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A Poincaré –Birkhoff–Witt commutator lemma
for Uq†gl „m zn …‡

David De Wita)

The University of Queensland, Brisbane, Australia

~Received 6 April 2002; accepted 29 July 2002!

We present and prove in detail a Poincare´–Birkhoff–Witt commutator lemma for
the quantum superalgebraUq@gl(mun)#. © 2003 American Institute of Physics.
@DOI: 10.1063/1.1511828#

I. INTRODUCTION

This paper presents and proves in detail a Poincare´–Birkhoff–Witt ~PBW! commutator lemma
for the quantum superalgebraUq@gl(mun)#. The lemma itself is not new; it dates from a 1993
paper of Rui Bin Zhang3 on the representation theory ofUq@gl(mun)#. However, its previous
incarnation contained several typographical and other minor errors in its details; and in any case
an explicit proof was not supplied. Here, we correct those errors, and supply detailed proofs for
our claims.

We mention that we use the phrase ‘‘PBW commutator lemma’’ to indicate a result showing
commutations sufficient to render any expression within an algebra into a normal form in a PBW
basis; for more details for our specific caseUq@gl(mun)#, we again refer the reader to the original
work by Zhang.

II. THE STRUCTURE OF Uq†gl „m zn …‡

Following Zhang~Ref. 3, pp. 1237–1238!, we provide a full description ofUq@gl(mun)# in
terms of simple generators and relations. We do so after first introducing the generators and
various divers notations.

First, we define aZ2 grading@•# on the set of gl(mun) indices$1, . . . ,m1n%:

@a#,H 0, a<m, even indices,

1, a.m, odd indices,

where we use the symbol ‘‘,’’ to mean ‘‘is defined as being.’’ Throughout, we shall use dummy
indicesa,b, etc., where meaningful.

A set of generators for the associative superalgebraUq@gl(mun)# is then

$Ka
6 ;Eb

au1<a,b<m1n,aÞb%,

where theKa
6 are called ‘‘Cartan generators’’~and of course we intend ‘‘61’’ where we write

‘‘ 6’’ !, andEb
a is called a ‘‘raising generator’’ ifa,b and a ‘‘lowering generator’’ ifa.b. We

indeed intend thatKa and Ka
21 are inverses, that is, that we have relationsKaKa

215Ka
21Ka

5Id, where Id is theUq@gl(mun)# identity element.
Elements ofUq@gl(mun)# are then in general weighted sums of noncommuting products of

these generators, where each weight is in general a rational expression of integer-coefficient
Laurent polynomials in the polynomial variableq. Under the phrase ‘‘products of generators,’’ we
include powers of theKa ~see below!.

a!Electronic mail: ddw@maths.uq.edu.au
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For various invertibleX, we will repeatedly use the notationX̄,X21; in particular, we set
q̄,q21. Next, for any indexa we shall write

qa,q(2)[a]
,

where we have invoked the shorthand ‘‘~2!’’ for ‘‘( 21).’’ For any powerN, replacingq with qN

immediately shows that (qa)N5(qN)a , so we may writeqa
N with impunity; in particular, we will

write q̄a[qa
21 . Further, we will use the following notation:

D,q2q̄, Da,qa2q̄a5~2 ! [a]~q2q̄!5~2 ! [a]D,

D̄,~D!21, D̄a,~Da!215~2 ! [a]D̄.

Now, in terms ofq, an equivalent notation forKa is q
a

Ea
a

. ~Here, the exponentiation may be
understood in terms of a power series expansion of theU@gl(mun)# Cartan generatorsEa

a . Strictly
speaking, wecould define theseEa

a as theUq@gl(mun)# Cartan generators, allowing them to
appear in infinite sums as exponents ofq, but theKa notation is more convenient.! Thus, powers
Ka

N are meaningful, although we will only deal withNP 1
2Z ~that is, integer and half-integer

powers!. So, we may writeK̄a,Ka
21 ; indeed the mappingq°q̄ sendsKa

N to K̄a
N , and as ex-

pected, for arbitrary powersM ,N:

Ka
MKa

N5Ka
M1N , where Ka

0[Id.

Apart from NPN, powers~i.e., products! of the non-Cartan generators (Eb
a)N for aÞb, are not

meaningful.
The generators inherit aZ2 grading from the indices

@Ka#,0 and @Eb
a#,@a#1@b# ~mod 2!,

so we may also use the terms ‘‘even’’ and ‘‘odd’’ for generators. Elements ofUq@gl(mun)# are said
to behomogeneousif they are linear combinations of generators of the same grading or products
of other homogeneous elements; the productXY of homogeneousX,Y has grading@XY#,@X#
1@Y#(mod 2).

Now, the full set of generators includes some redundancy; in that its elements may be ex-
pressed in terms of a subset of them, that is the followingUq@gl(mun)# simple generators:

$Ka
6 ;Ea

a11 ,Ea11
a u1<a,a11<m1n%;

note that there are only twoodd simple generators:Em
m11 ~lowering! andEm11

m ~raising!. In the
gl(mun) case, the remainingnonsimple~non-Cartan! generators satisfy the same commutation
relations as the simple generators. However, forUq@gl(mun)#, the nonsimple generators are in-
stead recursively defined in terms of weighted sums of products of simple generators@Ref. 2, p.
1971,~3!# and@Ref. 3, p. 1238,~2!#. Writing Sb

a,sign(a2b), the elements of the set of nonsimple
generators$Eb

au ua2bu.1% may be defined by

Eb
a,Ec

aEb
c2q

c

Sb
a

Eb
cEc

a , ~1!

where we intendc to be anarbitrary index strictly betweena andb; we donot intend a sum here.
Last, thegraded commutator@•,•# is defined for homogeneousX,Y by

@X,Y#,XY2~2 ! [X][ Y]YX, ~2!

and extended by linearity. AsUq@gl(mun)# is anassociativesuperalgebra, we have the following
useful identities involving homogeneous elements:
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~a! @XY,Z#5X@Y,Z#1~2 ! [Y][ Z]@X,Z#Y,
~3!

~b! @X,YZ#5@X,Y#Z1~2 ! [X][ Y]Y@X,Z#.

A. Uq†gl „m zn …‡ relations

In terms of the set of simple generators, that is

$Ka
6 ;Ea

a11 ,Ea11
a u1<a,a11<m1n%,

our algebraUq@gl(mun)# satisfies the following relations.

~1! The Cartan generators commute, that is forM ,NP$61%,

Ka
MKb

N5Kb
NKa

M . ~4!

~2! The Cartan generators commute with the simple raising and lowering generators in the fol-
lowing manner:

KaEb61
b 5q

a

(db
a
2db61

a )
Eb61

b Ka . ~5!

~3! The non-Cartan simple generators satisfy

@Ea11
a ,Eb

b11#5db
aD̄a~KaK̄a112K̄aKa11!. ~6!

and, forua2bu.1, we have the commutations

Ea
a11Eb

b115Eb
b11Ea

a11 and Ea11
a Eb11

b 5Eb11
b Ea11

a . ~7!

~4! The squares of the odd simple generators are zero

~Em11
m !25~Em

m11!250. ~8!

~5! If neither m nor n is 1, we have theUq@gl(mun)# Serre relations~else if eitherm or n is 1,
omit them!. Most succinctly expressed in terms of the nonsimple generators, foraÞm, we
have

~a! Ea
a11Ea

a125qaEa
a12Ea

a11,

~b! Ea11
a Ea12

a 5qaEa12
a Ea11

a ,

~c! Ea21
a11Ea

a115qaEa
a11Ea21

a11,

~d! Ea11
a21Ea11

a 5qaEa11
a Ea11

a21 , ~9!

and also

@Em
m11 ,Em21

m12#5@Em11
m ,Em12

m21#50.

The interested reader may use~1! to expand these into expressions involving only the simple
generators; however the results are cumbersome and unedifying.

B. Useful results from the Uq†gl „m zn …‡ relations

~1! From ~4!, it immediately follows that all powers of the Cartan generators commute; that
is, for any powersM ,NP 1

2Z:

Ka
MKb

N5Kb
NKa

M . ~10!

~2! Lemma 2 of Ref. 1 shows that~5! may be much strengthened to cover all non-Cartan
generators and all powers of Cartan generators:

Ka
NEc

b5q
a

N(db
a
2dc

a)
Ec

bKa
N , ~11!

that is, whereb,c are any meaningful indices~i.e., even including the caseb5c), and
NP 1

2Z is any power.
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The proof of our PBW commutator lemma uses these results, and also calls on Lemma 1 of
Ref. 3, which we now cite, with some slight notational changes and simplifications:

Lemma 1: Where a,b, we have the following two results.
First, if a,bÞc,c11, then

~a! @Eb
a ,Ec11

c #50,
~12!

~b! @Ea
b ,Ec

c11#50.

Second, if aÞc or bÞc11, then

~a! @Eb
a ,Ec

c11#5db
c11KcK̄c11Ec

a2dc
a~2 ! [Ec

c11]Eb
c11K̄cKc11 ,

~13!

~b! @Ea
b ,Ec11

c #5da
cKcK̄c11Ec11

b 2dc11
b ~2 ! [Ec11

c ]Ea
cK̄cKc11 .

C. The algebra antiautomorphism v

Again following Zhang,3 we introduce anungraded Uq@gl(mun)# algebra antiautomorphism
v, defined forsimplegeneratorsEb

a by

v~Eb
a!,Ea

b , v~Ka!,K̄a , v~q!,q̄, ~14!

where byv(q)5q̄, we intend the more intelligiblev(q Id)5q̄ Id. Declaringv to be an ungraded
antiautomorphism means that we intend

v~XY!5v~Y!v~X! and v~X1Y!5v~X!1v~Y!; ~15!

observe thatv does indeed preserve grading, that is for homogeneousX, we have@v(X)#
5@X#. Then, for homogeneousX,Y, we have, using~2!,

v~@X,Y# !5@v~Y!,v~X!#. ~16!

The expressionv(Eb
a)5Ea

b in fact holds forall Eb
a ; the generalization to nonsimple genera-

tors follows from the application ofv to their definition in~1!. Moreover, we have immediately
from ~14! the following useful results:

v~Ka
N!5K̄a

N , v~qN!5q̄N, v~qa
N!5q̄a

N , v~Da!52Da .

Zhang goes on to define a set of ‘‘generalized Lusztig automorphisms,’’ but we do not require
these. In fact, it appears to be impossible to define them consistently for superalgebras~as claimed
in Ref. 3!, hence invalidating their use in the proof of the PBW commutator lemma.

III. THE PBW COMMUTATOR LEMMA

Using the above machinery, we are now ready to state and prove theUq@gl(mun)# PBW
commutator lemma. To whit, we will prove the following, which is slightly different from the
original ~Lemma 2 of Ref. 3!.

Lemma 2: We have the following commutations.
First, ~6! generalizes to the case of nonsimple generators, that is

@Eb
a ,Ea

b#5D̄a~KaK̄b2K̄aKb! all a,b. ~17!

Second, where there are three distinct indices, we have
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@Ec
a ,Eb

c#55
~a! K̄bKcEb

a , c,b,a,

~b! Eb
aKaK̄c , c,a,b,

~c! Eb
aK̄aKc , b,a,c,

~d! KbK̄cEb
a , a,b,c,

~18!

@Ea
c ,Eb

c#5@Ec
a ,Ec

b#50, a,c,b or b,c,a, ~19!

@Ea
c ,Eb

c#5H ~a! ~2 !@Eb
c
#qcEb

cEa
c , a,b,c,

~b! ~2 !@Ea
c
#qcEb

cEa
c , c,a,b,

~20!

Ec
aEc

b5H ~c! ~2 !@Ec
b
#qcEc

bEc
a , a,b,c,

~d! ~2 !@Ec
a
#qcEc

bEc
a , c,a,b.

Third, we describe the situation where there are no common indices, where we have a,b and
c,d. For i , j PN, let S( i , j ) denote the set$ i ,i 11, . . . ,j %. Then, if S(a,b) and S(c,d) are either
disjoint or one is totally contained within the other, that is if a,c,d,b. a,b,c,d. c,a
,b,d or c,d,a,b, we have a total of 16 cases:

@Eb
a ,Ed

c#5@Eb
a ,Ec

d#5@Ea
b ,Ed

c#5@Ea
b ,Ec

d#50. ~21!

More interestingly, if there is some other overlap between the sets S(a,b) and S(c,d), that is if
a,c,b,d or c,a,d,b, then we have the eight cases

@Eb
a ,Ed

c#5H ~a! 1DbEd
aEb

c , a,c,b,d,

~b! 2DdEd
aEb

c , c,a,d,b,
~22!

@Ea
b ,Ec

d#5H ~c! 1DbEa
dEc

b , a,c,b,d,

~d! 2DdEa
dEc

b , c,a,d,b,

@Eb
a ,Ec

d#5H ~a! 2DbK̄bKcEc
aEb

d , a,c,b,d,

~b! 1DdEb
dEc

aK̄aKd , c,a,d,b,

~23!

@Ea
b ,Ed

c#5H ~c! 2DcEd
bEa

cK̄cKb , a,c,b,d,

~d! 1DaK̄dKaEa
cEd

b , c,a,d,b.

In the above, we disagree with the results published in Ref. 3 in several places. First~11!
shows that~18a! and ~18d! are actually equivalent to the published results

@Ec
a ,Eb

c#5H ~a! qbEb
aKcK̄b , c,b,a,

~d! q̄bEb
aKbK̄c , a,b,c.

However, for all the commutators involving no common indices, we differ in substance. The
published results for~22! are

@Eb
a ,Ed

c#51DbEd
aEb

c , a,c,b,d, c,a,d,b,

@Ea
b ,Ec

d#52DbEc
bEa

d , a,c,b,d, c,a,d,b,
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and for ~23! are

@Eb
a ,Ec

d#5H ~a! 1DbEb
dEc

aK̄bKa , a,c,b,d,

~b! 1DaEc
aEb

dK̄aKd , c,a,d,b,

@Ea
b ,Ed

c#5H ~c! 2DbK̄aKbEa
cEd

b , a,c,b,d,

~d! 2DaKaK̄dEd
bEa

c , c,a,d,b.

We mention that it was the discovery of errors incomputationswhile working on material de-
scribed in Ref. 1 that led us to check and correct these PBW results, and consequently rediscover
and debug the proof.

Proof of Lemma 2:We prove the components of the lemma in a different order to that in
which we state them. This is to ensure consistency as later parts of the proof recycle results
previously shown.

„21… These are the 16 commutators involvinga,b andc,d, with no overlap betwenS(a,b)
andS(c,d).

First, in the casesa,b,c,d anda,c,d,b, in evaluating@Eb
a ,Ed

c#, we may use~1! to
recursively expand the raising generatorEd

c into a sum of products of simple raising generators,
and then apply~3b! until we have a weighted sum of terms all involving commutators of the form
@Eb

a ,Ee11
e #, wherea,bÞe,e11, all of which are necessarily 0 by~12a!, thus @Eb

a ,Ed
c#50 for

these two cases.
Second, swappinga↔c andb↔d in these two cases, and rearranging then yields@Eb

a ,Ed
c#

50 for the casesc,d,a,b andc,a,b,d.
Third, the four cases@Eb

a ,Ec
d#50 follow by a similar argument, calling on~13a! rather than

~12a!.
Last, the remaining eight cases@Ea

b ,Ed
c#50 and@Ea

b ,Ec
d#50 follow by the application ofv to

the first eight cases, and reversing the commutators.
„19… Initially, we show ~19a!, that is for the casea,c,b we show@Ea

c ,Eb
c#50. If in fact

a5c21, then the result is already known from~13a!, so we assume otherwise, that is we consider
the casea,c21,c,b,

@Ea
c ,Eb

c#5
~1!

@Ec21
c Ea

c21 ,Eb
c#2qc21@Ea

c21Ec21
c ,Eb

c#

5
~3a!

Ec21
c @Ea

c21 ,Eb
c#1~2 ! [Ea

c21][ Eb
c]@Ec21

c ,Eb
c#Ea

c21

2qc21~Ea
c21@Ec21

c ,Eb
c#1~2 ! [Ec21

c ][ Eb
c]@Ea

c21 ,Eb
c#Ec21

c !

5
~21!

~2 ! [Ea
c21][ Eb

c]@Ec21
c ,Eb

c#Ea
c212qc21Ea

c21@Ec21
c ,Eb

c# 5
~13a!

0.

Swappinga↔b and reversing the commutator then yields@Ea
c ,Eb

c#50 for the caseb,c,a.
Taking v of these two cases yields@Ec

a ,Ec
b#50 for the casesa,c,b andb,c,a.

„17… We show the result fora,b using strong mathematical induction, that is, we assume it
true for alla8,b8 such thatua82b8u,ua2bu, and use this to show that it is then necessarily true
for our a,b. To this end, we already know from~6! that it is true forua2bu51. ~If ua2bu<1, the
result is already true, indeed trivially so ifa5b.) To whit, wherea,b, andb2a.1, that isa
,b21,b, we have
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@Eb
a ,Ea

b#5
~1!

@Eb
a ,Eb21

b Ea
b212qb21Ea

b21Eb21
b #

5
~3b!

@Eb
a ,Eb21

b #Ea
b211~2 ! [Eb

a][ Eb21
b ]Eb21

b @Eb
a ,Ea

b21#

2qb21@Eb
a ,Ea

b21#Eb21
b 2~2 ! [Eb

a][ Eb21
a ]qb21Ea

b21@Eb
a ,Eb21

b #, ~24!

where the factors@Eb
a#[@a#1@b# within the parity factors are redundant. In~24!, we thus require

the evaluation of the commutators@Eb
a ,Eb21

b # and @Eb
a ,Ea

b21#. To this end, we have first

@Eb
a ,Eb21

b # 5
~13a!

Kb21K̄bEb21
a , ~25!

and second

@Eb
a ,Ea

b21#5
~1!

@Eb21
a Eb

b212q̄b21Eb
b21Eb21

a ,Ea
b21#

5
~3a!

Eb21
a @Eb

b21 ,Ea
b21#1~2 ! [Eb

b21][ Ea
b21]@Eb21

a ,Ea
b21#Eb

b21

2q̄b21Eb
b21@Eb21

a ,Ea
b21#2q̄b21~2 ! [Ea

b21]@Eb
b21 ,Ea

b21#Eb21
a

5
~19!

@Eb21
a ,Ea

b21#Eb
b212q̄b21Eb

b21@Eb21
a ,Ea

b21#.

Using the strong inductive assumption, we then have

@Eb
a ,Ea

b21#5D̄aS ~KaK̄b212K̄aKb21!Eb
b21

2q̄b21Eb
b21~KaK̄b212K̄aKb21!

D
5
~11!

D̄aEb
b21S q̄b21KaK̄b212qb21K̄aKb21

2q̄b21KaK̄b211q̄b21K̄aKb21
D

52D̄aEb
b21K̄aKb21~qb212q̄b21!

52D̄~2 ! [a]D~2 ! [b21]Eb
b21K̄aKb21

52~2 ! [Ea
b21]Eb

b21K̄aKb21 . ~26!

Now substitute~25! and ~26! into ~24!,

@Eb
a ,Ea

b#5Kb21K̄bEb21
a Ea

b212~2 ! [Eb21
b ]~2 ! [Ea

b21]Eb21
b Eb

b21Kb21K̄a

1~2 ! [Ea
b21]qb21Eb

b21Kb21K̄aEb21
b 2~2 ! [Ea

b21]qb21Ea
b21Kb21K̄bEb21

a

5~Eb21
a Ea

b212~2 ! [Ea
b21]Ea

b21Eb21
a !Kb21K̄b2~2 ! [Eb

a]~Eb21
b Eb

b21

2~2 ! [Eb
b21]Eb

b21Eb21
b !Kb21K̄a

5
~2!

@Eb21
a ,Ea

b21#Kb21K̄b2~2 ! [Eb
a]@Eb21

b ,Eb
b21#Kb21K̄a

5D̄a~KaK̄b212K̄aKb21!Kb21K̄b2~2 ! [Eb
a]D̄b~KbK̄b212K̄bKb21!Kb21K̄a
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5D̄a~KaK̄b2K̄aKb21
2 K̄b2KbK̄a1K̄bKb21

2 K̄a!

5D̄a~KaK̄b2K̄aKb!.

Thus, we have shown~17! for generala,b. The casea.b then follows by swappinga↔b in the
above, and rearranging.

~18! We first show~18a!, that is for the casec,b,a,

@Ec
a ,Eb

c#5
~1!

@Eb
aEc

b ,Eb
c#2qb@Ec

bEb
a ,Eb

c#

5
~3a!

Eb
a@Ec

b ,Eb
c#1~2 ! [Ec

b]@Eb
a ,Eb

c#Ec
b2qbEc

b@Eb
a ,Eb

c#2~2 ! [Eb
a][ Eb

c]qb@Ec
b ,Eb

c#Eb
a

5
~19!

Eb
a@Ec

b ,Eb
c#2qb@Ec

b ,Eb
c#Eb

a

5
~17!

D̄b~Eb
a~KbK̄c2K̄bKc!2qb~KbK̄c2K̄bKc!Eb

a! 5
~11!

D̄b~qbKbK̄c2q̄bK̄bKc2qbKbK̄c

1qbK̄bKc!Eb
a

5K̄bKcEb
a .

A parallel proof yields~18c! for the caseb,a,c,

@Ec
a ,Eb

c#5
~1!

@Ec
a ,Ea

cEb
a#2qa@Ec

a ,Eb
aEa

c#

5
~3b!

@Ec
a ,Ea

c#Eb
a1~2 ! [Ec

a]Ea
c@Ec

a ,Eb
a#2qa@Ec

a ,Eb
a#Ea

c2~2 ! [Ec
a][ Eb

a]qaEb
a@Ec

a ,Ea
c#

5
~19!

@Ec
a ,Ea

c#Eb
a2qaEb

a@Ec
a ,Ea

c#

5
~17!

D̄a~~KaK̄c2K̄aKc!Eb
a2qaEb

a~KaK̄c2K̄aKc!!

5
~11!

D̄aEb
a~qaKaK̄c2q̄aK̄aKc2qaKaK̄c1qaK̄aKc!5Eb

aK̄aKc .

Taking v of ~18a! yields

@Ec
b ,Ea

c# 5
~15,16!

Ea
bKbK̄c , c,b,a,

and swappinga↔b then yields~18b!,

@Ec
a ,Eb

c#5Eb
aKaK̄c , c,a,b.

Similarly, takingv of ~18c! yields

@Ec
b ,Ea

c# 5
~15,16!

KaK̄cEa
b , b,a,c,

322 J. Math. Phys., Vol. 44, No. 1, January 2003 David De Wit

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  130.102.82.2 On: Tue, 18 Oct 2016

05:34:01



and swappinga↔b then yields~18d!,

@Ec
a ,Eb

c#5KbK̄cEb
a a,b,c.

~20! In a sense, these results are really glorified Serre relations. We first prove~20a!, that is for
the casea,b,c. Initially assume thatbÞc21 that isa,b,c21,c. Then we have

Ea
cEb

c5
~1!

Ea
c~Ec21

c Eb
c212qc21Eb

c21Ec21
c ! 5

~21!

Ea
cEc21

c Eb
c212~2 ! [Eb

c21]qc21Eb
c21Ea

cEc21
c .

~27!

Thus, we must investigateEa
cEc21

c . To this end, observe that our assumption thatbÞc21 means
that we have already assumed thataÞc22, that is, that we safely havea,c22,c21,c, hence

Ea
cEc21

c 5
~1!

~Ec22
c Ea

c222qc22Ea
c22Ec22

c !Ec21
c 5

~21!

Ec22
c Ec21

c Ea
c222qc22Ea

c22Ec22
c Ec21

c .
~28!

So now, we must investigateEc22
c Ec21

c , and this falls into two cases. In the general case, ifc
Þm11, the Serre relation of~9c! gives usEc22

c Ec21
c 5qc21Ec21

c Ec22
c . On the other hand, ifc

5m11, then we have

Em21
m11Em

m115
~1!

~Em
m11Em21

m 2qmEm21
m Em

m11!Em
m115

~8!

Em
m11Em21

m Em
m11,

Em
m11Em21

m115
~1!

Em
m11~Em

m11Em21
m 2qmEm21

m Em
m11!5

~8!

2qmEm
m11Em21

m Em
m11 ,

henceEm21
m11Em

m1152q̄mEm
m11Em21

m11 . Taken together, we have forany c,

Ec22
c Ec21

c 5~2 ! [Ec21
c ]qcEc21

c Ec22
c . ~29!

Installing ~29! into ~28!, we have

Ea
cEc21

c 5~2 ! [Ec21
c ]qc~Ec21

c Ec22
c Ea

c222qc22Ea
c22Ec21

c Ec22
c !

5
~21!

~2 ! [Ec21
c ]qcEc21

c ~Ec22
c Ea

c222qc22Ea
c22Ec22

c !

5
~1!

~2 ! [Ec21
c ]qcEc21

c Ea
c . ~30!

Installing ~30! into ~27!, we obtain the required~20a! for the special casea,b,c21,c,

Ea
cEb

c5~2 ! [Ec21
c ]qc~Ec21

c Ea
cEb

c212~2 ! [Eb
c21]qc21Eb

c21Ec21
c Ea

c!

5
~21!

~2 ! [Ec21
c ]~2 ! [Eb

c21]qc~Ec21
c Eb

c212qc21Eb
c21Ec21

c !Ea
c

5
~1!

~2 ! [Eb
c]qcEb

cEa
c .

If in fact b5c21, then if alsoaÞc22, then~30! covers our result, and ifa5c22, then~29!
covers it. Together, we have~20a! for all a,b,c. A parallel proof covers~20b!, that is, the case
c,a,b; but we omit this. Before proceeding, we condense our notation. We have
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Ea
cEb

c5H ~2 ! [Eb
c]qcEb

cEa
c , a,b,c,

~2 ! [Ea
c]qcEb

cEa
c , c,a,b.

Combining these two results, we may write, fora,b,

Ea
cEb

c5~2 ! [Ez(a,b,c)
c ]qcEb

cEa
c if z~a,b,c!Þc, ~31!

where z(a,b,c) is a little function which picks out the median element of the set of natural
numbers$a,b,c%. Applying v to ~31! and cross multiplying yields

Ec
aEc

b 5
~15!

~2 ! [Ec
z(a,b,c)]qcEc

bEc
a if z~a,b,c!Þc,

which is immediately seen to cover~20c! and ~20d!,

Ec
aEc

b5H ~2 ! [Ec
b]qcEc

bEc
a , a,b,c,

~2 ! [Ec
a]qcEc

bEc
a , c,a,b.

~22! Beginning with the casea,c,b,d, we have

@Eb
a ,Ed

c#5
~2!

Eb
aEd

c2~2 ! [Eb
a][ Ed

c]Ed
cEb

a

5
~1!

Eb
a~Eb

cEd
b2q̄bEd

bEb
c!2~2 ! [Eb

c]~Eb
cEd

b2q̄bEd
bEb

c!Eb
a

5~Eb
aEb

cEd
b2~2 ! [Eb

c]Eb
cEd

bEb
a!2q̄b~Eb

aEd
bEb

c2~2 ! [Eb
c]Ed

bEb
cEb

a!.

Now, for a,c,b, by ~20c!, we haveEb
aEb

c5(2) [Eb
c]qbEb

cEb
a . Installing this, we quickly obtain

~22a!,

@Eb
a ,Ed

c#5~2 ! [Eb
c]Eb

c~qbEb
aEd

b2Ed
bEb

a!2q̄b~Eb
aEd

b2q̄bEd
bEb

a!Eb
c

5
~1!

~2 ! [Eb
c]qbEb

cEd
a2q̄bEd

aEb
c 5

~21!

Ed
aEb

c~qb2q̄b!5DbEd
aEb

c .

Swappinga↔c andb↔d in ~22a! then yields

@Ed
c ,Eb

a#5DdEb
cEd

a , c,a,d,b. ~32!

Reversing both the commutator and the RHS product yields

2~2 ! [Ed
c][ Eb

a]@Eb
a ,Ed

c# 5
~21!

~2 ! [Eb
c][ Ed

a]DdEd
aEb

c ,

but for c,a,d,b, in fact @Ed
c#@Eb

a#5@Eb
c#@Ed

a#5@Ed
a#, yielding ~22b!,

@Eb
a ,Ed

c#52DdEd
aEb

c , c,a,d,b.

Next, applyingv to ~22a! yields

@Ec
d ,Ea

b# 5
~15,16!

2DbEc
bEa

d , a,c,b,d.

Reversing both the commutator and the RHS product yields~22c!,
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@Ea
b ,Ec

d# 5
~21!

DbEa
dEc

b , a,c,b,d.

Last, applyingv to ~32! yields ~22d!,

@Ea
b ,Ec

d# 5
~15,16!

2DdEa
dEc

b , c,a,d,b.

~23! We first show~23a!, that is for the casea,c,b,d. We have

@Eb
a ,Ec

d#5
~1!

@Eb
a ,Eb

dEc
b#2qb@Eb

a ,Ec
bEb

d#

5
~3b!

@Eb
a ,Eb

d#Ec
b1~2 ! [Eb

d][ Eb
a]Eb

d@Eb
a ,Ec

b#2qb~@Eb
a ,Ec

b#Eb
d1~2 ! [Eb

a][ Ec
b]Ec

b@Eb
a ,Eb

d# !

5
~19!

Eb
d@Eb

a ,Ec
b#2qb@Eb

a ,Ec
b#Eb

d

5
~18d!

Eb
dKcK̄bEc

a2qbKcK̄bEc
aEb

d

5
~11,21!

2DbK̄bKcEc
aEb

d .

Applying v to ~23a! yields

@Ed
c ,Ea

b# 5
~15,16!

DbEd
bEa

cK̄cKb , a,c,b,d, ~33!

and swappinga↔c andb↔d then yields~23b!,

@Eb
a ,Ec

d#5DdEb
dEc

aK̄aKd , c,a,d,b.

Next, reversing the commutator in~33! yields

@Ea
b ,Ed

c# 5
~16!

2~2 ! [Ea
b][ Ed

c]DbEd
bEa

cK̄cKb .

However, for the casea,c,b,d, we have@Ea
b#@Ed

c#5@Ec
b#, thus, (2) [Ea

b][ Ed
c]Db5(2) [Ec

b]

(2) [b]D5(2) [c]D5Dc , yielding ~23c!,

@Ea
b ,Ed

c#52DcEd
bEa

cK̄cKb , a,c,b,d.

Last, applyingv to ~23c! yields

@Ec
d ,Eb

a# 5
~15,16!

DcK̄bKcEc
aEb

d , a,c,b,d,

and then swappinga↔c andb↔d yields ~23d!,

@Ea
b ,Ed

c#5DaK̄dKaEa
cEd

b , c,a,d,b.

h
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IV. DISCUSSION

Of some interest is that we may use our PBW commutator lemma to show that~8! in fact
generalizes to the nonsimple odd generators, that is

~Eb
a!250,

for any indicesa, b such that@a#Þ@b#. The proof of this statement is left as an~easy! exercise
involving ~20!.

Now that it is established, we may concentrate the notation of our lemma—this is useful for
encoding purposes.

The entirety of~19! and ~20! may be summarized by

Ec
aEc

b5kEc
bEc

a and Ea
cEb

c5kEb
cEa

c , any aÞbÞc,

where

k,H 1 if z~a,b,c!5c,

~2 ! [Ec
z(a,b,c)] q̄

c

Sb
a

otherwise

and wherez(a,b,c) is our little function which picks out the median element of the set of three
distinct natural numbers$a,b,c%. ~The 1 factor follows as@Ec

a#@Ec
b#50 for c strictly betweena

andb.)
The entirety of~21! to ~23! may be summarized by

@Eb
a ,Ed

c#5

¦

1DbEd
aEb

c , a,c,b,d,

2DdEd
aEb

c , c,a,d,b,

1DaEb
cEd

a , b,d,a,c,

2DcEb
cEd

a , d,b,c,a,

2DbK̄bKdEd
aEb

c , a,d,b,c,

1DcEb
cEd

aK̄aKc , d,a,c,b,

2DcEd
aEb

cK̄cKa , b,c,a,d,

1DbK̄dKbEb
cEd

a , c,b,d,a,

0, aÞbÞcÞd otherwise.

Finally, we mention that the consistency~if not the veracity! of our lemma is also supported
by extensive computer tests usingMATHEMATICA . By this, we mean that we confirm that

NormalOrder ~XY!5NormalOrder ~ExpandNS~XY!!, ~34!

for a range ofUq@gl(mun)# nonsimple generatorsX, Y, whereNormalOrder (X) is a function
which rendersX in a normal form, andExpandNS(X) is a function which recursively expands all
nonsimple generators inX, using~1!.

To be more specific, let theheight of generatorX[Eb
a be ua2bu; this is a measure of its

distance from simplicity. ForUq@gl(mun)#, it varies from 0~for Cartan generators!, to 1 ~for
simple non-Cartan generators!; and then for the nonsimple generators from a minimum of 2 to a
maximum ofm1n21 for the maximally nonsimpleE1

m1n andEm1n
1 .

Then, we confirm that our code satisfies~37!, for all Uq@gl(mun)# generatorsX,Y of height at
most m1n21 for all m,n such thatm1n<5; at most 3 form1n<10; and at most 2 form
1n<18. The computational expense in performing these checks rises at least exponentially with
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height, so we have to abandon our calculations at this point. However, our results do amount to a
complete consistency check of our lemma, for allUq@gl(mun)# such thatm1n<5.
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