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We present and prove in detail a PoincaBirkhoff—-Witt commutator lemma for
the quantum superalgebtdtq[gl(m|n)]. © 2003 American Institute of Physics.
[DOI: 10.1063/1.1511828

[. INTRODUCTION

This paper presents and proves in detail a Poirdgirhoff—Witt (PBW) commutator lemma
for the quantum superalgebl:;bq[gl(m|n)]. The lemma itself is not new; it dates from a 1993
paper of Rui Bin Zhangon the representation theory brq[gl(m|n)]. However, its previous
incarnation contained several typographical and other minor errors in its details; and in any case
an explicit proof was not supplied. Here, we correct those errors, and supply detailed proofs for
our claims.

We mention that we use the phrase “PBW commutator lemma” to indicate a result showing
commutations sufficient to render any expression within an algebra into a normal form in a PBW
basis; for more details for our specific caSQ[gl(m|n)], we again refer the reader to the original
work by Zhang.

Il. THE STRUCTURE OF U,[gl(m]|n)]

Following Zhang(Ref. 3, pp. 1237-1238we provide a full description ofJ[gl(m[n)] in
terms of simple generators and relations. We do so after first introducing the generators and
various divers notations.

First, we define &, grading[ -] on the set of gln|n) indices{1,... m+n}:

N 0, asm, even indices,
[al= 1, a>m, odd indices,

where we use the symbol2” to mean “is defined as being.” Throughout, we shall use dummy
indicesa,b, etc., where meaningful.
A set of generators for the associative superalgdaw[agl(mm)] is then

{K; ;Ef|1l<a,b<m-+n,a+b},

where theK§ are called “Cartan generatorgand of course we intend* 1" where we write
“="), andEf is called a “raising generator” ia<<b and a “lowering generator” ifa>b. We
indeed intend thak, and K, ' are inverses, that is, that we have relatidhgk; '=K; 'K,
=Id, where Id is thqu[gI(mln)] identity element.

Elements oqu[gI(m|n)] are then in general weighted sums of noncommuting products of
these generators, where each weight is in general a rational expression of integer-coefficient
Laurent polynomials in the polynomial varialiie Under the phrase “products of generators,” we
include powers of th&, (see below.
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For various invertibleX, we will repeatedly use the notatiog2 X~ 1; in particular, we set
g2q L. Next, for any indexa we shall write

_yl[a]
d.=q),

where we have invoked the shorthand-)” for “( —1).” For any powerN, replacinggq with gM
immediately shows thatgg)N=(q")., so we may writqu' with impunity; in particular, we will

write Eazq;l. Further, we will use the following notation:
Aéq—ﬁ Aaé%—@:(—)[a](q—a):(—)[a]A,
AS(A) 7 AE(Ay) t=(—)A,

a

Now, in terms ofg, an equivalent notation fa, is qia. (Here, the exponentiation may be
understood in terms of a power series expansion obifgl(m|n)] Cartan generatois5 . Strictly
speaking, wecould define theseE: as theUy[gl(m|n)] Cartan generators, allowing them to
appear in infinite sums as exponentgofbut theK, notation is more convenienfThus, powers
K’g‘ are meaningful, although we will only deal witN e 37 (that is, integer and half-integer
powers. So, we may writeK ;£ K;l; indeed the mapping—q sendsKQI to R’;‘ and as ex-
pected, for arbitrary powers!,N:

KMKY=KkM*N " where K2=1d.

Apart fromN e N, powers(i.e., product of the non-Cartan generatorg3)N for a#b, are not
meaningful.
The generators inherit &, grading from the indices

[Kal=0 and[E§]=[a]+[b] (mod2,

so we may also use the terms “even” and “odd” for generators. Element,p§l(m|n)] are said
to behomogeneous they are linear combinations of generators of the same grading or products
of other homogeneous elements; the prodi¥t of homogeneouX,Y has gradind XY]2[X]
+[Y](mod 2).

Now, the full set of generators includes some redundancy; in that its elements may be ex-
pressed in terms of a subset of them, that is the folloviifgl(m|n)] simple generators

{K;;E2*1 E2, |1<a,a+1<m+n};

note that there are only twodd simple generatorsEl ™ * (lowering andE™, ; (raising. In the
gl(m|n) case, the remainingonsimple(non-Cartah generators satisfy the same commutation
relations as the simple generators. However,Ug[gI(m|n)], the nonsimple generators are in-
stead recursively defined in terms of weighted sums of products of simple gen¢Re:brg, p.
1971,(3)] and[Ref. 3, p. 1238(2)]. Writing S;=sign(a—b), the elements of the set of nonsimple
generatordEj| |a—b|>1} may be defined by

ERSE2E - qESED, )

where we intend to be anarbitrary index strictly betweem andb; we donotintend a sum here.
Last, thegraded commutatof -, - ] is defined for homogeneou§ Y by

[X,Y]2XY—(—)XMy X, 2)

and extended by linearity. Alsq[gl(m|n)] is anassociativesuperalgebra, we have the following
useful identities involving homogeneous elements:
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(&) [XY,Z]=X[Y,Z]+(—)MArx, zyy,

. )
(b)) [X,YZ]=[X,Y]Z+(—)PINY[X,Z].
A. Uglgl(m]|n)] relations
In terms of the set of simple generators, that is
(K ;E3"! E2, |1<a,a+t1<m+n},

our algebraUq[gI(m|n)] satisfies the following relations.
(1) The Cartan generators commute, that isNbN e {1},

KMKN=KNKY. (4)

(2) The Cartan generators commute with the simple raising and lowering generators in the fol-
lowing manner;

KaED.,=o® B0, K, . (5)
(3) The non-Cartan simple generators satisfy
(B34 1B 1= 8Aa(KaKa 1~ KoKy o). )
and, for|a—b|>1, we have the commutations
EgHEBH:EgHEgH and Eg+1EB+1:E 1Eae1- @)

(4) The squares of the odd simple generators are zero
(Em+0)*=(En"H?=0. €S

(5) If neitherm norn is 1, we have th&J[gl(m[n)] Serre relationgelse if eitherm or n is 1,
omit then). Most succinctly expressed in terms of the nonsimple generators,#on, we
have

(a) Ea+ lEa+2 ana+2Ea+1
(b) Ea+1Ea+2 Qa a+2Ea+1’
(C) Ea+ 1Ea+l ana+ 1Ea+l

a—1

(d) Ea+1 atl™ Qa +1Ea+1! (9)
and also

[Em Em 51=[Em,1.Em:31=0.

The interested reader may ugb to expand these into expressions involving only the simple
generators; however the results are cumbersome and unedifying.

B. Useful results from the Uq[gl(m|n)] relations
(1) From (4), it immediately follows that all powers of the Cartan generators commute; that
is, for any powersv,N € 37:
KMKY=KNKM. (10)

(2) Lemma 2 of Ref. 1 shows th&b) may be much strengthened to cover all non-Cartan
generators and all powers of Cartan generatorS'

that is, whereb,c are any meanlngful |nd|ces{|.e., even including the cade=c), and
N e 37 is any power.
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The proof of our PBW commutator lemma uses these results, and also calls on Lemma 1 of
Ref. 3, which we now cite, with some slight notational changes and simplifications:

Lemma 1: Where &b, we have the following two results
First, if a,b#c,c+1, then

(@ [Ep.Eciq1]=0,

b Ec+1 (12

(b) [Ej,EST]=0.

Second, if &c or b#c+1, then

— c+1 —
(@ [Ep.ES" =60 "KKoi EZ—85(—)Fe TER KKy g,
(13
_ . _
(b) [ER.ES;1]= 03K cKor1EQyy— 0041 (—)Fer TESK K .y 1.
C. The algebra antiautomorphism

Again following Zhang® we introduce arungraded Y[ gl(m|n)] algebra antiautomorphism
o, defined forsimplegeneratorE? by

w(ED2EL, w(K)2K,, (927, (14)

where byw(q)=q, we intend the more intelligible(q Id)=qId. Declaringw to be an ungraded
antiautomorphism means that we intend

o(XY)=wo(Y)o(X) and o(X+Y)=w(X)+w(Y); (15

observe thatw does indeed preserve grading, that is for homogenéqusve have[ w(X)]
=[X]. Then, for homogeneous,Y, we have, using2),

o([X,YD)=[o(Y),w(X)]. (16)

The expressiorao(Ef)‘)=ES1 in fact holds forall EZ; the generalization to nonsimple genera-
tors follows from the application ob to their definition in(1). Moreover, we have immediately
from (14) the following useful results:

o(KN)=KY, o@)=T", o@)=Tq), od)=-A,.

Zhang goes on to define a set of “generalized Lusztig automorphisms,” but we do not require
these. In fact, it appears to be impossible to define them consistently for superalgshrEsmed
in Ref. 3, hence invalidating their use in the proof of the PBW commutator lemma.

lll. THE PBW COMMUTATOR LEMMA

Using the above machinery, we are now ready to state and provel fhgi(m|n)] PBW
commutator lemma. To whit, we will prove the following, which is slightly different from the
original (Lemma 2 of Ref. B

Lemma 2: We have the following commutations

First, (6) generalizes to the case of nonsimple generators, that is

[E2,EP]=AL(KK,—K.Kp) all a,b. (17)

Second, where there are three distinct indices, we have
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(@ KpKE2, c<b<a,

(b) EZK.K., c<a<b,

[ES.Epl= — (18)
¢ (0 EfK,K., b<a<c,
(d) KK, a<b<c,
[ES,Ef]=[E2,EN]=0, a<c<b or b<c<a, (19
[Ec Ec]_ (a) (_)[Eg]chgE;1 a<b<c,
T () (—)Edg ESES, c<a<b,
(20)

b
a b_[ (C) (_)[Ec]chEEg, a<b<c,
c—c a
(d) (_)[EC]qCEEEg’ c<a<b.
Third, we describe the situation where there are no common indices, where we Wdveuad
c<d. Fori,jeN, let i,j) denote the sefi,i+1,... j}. Then, if a,b) and Sc,d) are either

disjoint or one is totally contained within the other, that is ika<d<b. a<b<c<d. c<a
<b<d or c<d<a<hb, we have a total of 16 cases

[Ef ES1=[E],EJ1=[E3 E§1=[ES,EJ]=0. (21)

More interestingly, if there is some other overlap between the qaetdbpand Sc,d), that is if
a<c<b<d or c<a<d<b, then we have the eight cases

\ e | (@ FALEGER, a<c<b<d,
Ep,Eq]=
o Fdl (b) —A4EJE;, c<a<d<b,
(22
[EP EY]— (c) +ApESES, a<c<b<d,
o (d) —A4EJEP, c<a<d<b,
[Ea Ed]_ (a) _AbEchEgEg, a<c<b<d,
T () +AGEENK Ky, c<a<d<b,
(23

o (0 —AEBESKK,, a<c<b<d,
2T (d) +ALKKLESES, c<a<d<b.

In the above, we disagree with the results published in Ref. 3 in several places 1Ejrst
shows thai{183 and(18d) are actually equivalent to the published results

(@ guEKK,, c<b<a,
[EC.Epl= — e, =
(d) quEfK,K., a<b<c.

However, for all the commutators involving no common indices, we differ in substance. The
published results fo(22) are

[Ep Eql=+ALESEL, a<c<b<d, c<a<d<b,

[ER EY=—A,EPEY, a<c<b<d, c<a<d<b,
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and for(23) are

(@ +ALEEKK,, a<c<b<d,
[E}.El]= i
(b) +A,EE[K. Ky, c<a<d<b,

(0 —ApK,KpESES, a<c<b<d,

Eb,Ec: -
53,5l {(d) — A K K4EBES, c<a<d<b.

We mention that it was the discovery of errorsdamputationswhile working on material de-
scribed in Ref. 1 that led us to check and correct these PBW results, and consequently rediscover
and debug the proof.

Proof of Lemma 2\We prove the components of the lemma in a different order to that in
which we state them. This is to ensure consistency as later parts of the proof recycle results
previously shown.

(21) These are the 16 commutators involviag b andc<d, with no overlap betwes(a,b)
andS(c,d).

First, in the casea<b<c<d anda<c<d<b, in evaluating[ E} ,EJ], we may usg1l) to
recursively expand the raising generaiy into a sum of products of simple raising generators,
and then apply3b) until we have a weighted sum of terms all involving commutators of the form
[ES,Eg. 1], wherea,b#e,e+1, all of which are necessarily 0 bi123, thus[Ef ,Eg]=0 for
these two cases.

Second, swapping+c andb«d in these two cases, and rearranging then yigtf,Eg]
=0 for the cases<d<a<b andc<a<b<d.

Third, the four casepE2,EJ]=0 follow by a similar argument, calling ofi3a rather than
(1239.

Last, the remaining eight casgs? ,E5]=0 and[E2,EZ]=0 follow by the application of, to
the first eight cases, and reversing the commutators.

(19) Initially, we show (193, that is for the casa<c<b we show[Ej,Ef]=0. If in fact
a=c—1, then the result is already known frgit3g), so we assume otherwise, that is we consider
the casea<c—1<c<bh,

(1)
[Ea.Epl= [nglEgil Epl— qcfl[Egilngl!Eg]

(3a) _
= ES_[ES T ES]+(—)E MEIES | ESIES?

c—1»

_ C C _
—Qe_1(ESES 1 Ef]+ (—)Ee-dllBI[ES™Y EFIES )

. ESTYIES -1 -1 =
= () N&JI[ES | EFIES "~ 0c-1ES '[ES 1,Ef] = 0.

Swappinga«b and reversing the commutator then yields: ,E;]=0 for the caseb<c<a.
Taking w of these two cases yieIc[Eﬁ,EE]zO for the casea<c<b andb<c<a.

(17) We show the result foa<b using strong mathematical induction, that is, we assume it
true for alla’,b’ such thaja’ —b’|<|a—b|, and use this to show that it is then necessarily true
for oura,b. To this end, we already know from) that it is true forla—b|=1. (If |a—b|<1, the
result is already true, indeed trivially soaf=b.) To whit, wherea<b, andb—a>1, that isa
<b-1<b, we have
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E)
[ES.Eal=[ES Ep-1Eq "~ 0b-1Eq 'Ep-1]

(3b) .
— [ER,ED_,JED 14 (—)ERIES gD [E2 ED Y]

_ a a _
—qp_1[ER,ERHED  — (—)ElBo-ilq, ,ERERED 4], (24)

where the factorfEf]=[a]+ [b] within the parity factors are redundant. (24), we thus require
the evaluation of the commutator&2 ,EP_,] and[EZ,E2~1]. To this end, we have first

) (13a) o
[Eavafl] = beleEg—w (25

and second

(1)
[Ep.EX M=[E} ;Ep "—Op_aEp 'Ef 1 .ES Y]

(Sa) b— b—
— B2, [ED1 ED 14+ (—)E NEI[ER , EDVED?

_ _ _ _ b-1 _ _
—Qp_1ED MER B2 Y-y o(—)1Ea J[ERTYERMER.,

(19
= [E5-1.Eq 'IEY '~ 1By '[Ef- 1 Eq ).

Using the strong inductive assumption, we then have

(Kaibfl_Kabel)Ekkfl )

[Ea,Ebl]:K< B g Rl !
2 A\ —TOp-1Ep H(KaKpo1—KaKp_1)

(1_1)— bl( ab—lKaiﬁ—l—%—lEiKb—l )
—Op-1KaKp- 1+ 0p- 1K K1
= — A,Ep KK 1(Ab-1—Tp-1)
= —A()EA(—)PHEY KKy 4
= — (=) TER KKy g (26)
Now substitute(25) and (26) into (24),
[E3LED) =Ky 1KoER 4B —(—)(Eil(— )& IED BB K, 4K,
()& gy 1ER Ky 1 KGED 3= ()& Tay1ER Ky 1KuES 4
= (Ep 15— ()15 BT IER Ky 1Ky~ (—)II(ED JER

b—1 _ —_—
—(—)E TEPTTED DKpo1Ka

() _ . - _
=[E2_ 1, ES MKy 1Kp— (=) ED_ 1 ER 1Ky 1K,

— _ — — a— _ — —
=Aa(KaKp-1~KaKp- 1)Kp-1Kp = (=) Ap (KK -1~ KpKp-1)Kp-1Kq
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:Ka(KaEb_EaKg—lib_ KbEa"'Eng—lKa)
:Ka(KaEb_EaKb)-
Thus, we have showfl7) for generala<<b. The case>b then follows by swapping«< b in the

above, and rearranging.
(18) We first show(18a), that is for the case<b<a,

(1)
[E2.Ef]=[ESED,Ef]—u[ ELE],Ef]

52 ar=b =c [EYrea =cqeb brea =c [ERIEL] b pcipa
=Eb[EC1 b]+(_) c[Eb!Eb]EC_quc[Evab]_(_) b be[EC'Eb]Eb

(19 b b

= Eg[Ec -Eg]_Qb[Ec ’Eg]Eg

(17)__ a . . a(ll)_ — _
= Ap(Ep(KpK = KpKe) = dp(KpK = KpKe) Ep) = Ap(dpKpKe—apKpKe = dpKpKe
+ KK o) Ep

=KpKE2.

A parallel proof yields(18¢) for the caseh<a<c,
(1)
[E¢.Epl=[Ec EqEp]—dalEc,EREZ]

(3b) a apr —a
= [E2 ESIER+ () EJESES  Ef]— au[ES ERIES— (—)[EclElq,ERES  ES]
(19

= [Eg,E5]Ep—daEp[Ec ,Eq]

(17)__ - .
= A((KgKe— KaKc)Eg_Qa g(KaKc_ KaKe))

(11)__ - _ _ _
= AaEg(anaKc_ anaKc_ QaKaKc"_ QaKaKc) = EgKaKc :
Taking w of (183 yields

(15,16 o
[ED.ES] = EPK,K., c<bh<a,

and swapping« b then yields(18b),
[E3 ES]=E3K,K,, c<a<b.
Similarly, takingw of (18¢) yields

(15,16 __
[EDES] = K.K.ER, b<a<c,
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and swapping— b then yields(18d),
[E3 ES]=K,K.E2 a<b<c.

(20) In a sense, these results are really glorified Serre relations. We first (2@aethat is for
the casea<b<c. Initially assume thab#c—1 that isa<b<c—1<c. Then we have

(1) (21) _
ESES=ES(ES 4ES 1o 1B IES 1) = ESES (B9 1 ()15 g ,EE1ESES ;. 27)

Thus, we must investigaeSE¢_; . To this end, observe that our assumption thatc—1 means
that we have already assumed taatc— 2, that is, that we safely hawe<c—2<c—1<c, hence

(1) (21
ESES 1= (ES B ?—dc B ES p)E¢ ;= B¢ ,ES ES ?—qc 2ES B ,EC ;.
(28
So now, we must investigateé;_,EZ_,, and this falls into two cases. In the general case, if

#m+ 1, the Serre relation ofoc) gives use_,E:_;=q. 1ES_,Ec_,. On the other hand, i€
=m+1, then we have

(1)
Em+lEm+1 (Em+lE — O Em+l)Em+l Em+lE Eerl,

Em+ 1Em+l Em+ 1( Em+ 1E qum_ 1Em+ l)(i) _ qum-%— 1Em_lEm+1 ,

henceEM*1EM 1= —q EM*'EM*!  Taken together, we have fany ¢

Ec 2Ec1 ( ) ClqcclECZ (29)

Installing (29) into (28), we have
Cc — —
EgEg—lz(_)[chlqu(EgﬂEg—zEg Z_Qc—zEg ZEg—lEg—z)

(21) c
= () EealqeES (B LB ?—qe_oES °ES ,)

(1)
:(_)[Eg—llchg_lEg_ (30
Installing (30) into (27), we obtain the require®0g for the special casa<b<c—1<c,

EC*l

C _ —
ESES=(—)Fe-1lq(ES ESES ()% g ,Ef'ES 4 EY)

(21)
= (—)[E (B Tqy(BS L ES g ,ESMES.,)ES

(1) e
=(- )[ b]ch(k:)E(a:'

If in fact b=c—1, then if alsoa#c— 2, then(30) covers our result, and &i=c—2, then(29)
covers it. Together, we hav@03 for all a<b<c. A parallel proof cover$20b), that is, the case
c<a<hb; but we omit this. Before proceeding, we condense our notation. We have
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c
cepe_ (—)Elq ESES, a<b<c,
CEC=

(—)[Elg ESES, c<a<b.

Combining these two results, we may write, b,
ESES=(—) ExabolqESES if z(a,b,c)#c, (31)

where z(a,b,c) is a little function which picks out the median element of the set of natural
numbers{a,b,c}. Applying o to (31) and cross multiplying yields

b(15) z(a,b,c) b .
E2ED = (—)E" g EPE2 if z(a,b,c)#c,

which is immediately seen to cové20¢ and(200),
b
oo [ (PR, a<bec,
c—c _\EY bea <a<b
(—) chEcEC! c<a :

(22) Beginning with the casa<c<b<d, we have

(2) an G
[E5 Eql=EpEG— ()=l FdEGE]

(1) o c -
= E3(ESES—GuERES) — (—)IBel(ESES—quERES) ER
C - C
= (ERESES— (—) B EFERER) — Oy ERESEL — (— ) B ESESED).

Now, fora<c<b, by (200, we haveEﬁEg=(—)[Eg]quf,E§. Installing this, we quickly obtain

(22a,
C — R
[E3.ES]=(—)BE}(apERES— EGER) — On( EREG — GpEQER) Ef

&) . @ N
=(- )[Eb]QbEgEg_ abEGER = EGER(dp—0p) =ApESES .

Swappinga«c andb«d in (229 then yields
[Eg.ER]=AJELES, c<a<d<b. (32

Reversing both the commutator and the RHS product yields

(21
— (—)[EJEN[ER ES] = (—)EDIEGIA JE3ES,

but for c<a<d<hb, in fact[ES|[Ep]=[EF][E5]1=[EZ], yielding (22b),
[ES,Eq]l= —A4EiE;, c<a<d<b.

Next, applyingw to (2239 yields

(15,16
[ESER] = —ALEPEY, a<c<b<d.

Reversing both the commutator and the RHS product yiglds),
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(21)
[ED,EY] = ALEJED, a<c<b<d.

Last, applyingw to (32) yields (22d),

(15,16
[ER.EY] = —AESED, c<a<d<b.

(23) We first show(23a), that is for the casa<c<b<d. We have
d W d=b bd
[ES.Ecl=[Ef EpEc]—as[ER, ECEp]

(3b) dyf =& ayr =b:
= [ES ERIES+(—)ISISIER Y EQ] - an([EF EQJED+ (—) Sl S E EF EF))

(19
= EJJEZ,E"]—qu[ER,EDIED

(1&d) _ _
= EchKbEg_ QDKchEgEg

(11,21 _
= —A KK EZEQ.

Applying o to (233 yields

(15,16 o
[ES.E2] = ALESESKK,, a<c<b<d, (33

and swappin@«— c andb+«d then yields(23by),
[E3 EY=A EJE3K Ky, c<a<d<b.

Next, reversing the commutator {83) yields

(16) by c —
[ED,ES] = —(—)[EallEIA ERECK K,

br ECq_ b \EPIEST A — N\ IED
However, for the case<c<b<d, we have[E_;][Ej]=[E;], thus, (—)'al=dAy=(—)""c
(—)PlA=(—)l9A=A,, yielding (239),

[ED ES]=—A.ERESKK,, a<c<b<d.

Last, applyingw to (230 yields

(15,16
[EYE3] = AKpKEZES, a<c<b<d,

and then swapping+« c andb«d yields (23d),

[ER ES]=AKK,ESED, c<a<d<b.



326 J. Math. Phys., Vol. 44, No. 1, January 2003 David De Wit

IV. DISCUSSION

Of some interest is that we may use our PBW commutator lemma to show8jhiat fact
generalizes to the nonsimple odd generators, that is

(ER)?=0,

for any indicesa, b such thafa]#[b]. The proof of this statement is left as &msy exercise
involving (20).

Now that it is established, we may concentrate the notation of our lemma—this is useful for
encoding purposes.

The entirety 0f(19) and (20) may be summarized by

E2ES=«EPE? and ESES=«ECES, any a#b+#c,
where

1 if z(a,b,c)=c,

A
K= b, a .
(— )[Eé(a C)]qu otherwise

and wherez(a,b,c) is our little function which picks out the median element of the set of three
distinct natural number§a,b,c}. (The 1 factor follows agE2][ER]=0 for c strictly betweera
andb.)
The entirety of(21) to (23) may be summarized by

[ +A,E3ES, a<c<b<d,

—A4ESE, c<a<d<b,

+A,EfE§, b<d<a<c,

—AEFES, d<b<c<a,
[E2,ES]={ —AKpKEJES, a<d<b<c,
+AESEAK K., d<a<c<b,
—AE3ESK K,, b<c<a<d,
+ApKGKpESES, c<b<d<a,
\0, a#b#c#d otherwise.

Finally, we mention that the consisten@§ not the veracity of our lemma is also supported
by extensive computer tests usimgTHEMATICA . By this, we mean that we confirm that

NormalOrder (XY)=NormalOrder (ExpandNS(XY)), (34

for a range oﬂJq[gI(mln)] nonsimple generatoes, Y, whereNormalOrder (X) is a function
which renders< in a normal form, andExpandNS(X) is a function which recursively expands all
nonsimple generators X, using(1).

To be more specific, let thheight of generatorX=E} be |a—b|; this is a measure of its
distance from simplicity. FotJ,[gl(m[n)], it varies from O(for Cartan generatorsto 1 (for
simple non-Cartan generatgraind then for the nonsimple generators from a minimum of 2 to a
maximum ofm+n—1 for the maximally nonsimpl&]"" andE} ..

Then, we confirm that our code satisfi@s), for all Uq[gl(m|n)] generatorK,Y of height at
mostm+n—1 for all m,n such thatm+n=<5; at most 3 form+n=<10; and at most 2 fom
+n=<18. The computational expense in performing these checks rises at least exponentially with
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height, so we have to abandon our calculations at this point. However, our results do amount to a
complete consistency check of our lemma, forLaJl[gI(mln)] such thatm+n=<5.
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