked) Skolem sequence. The
following theorem gives necessary and sufficient conditions for the existence of Langford
sequences.

Theorem 1.2 [16] There exists a Langford sequence of order t and defect d if and only
if

(1) t ≥ 2d − 1, and
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(2) t ≡ 0, 1(mod 4) and d is odd, or t ≡ 0, 3(mod4) and d is even.

There exists a hooked Langford sequence of order t and defect d if and only if

(1) t(t − 2d + 1) + 2 ≥ 0, and

(2) t ≡ 2, 3(mod 4) and d is odd, or t ≡ 1, 2(mod4) and d is even.

In a similar manner to which 3-cycle difference sets are constructed from Skolem and
hooked Skolem sequences, a Langford sequence or hooked Langford sequence of order
t can be used to construct a 3-cycle difference set of size t that uses edges of lengths
d, d + 1, d + 2, . . . , d + 3t − 1 or d, d + 1, d + 2, . . . , d + 3t − 2, d + 3t respectively.

2 Construction of Difference Sets for Cycle Systems

Before proving the main theorem, we need the following two lemmas which are used in
extending m-cycle difference sets of size t to (m+4)-cycle difference sets of size t. Lemma
2.1 is for ordinary Skolem-type m-cycle difference sets and Lemma 2.2 is for hooked
Skolem-type m-cycle difference sets.

Lemma 2.1 Let n, r and t be positive integers. There exists a t × 4r matrix Y (r, n, t) =
[yi,j] such that {|yi,j| | 1 ≤ i ≤ t, 1 ≤ j ≤ 4r} = {n + 1, n + 2, . . . , n + 4rt}, the sum of the
entries in each row of Y (r, n, t) is zero, and |yi,1| < |yi,2| < . . . < |yi,4r| for i = 1, 2, . . . , t.

Proof. Let Y ′(r, n, t) be the matrix


2t − 1 2t 4t − 1 4t 4rt − 1 4rt
2t − 3 2t − 2 4t − 3 4t − 2 4rt − 3 4rt − 2
...

...
...

... · · · ...
...

3 4 2t + 3 2t + 4 (4r − 2)t + 3 (4r − 2)t + 4
1 2 2t + 1 2t + 2 (4r − 2)t + 1 (4r − 2)t + 2




+




n · · · n

...
. . .

...

n · · · n




and let Y be the matrix obtained from Y ′ by multiplying by −1 each entry in column j
for all j ≡ 2, 3(mod 4). It is straightforward to verify that Y has the required properties.

Lemma 2.2 Let n, r and t be positive integers. There exists a t × 4r matrix Y (r, n, t) =
[yi,j] such that {|yi,j| | 1 ≤ i ≤ t, 1 ≤ j ≤ 4r} = {n, n+2, n+3, . . . , n+4rt−1, n+4rt+1},
the sum of the entries in each row is zero, and |yi,1| < |yi,2| < . . . < |yi,4r| for i = 1, 2, . . . , t.

Proof. Let Y ′(r, n, t) be the matrix


0 2 4t − 1 4t 4rt− 1 4rt + 1
2t − 1 2t 4t − 3 4t − 2 4rt− 3 4rt− 2
...

...
...

... · · · ...
...

5 6 2t + 3 2t + 4 (4r − 2)t + 3 (4r − 2)t + 4
3 4 2t + 1 2t + 2 (4r − 2)t + 1 (4r − 2)t + 2




+




n · · · n

...
. . .

...

n · · · n
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and let Y be the matrix obtained from Y ′ by multiplying by −1 each entry in column j
for all j ≡ 2, 3(mod 4). It is straightforward to verify that Y has the required properties.

We are now ready to prove necessary and sufficient conditions for the existence of
Skolem-type and hooked Skolem-type m-cycle difference sets of size t.

Theorem 2.3 Let m and t be integers with m ≥ 3 and t ≥ 1. There exists a Skolem-type
m-cycle difference set of size t if and only if mt ≡ 0, 3(mod 4). There exists a hooked
Skolem-type m-cycle difference set of size t if and only if mt ≡ 1, 2(mod 4).

Proof. If mt ≡ 1, 2(mod 4) and {|x1|, |x2|, . . . , |xmt|} = {1, 2, . . . , mt} then x1 +x2 + . . .+
xmt is odd, and it follows that there is no Skolem-type m-cycle difference set of size t.
Similarly, if mt ≡ 0, 3(mod 4) and {|x1|, |x2|, . . . , |xmt|} = {1, 2, . . . , mt − 1, mt + 1} then
x1 + x2 + . . . + xmt is odd, and it follows that there is no hooked Skolem-type m-cycle
difference set of size t. Hence it remains to construct a Skolem-type m-cycle difference
set of size t whenever mt ≡ 0, 3(mod4) and a hooked Skolem-type m-cycle difference set
of size t whenever mt ≡ 1, 2(mod 4).

The proof splits into four cases depending on the congruence class of m modulo 4.
For each case we construct a t × m matrix X = [xi,j ] with entries 1, 2, . . . , mt when
mt ≡ 0, 3(mod 4) or with entries 1, 2, . . . , mt−1, mt+1 when mt ≡ 1, 2(mod 4) such that
for each i = 1, 2, . . . , t, we have

m∑
j=1

xi,j = 0.

The entries in each row of our matrices will also satisfy various inequalities which will
allow us to arrange them so that for 1 ≤ r < s ≤ m and v ≥ 2mt + 1, we have
d1 + d2 + . . . , dr 6≡ d1 + d2 + . . . , ds(mod v), so that a Skolem-type m-cycle difference set
of size t can be obtained.

Case 1. Suppose that m ≡ 0(mod 4). In this case, mt ≡ 0(mod 4) for all t and let
X = [xi,j ] be the t × m matrix Y (m

4
, 0, t) given by Lemma 2.1. For i = 1, 2, . . . , t, we

have |xi,1| < |xi,2| < · · · < |xi,m| and xi,j < 0 precisely when j ≡ 2, 3(mod4). Hence the
required set of m-tuples can be constructed directly from the rows of X by including the
m-tuple

(xi,1, xi,3, xi,5, xi,7, . . . , xi,m−3, xi,m−1, xi,m−2, xi,m−4, xi,m−6, . . . , xi,6, xi,4, xi,2, xi,m)

for i = 1, 2, . . . , t.
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Case 2. Suppose that m ≡ 2(mod 4). In this case, mt ≡ 0(mod 4) when t is even and
mt ≡ 2(mod 4) when t is odd. If t is even, let

X =




1 −2 3 −4 −5 7
6 −8 10 −9 −11 12
13 −14 15 −16 −17 19
18 −20 22 −21 −23 24
...

...
...

...
...

... Y (m−6
4

, 6t, t)
6t − 12 −(6t − 10) 6t − 8 −(6t − 9) −(6t − 7) 6t − 6
6t − 5 −(6t − 4) 6t − 3 −(6t − 2) −(6t − 1) 6t + 1




where Y (m−6
4

, 6t, t) is the t × m−6
4

matrix given by Lemma 2.1, and if t is odd, let

X =




1 −2 3 −4 −5 7
6 −8 10 −9 −11 12
13 −14 15 −16 −17 19
18 −20 22 −21 −23 24
...

...
...

...
...

... Y (m−6
4

, 6t, t)
6t − 11 −(6t − 10) 6t − 9 −(6t − 8) −(6t − 7) 6t − 5
6t − 6 −(6t − 4) 6t − 2 −(6t − 3) −(6t − 1) 6t




where Y (m−6
4

, 6t, t) is the t × m−6
4

matrix given by Lemma 2.2. For i = 1, 2, . . . , t, we
have |xi,1| < |xi,2| < |xi,4| < |xi,5| < |xi,6| < · · · < |xi,m|, |xi,2| < |xi,3| < |xi,5|, and xi,j < 0
precisely when j = 2 and when j ≡ 0, 1(mod 4) with j ≥ 4. Hence, the required set of
m-tuples can be constructed directly from the rows of X by including the m-tuple

(xi,1, xi,2, xi,3, xi,5, xi,7 . . . , xi,m−3, xi,m−1, xi,m−2, xi,m−4, xi,m−6, . . . , xi,6, xi,4, xi,m).

for i = 1, 2, . . . , t.

Case 3. Suppose that m ≡ 3(mod 4). In this case, mt ≡ 0, 3(mod4) when t ≡ 0, 1(mod4)
and mt ≡ 1, 2(mod 4) when t ≡ 2, 3(mod 4). If t ≡ 0, 1(mod 4), there exists a Skolem
sequence of order t, and let {{ai, bi, ci} | 1 ≤ i ≤ t} be a set of t difference triples using
edges of lengths {1, 2, . . . , 3t} constructed from such a sequence. If t ≡ 2, 3(mod 4), there
exists a hooked Skolem sequence of order t, and let {{ai, bi, ci} | 1 ≤ i ≤ t} be a set of t
difference triples using edges of lengths {1, 2, . . . , 3t − 1, 3t + 1} constructed from such a
sequence. Furthermore, when t ≡ 2, 3(mod 4), we ensure that 3t + 1 6∈ {a1, b1, c1}. Let

X =




a1 c1 b1

a2 c2 b2
...

...
... Y (m−3

4
, 3t, t)

at ct bt




where Y (m−3
4

, 3t, t) is the t× m−3
4

matrix given by Lemma 2.1 or 2.2 if t ≡ 0, 1(mod 4) or
t ≡ 2, 3(mod 4) respectively. For i = 1, 2, . . . , t, we have |xi,1| < |xi,2| < |xi,4| < |xi,5| <
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|xi,6| < · · · < |xi,m|, |xi,3| < |xi,5|, and xi,j < 0 precisely when j ≥ 2 and j ≡ 1, 2(mod 4).
Hence, the required set of m-tuples can be constructed directly from the rows of X by
including the m-tuple

(xi,1, xi,2, xi,4, xi,6, xi,8, . . . , xi,m−3, xi,m−1, xi,m−2, xi,m−4, xi,m−6, . . . , xi,5, xi,3, xi,m)

for i = 1, 2, . . . , t.

Case 4. Suppose that m ≡ 1(mod 4). In this case, mt ≡ 0, 3(mod4) when t ≡ 0, 3(mod4)
and mt ≡ 1, 2(mod 4) when t ≡ 1, 2(mod 4). The matrix X is slightly different for each
of the four congruence classes of t modulo 4.

When t ≡ 0(mod 4), there exists a Langford sequence of order t− 1 and defect 2, and
let {{ai, bi, ci} | 1 ≤ i ≤ t − 1} be a set of t − 1 difference triples using edges of lengths
2, 3, . . . , 3t − 2 constructed from such a sequence. Let

X =




1 −2 3 5t − 2 −(5t)
a1 + 2 c1 − 2 b1 + 2 5t − 6 −(5t − 4)
a2 + 2 c2 − 2 b2 + 2 5t − 10 −(5t − 8)

...
...

3t + 2 −(3t + 4)
...

...
... 5t − 3 −(5t − 1) Y (m−5

4
, 5t, t)

5t − 7 −(5t − 5)
...

...
at−1 + 2 ct−1 − 2 bt−1 + 2 3t + 1 −(3t + 3)




where Y (m−5
4

, 5t, t) is the t × m−5
4

matrix given by Lemma 2.1.
When t ≡ 3(mod 4), there exists a hooked Langford sequence of order t−1 and defect

2 and let {{ai, bi, ci} | 1 ≤ i ≤ t − 1} be a set of t − 1 difference triples using edges of
lengths 2, 3, . . . , 3t− 3, 3t − 1 constructed from such a sequence. Let

X =




a1 + 2 c1 − 2 b1 + 2 5t − 3 −(5t − 1)
a2 + 2 c2 − 2 b2 + 2 5t − 7 −(5t − 5)

...
...

3t + 3 −(3t + 5)
...

...
... 5t − 2 −(5t) Y (m−5

4
, 5t, t)

5t − 6 −(5t − 4)
...

...
at−1 + 2 ct−1 − 2 bt−1 + 2 3t + 4 −(3t + 6)
1 −2 3 3t −(3t + 2)




where Y (m−5
4

, 5t, t) is the t × m−5
4

matrix given by Lemma 2.1.
When t = 1, let X = [1 − 2 3 4 − 6 Y (m−5

4
, 5, 1)] where Y ((m − 5)/4, 5, 1) is the

1 × m−5
4

matrix given by Lemma 2.2. For t ≡ 1(mod 4), t ≥ 5, there exists a Langford
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sequence of order t − 1 and defect 2, and let {{ai, bi, ci} | 1 ≤ i ≤ t − 1} be a set of t − 1
difference triples using edges of lengths 2, 3, . . . , 3t− 2 constructed from such a sequence.
Let

X =




1 −2 3 5t − 1 −(5t + 1)
a1 + 2 c1 − 2 b1 + 2 5t − 4 −(5t − 2)
a2 + 2 c2 − 2 b2 + 2 5t − 8 −(5t − 6)

...
...

3t + 2 −(3t + 4)
...

...
... 5t − 5 −(5t − 3) Y (m−5

4
, 5t, t

5t − 9 −(5t − 7)
...

...
at−1 + 2 ct−1 − 2 bt−1 + 2 3t + 1 −(3t + 3)




where Y (m−5
4

, 5t, t) is the t × m−5
4

matrix given by Lemma 2.2.
When t = 2, let

X =

[
1 −5 6 7 −9 Y (m−5

4
, 10, 2)

2 −3 4 8 −11

]

where Y (m−5
4

, 10, 2) is the 2 × m−5
4

matrix given by Lemma 2.2. For t ≡ 2(mod 4),
t ≥ 6, there exists a hooked Langford sequence of order t − 1 and defect 2, and let
{{ai, bi, ci} | 1 ≤ i ≤ t − 1} be a set of t − 1 difference triples using edges of lengths
2, 3, . . . , 3t − 3, 3t− 1 constructed from such a sequence. Let

X =




a1 + 2 c1 − 2 b1 + 2 5t − 1 −(5t + 1)
a2 + 2 c2 − 2 b2 + 2 5t − 5 −(5t − 3)

5t − 9 −(5t − 7)
...

...
3t + 3 −(3t + 5)

...
...

... 5t − 4 −(5t − 2) Y (m−5
4

, 5t, t
5t − 8 −(5t − 6)
...

...
at−1 + 2 ct−1 − 2 bt−1 + 2 3t + 4 −(3t + 6)
1 −2 3 3t −(3t + 2)




where Y (m−5
4

, 5t, t) is the t × m−5
4

matrix given by Lemma 2.2.
For i = 1, 2, . . . , t, we have |xi,1| < |xi,2| < |xi,4| < |xi,5| < |xi,6| < · · · < |xi,m|,

|xi,3| < |xi,5|, and xi,j < 0 precisely when j = 2, j = 5 and when j ≡ 0, 3(mod 4) with
j > 5. Hence, the required set of m-tuples can be constructed directly from the rows of
X by including the m-tuple

(xi,1, xi,2, xi,4, xi,6, xi,8, . . . , xi,m−3, xi,m−1, xi,m−2, xi,m−4, xi,m−6, . . . , xi,5, xi,3, xi,m)

for i = 1, 2, . . . , t.
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3 Cyclic Cycle Systems

Theorem 2.3 has the following three theorems on cyclic m-cycle systems as immediate
corollaries.

Theorem 3.1 Let t ≥ 1 and m ≥ 3. Then

(1) for mt ≡ 0, 3(mod 4) and all v ≥ 2mt + 1, there exists a cyclic m-cycle system of
〈{1, 2, . . . , mt}〉v; and

(2) for mt ≡ 1, 2(mod 4) and all v ≥ 2mt + 3, there exists a cyclic m-cycle system of
〈{1, 2, . . . , mt − 1, mt + 1}〉v.

Proof. When mt ≡ 0, 3(mod4), the required cyclic m-cycle system is generated from a
Skolem-type m-cycle difference set of order t. When mt ≡ 1, 2(mod 4), the required cyclic
m-cycle system is generated from a hooked Skolem-type m-cycle difference set of order t.

Theorem 3.2 For all integers m ≥ 3 and t ≥ 1, there exists a cyclic m-cycle system of
K2mt+1.

Proof. If mt ≡ 0, 3(mod4), then the result follows immediately from Theorem 3.1 since
〈{1, 2, . . . , mt}〉v ∼= Kv when v = 2mt + 1. If mt ≡ 1, 2(mod 4) then since |mt + 1|2mt+1 =
mt, the difference m-tuples obtained from a hooked Skolem-type m-cycle difference set of
order t form a modulo v difference set that uses edges of lengths 1, 2, . . . , mt.

Theorem 3.3 For all integers m ≥ 3 and t ≥ 1, there exists a cyclic m-cycle system of
K2mt+2 − F if and only if mt ≡ 0, 3(mod4).

Proof. The required cyclic m-cycle systems exist by Theorem 3.1, since 〈{1, 2, . . . , mt}〉v ∼=
Kv−F when v = 2mt+2. Hence it remains to prove that there is no cyclic m-cycle system
of K2mt+2 − F when mt ≡ 1, 2(mod 4). Suppose C is a cyclic m-cycle system of Kv − F
with mt ≡ 1, 2(mod 4), suppose C ∈ C has an orbit of length r, and let s = v

r
. Let P be

a path in C such that the only two vertices a and b on P for which |a − b|v ≡ 0(mod r)
are the endvertices of P . It follows that P has m

s
edges. Hence s divides m and s divides

2mt + 2, and so s = 1 or s = 2. That is, r = v or r = v
2
.

We will now show that C does not contain an edge of length v
2
. Since there are only

v
2

edges of length v
2
, we cannot have r = v. If r = v

2
then consideration of the path P

consisting of a single edge of length v
2

tells us that m
2

= 1, which is impossible. Hence the
1-factor F consists of the edges of length v

2
.

Now, if r = v, then C contains edges of distinct lengths l1, l2, . . . , lm such that l1 + l2 +
. . . + lm is even, and if r = v

2
then C contains edges of distinct lengths l1, l2, . . . , lm

2
such

that l1 + l2 + . . . + lm
2
≡ v

2
(mod 2). However, the sum of all the orbit lengths is vt and so

the number of orbits of length = v
2

is even. It follows that there are an even number of
odd edge lengths, which is a contradiction when mt ≡ 1, 2(mod 4).
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