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Quantification and assessment of fault uncertainty and risk
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Abstract The effect of geolegical uncertainty on the development and mining of underground
coal deposits is a key issue for longwall mining, as the presence of faults generates substan-
tial monetary losses. This paper develops a methed for the conditional simulation of fault sys-
tems and uses the method to quantify and assess fault uncertainty. The method is based on
the statistical modelling of fault attributes and the simulation of the locations of the centres of
the fault tfraces. Fault locations are generated from the thinning of a Poisson process using a
spatially correlated probability field. The proposed algorithm for simulating fault traces takes
into account soft data such as geological interpretations and geomechanical data. The simula-
tions generate realisations of fault populations that reproduce abserved faults, honour the sta-
tistics of the fault attributes, and respect the constraints of soft data, providing the means to
thereby model and assess the related fault uncertainty.
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Introduction

Longwall mining may suffer heavy financial losses through the presence of faults that generate delays in produe-
tion schedules, changes in mine plans, and loss of coal reserves. Mining operations will be improved if methods are
developed to quantify the uncertainty of faults, assess geological interpretations and integrate such quantitative infor-
mation in longwall design and planning and production management. A key issue is the ability to quantitatively
model the uncertainties associated with faults and quantify the associated risk.

Research to date has béen inadequate in the areas of understanding fault uncertainty and simulating fault sys-
tems in longwall coal mining, Hatherly et al. (1993 ) present a study on fault prediction based on structural and
geophysical methods. Fault simulation in longwall mining is shown in Li et al. {1999) and Dimitrakopoulos and Li
(2000), and is founded on the inhomogeneous Poisson process, an approach limited in taking spatial correlations
in fault Jocations and soft information into account. Theoretical developments and applications of stochastic simula-

tion of faults are available in the petroleum industry, where interest is focused on the simulation of sub - seismic
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faults, joints and small fractures. Recent developments include marked point processes and factorial kriging { Wen
and Sinding — Larsen, 1997) and Gibbs fields (Omre et al. , 1994 ; Munthe et al. , 1993).

In this paper, fault systems are simulated with a new approach which enables uncertainty in longwall mining to
be quantified. The approach is based on the use of correlated probability values for the thinning of a Poisson process
which is used to generate the locations of the centres of the fault traces. Probability fields are simulated in an indi-
cator framework and accommodate soft data coded as prior distributions. The paper describes the algorithm for sto-
chastic conditional simulation of fault systems. The application of the algorithm in a coalfield follows, Subsequent-

ly, the quantification of fault uncertainty is presented and ramifications for longwall mining are discussed.

1 ~_Fractal models for fault characterisation

The application of fractal theory to faults can be traced back to the 1980s and includes the work of King
(1983), Turcotte (1986) and Childs et al. (1990). In general, the theory suggests that yarious fault paraﬁxeters
are invariant with respect to scale or are ‘ self similar’ , providing a model that car be used for predictive purposes.
Gauthier and Lake (1993) provide a succinct outline of the principles and characteristics of fractal fault models.

The use of fractal or self - similar models in studying and characterising fault systems is widespread in the

technical literature. During the 1990s a consensus developed that power — law scaling models describe size — fre-
‘quency relationships and the relationship between the length and maximum displacement (throw) of fault popula-
tions, despite the discussion and different opinions on how these properties are inferred and interpreted (e. g.
Walsh et al. , 1994; Nicol et al. , 1996; Needham and Yiclding, 1996; Marrett et al. , 1999; Bour and Davy,
1999). Although limited, Doutsos and Koukouvelas (1998) and Watterson et al. (1996) present data from stud-
ies in coal seams that also support the same fractal relations.

1.1 Power —law models of fault size distributions

Jn- ffaetﬂ—ﬂaeery—fault—saze—( throw—or—length—)—dlstnbutmns—may—he—descnbed by—the—followmg—power—law—

(fractal) ‘model over a-wide range -of fault size such that
log(N;) = a — Blog(S), (1)
where, N is the cumulative number of faults with either length or throw greater than size S; S is the fault size
(length L or throw T); o is a scaling factor that is a
function of the fault density in 2 given area ( when a is high, 4 Fractal model can be used
the fault density is high) ; and 8 is the fractal dimension of - to interpolat betwees.
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seismic and core data to
the fault population that defines the relative number of large ] / identify unsampled faults
and small faults (when 8 is high, the number of small faults ! o Central segment data
is high relative t ber of large faults). For a given 2 ysed as basic for model
gh ve to the num 8 ) gven §, 5 Flattening typically due
the power — law model of the fault size distribution indicates E to under—sampling Seismic data
. . = related to the limit of -
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tributed in a fault population. This property enhances under- ‘é sampling method
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Fig. 1 shows a typical fault size (throw or length) distsi- outside the study area
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LI Shux:

flecting
Jower ¢
pected
“oh
which
-1.2

1

is wid

where
const
are o
tions.
this ¢

maxi

relat
ten ¢
sam]
ot}
reso.
fron
——con-
o
TeC
ate
seq

tiot

pr
fie

pr




China) LI Shuxing,et al. Quantification and assessment of fanlt uncertainty and risk 3
{ Wen flecting truncated or under — sampled faults with small fault displacements ( sub — seismic faults); (3) A steep
lower segment due to the incomplete representation or censoring of the larger faults of the population which are ex-
ing to pected to exist outside the area limits of the seismic survey.
rocess In addition, the figure shows the position on the graph of data from the core scale for the same population
indi- which are expected to fit the same power — law model.
rsto- .. 1.2 Power —law models for length throw relationships
uent- The inter — relationship between fault length and maximum throw it
is widely accepted as following a power — law written as
T, =cl, (2) E
where, T_,_is the maximum fault throw; L is the fault length; ¢ is a _;0: or
King constant reflecting rock properties; and n is a constant. Both ¢ and n g I
eters are obtained from data and are subject to ambiguities in fault interpreta- -1
1ses, tions. For practical purposes in previous investigations, and again in
sls, this study, the centre of the fault is considered to be the location of 2 .
t the maximum displacement. I Log length /m ‘
- fre- Fig. 2 shows the plot of a typical maximum throw — versus —length Fig.2 Relationship between fault
wula- relationship. The relationship between fault throw and length is very of- length and maximum throw
g. ten subject to substantial scatter for a number of reasons, particularly
vy, sampling effects. More specifically, the scatter is often attributed to difficulties in discerning the true end of a fault,
tud- _ to the extension of faulis beyond the boundaries of the survey and to part of the fault length being below the limit of
resolution of the survey technology. The underestimation of small fault lengths is typical when faults are sampled
from maps or along traverses orin _cross — sections ( Marrett and Allmendinger, 1991). The throw component also
law contributes to the observed scatter; when seismic surveying is used, the resolution limit results in a relatively grea-
Yer underestimation of the Hhirows of smaller throw faults than of larger throws.  Mextmem dispheenment s ot atways—
1) i recorded. The throw — lenjth diagrams often span only one” order of magnitude and together these factors mﬁy ey
size | ate biases. The scatter of the data and the resulting diversity of n values in Equation (2) may also arise as a con-

- sequence of geological events. Reactivation events can lead to more diverse n values by complicating the identifica-

tion of fractal populations, and fault linkage leads to a highly subjective sampling of branched fault lengths.
2 Fault simulation based on probability fields

The algorithm proposed herein is based en the statistical description of a fault population as described in the
previous section and the thinning of a Poisson process (Stoyan and Stoyan, 1994) using a correlated probability
field similar to the probability fields proposed by Srivastava (1992}. The proposed conditional simulation of faults
proceeds as follows (Fig.3):

(1} Define a random path to be followed in visiting locations x, which are 1o be considered as centres of fault
traces. There are N locations or grid nodes {x,, i=1, -+, N} to be potentially visited. The N locations exclude
the known fault centres. _

(2) Generate a reali§ation of an auto — correlated probability field {p (x;}, i=1, -+, N} reproducing the
uniform marginal cumulative distribution function (cdf) and the covariance corresponding to the covariance of the
uniform transform of the fault densities in the study area.

(3) Estimate at the first location x, , the intensity function of an inhomogeneous Poisson process A (x;) using a

planar Epanecnikov kernel estimator,
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(4) Use the probability value p(x,) at
location x; to thin a Poisson process {rom
-p(x) <A(x) 747, (3)

where, A" is the intensity of a corresponding

@Probability field @Fault densities

1Y Sha .

drillin
studie |

mapp

homogeneous Poisson process and A(x) A . K . T Poison proces tribut -
the above constraint is met, a fault centre exists ap DRandom path : fault
#;. H not, the next node on the random path is vis- .
ited until the constraint is met. distri
{5) Select a maximum fault throw from the m?ng:;f:nm in Fi
power — law model of the fault size distribution in DRepeat for anothes ferre
Equation (1). fault until size 1.1
(6) Grow the fault from the centre of a fault distribution s satisfied 3 Logllie ngt!?/::: -0.
trace, in opposite directions, using the following Fig.3 Diagrammatic representation of the fault that
steps: (1) Define the fault strike by randomly simulation algorithm in this study curs
drawing from the fault strike distribution. (2 De- a—y=-1.492 12 +2.2759; - — -y = —1.307 8x +2. 126 2; dril
fine the fault length from the power — law model of b—y=0.229 8z +0.0007; - - -y=0.213 52 +0.0422 covs
the relationship between fault length and maximum throw in Equation (2). (3 Use a distance step and a direction-
al tolerance at each step to grow the fault. @ Stop the growth when the fault length has been reached. is f
{7} Repeat steps (3) to (6) until the number of total faulis satisfies the faull size distribution in Equation mis
(1). '
(8)-Repeat-the-process-to-generate-additional-realisations.— oo
The fault simulations described above reproduce the faults identified within a study area, and existing and sim-
-.ulated-faulis:reproduce the:-desired statistical fault characteristics. . o e e EIEEHREIE B
The simulation of the probability field in Step (2) of the above algonthm requires further consideration. The
probability field p(x;) can be generated by either a Gaussian or indicator non — conditional simulation algorithm,
An indicator sequential simulation algorithm ( Alabert, 1987) facilitates the use of multiple secondary information
and it is implemented for this study.
The integration of soft information into fault simulation by means of the simulation of the probability field has a
major advantage of incorporating all types of information relevant to fault generation and spatial distribution. The
soft information is coded as prior probability, which includes the rock type of the roof and floor, the thickness of the
competent roof and floor, the area extent of the competent roof and floor, the major folding structure, the informa-
tion from remoie — sensing and the observations of expert geologists. This will enable a robust medel for fault simu- (
lation to be built and the fault uncertainty to be quantified. 4
3 Simulating fanlt systems in a coalfield 1

3.1 Data description and statistics

Fig.4 (a) shows the study area where the development of potential underground coal mines is being investiga-
ted. Faults occur at a variety of scales within the study area and are generally either north — north — westerly tren-
ding thrust faults or north — easterly oriented normal faults. Thrust faults have throws ranging from 6 m to 25 m.
Normal faults display highly variable displacements and dominate the mine area. There are a few folds, including

gentle synclines, and sharper anticlines and monoclines. Folds trend north — north — west, fold axes plunge south
and thrust blocks and upthrow to the east. '
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Fault data used in this study are interpreted from
drilling, surface mapping, 3D seismic surveys and
studies of the regional strnctural geology. Faults are
mapped out on a coal seam horizon and are spatially dis-
tributed as shown in Fig.4 (a). The rose diagram of
fault strikes is also shown in Fig. 4 (b).

7656618

E
~ 7651459
=

Strike

he fault The corresponding fault size (throw) power — law w E
distribution is moedelled using Equation (1) and is shown
‘o in Fig. 5 (a) (Population.1). The specific models in- - 646 300 Iﬁﬂ
ferred for Population 1 are log (N;) =1.992 7 — 593 080 () 598 239 E
1.103log (T) (pessimistic) and log (N,) =1 869 6 0o )
_0.957 6log (T) (optimistic). It is interesting to not Fig.4 Fault dafa in the study area (a)
: g P - T 18 interesting to note and their strike distribution (b)
that the data points at the top and bottom end of each
curve in Fig. 5 (a) deviate from the model fitted. The top end deviation is due to small faults not identified by
drilling, mapping, 3D seismic and geological interpretations. The bottom end deviation is due to the limited area
covered during the geological study upon which the analysis is based.
tion- The relationship between fault length and throw for Population 1 is shown in Fig. 5 (b). A power ~law model
is fitted according to Equation (2), giving T, =0.024 S1L***7 (pessimistic) and T,,, =0.085 19L**" (opti-
ition mistic ).
207 20 r_ - Linear (Optimistic model)
. ' W y=-1.103 1x+1.992 7 | — Linear (Pessimistic model) s 2
2. ) E 10 - - Ay =0.678x—1:069 G- -ove o
= 105y=—0957 wn.ss&\\. 2 VY. R=0sps
a [ B . L2 - - i
... | == Lincar (Optimistic model) N ... . . '30 — ’l/ ——
) 0 [ — Linear (Pessimistic model) N>« »=0.863 7x-16106
hon R=03351
05 N , * * * * ! -1.0 - " * !
-10 -5 0 05 10 15 20 25 1 2 3 4 5
Log throw/m Log length / m
i ) (a}) (b)
Che Fig.5 Power —law model of fault throw distribution (a) and relationship
the between faukt Iength and throw (b) for Population | at study area
na- The power ~law model for Population 2 is shown in Fig. 6 (a) by log (N,) =1.885-1.101 Yog (T)
- ( pessimistic) and log (N;) =1.806 7 —0.987 7log (T) (optimistic). The relationship between fault length
and throw for Population 2 i% Shown in Fig. 6 (b) by T, =0.029 350533 ( pessimistic} and T, =0.056 438
L% (optimistic).

The power — law model for Population 3 is shown in Fig. 7 (a) by log (N,) =1.568 2 -0.923 3log (T)
an ( pessimistic) and log (N,) =1.4858 —0.781 6log (T) (optimistic}. The relationship between fault length
n- and throw for Population 3 is shown in Fig. 7 (b) by T, =0.027 66L>®" ( pessimistic) and T, =0.050 86
1 %72 (optimistic).

g Because of the quality of the data used, a pessimistic model and an optimistic model are produced for the fault
th throw distribution and the relationship between fault length and throw for each population. In reality, it is difficult

to obtain high quality fault data because the data are obtained either from a limiled small area, or by insufficient
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Fig. 7 Power;ia)LmodeLof_t‘ault-_throw—distﬁbuﬁon—(—a—)—,_and—r_ela_tionship—b'etween B “wher:
e - fault fength and throw (b). for-Population 3:at study: area
means. However, using a pessimistic model and an optimistic model to describe the fractal characteristics of a fault into
population can alleviate the data quality effect. geot
3.2 Estimation of fault density simi.
The planar Epanecnikov kernel estimator for estimating poiat density in an inhomogeneous Poisson point Al
process as described by Stoyan and Stoyan (1994 ) is whil
. 8 <
Alz) ==V el 2 —x,1
3wh ; ’ pres
3 |2 —x1? of s
—(1 - ———) (lx-x1<h),
el x~x1 =04k h (4) SO
0 (otherwise)
where, A (x) is the density function; # is the location where the density is estimated; «, is a location within distance sigr
h from x; and k is a distance termed smoothing factor’ . the
A fault can be assumed to be a point in an inhomogeneous Poisson point process, that point being the central
point of the fault trace. In practice the fault data obtained rarely cover the whole study area. Using the above planar fau
Epanecnikov kernel estimator will present two problems; (1) If the smoothing factor A is not large enough, some lo- giv.
cations within the study arca may become blank spots and have zero fault density, possibly due to no fault data be- adj
ing recorded in that part of the area. (@) If the smoothing factor k is too large, it will smooth out the structural de- tin;
tails of the fault distribution. It is hard to balance the degree of smoothness and the removal of the blank spots. be



1{ China) U Shuxing, et al. Quantification and assessment of fault uncertainty and risk 7

A varying neighbourhood point density estimation method is therefore proposed for the fault density estimation.
As the name indicates, the method uses the same planar Epanecnikov kernel, but instead of a fixed neighbourhood
( smoothing facior h) with a varying number of points within the neighbourhood, it uses a varying neighbourhood
( smoothing factor k) with a fixed number of points within the neighbourhood. This effectively eliminates the blank
spots in the study area. The smoothness of the density estimation can also be adjusted.
3.3 Dealing with soft information
Soft information integrates all geologieal information relevant to faulting other than known fault data. It reflects
the geological envirenment of faulting. It is used in fault simulation as described in step (2) of the fault simulation
algorithm. All types of soft information are coded into prior probability indicators, which are subsequently updated
. into posterior probabilities by indicator simulations.
In this study, the soft data used to divide the

lease area Into regions with a similar propensity for Basis of soft data coding Soft data  Soft data coding where

Table 1 Prior probabilities of soft data for all poputations

. T - di incides with sandst
faulting are based on local indicators of faulting and CoTE A comeles w s

some geotechnical information regarding the roof lithol- Monocline (Mono) 0.75 0.8
ogy. Monoclines and the regions of steep dip associated Steep dip area (Steep) 065 0.7

ith th d indi £ fault <thi L Sandstone Boundary (SS) 0.7 N/A
with them are good 1ndicators of faulting within the Roof A 0.5 M/A
area. Monocline zones have very high soft probabilities Roof B 0.6 N/A
(Table 1) and are slightly better indicators of faulting Roof C 0.4 N/A

| than the steeply dipping parts of the area.
, Massive channel sandstones overlying the coal seam also provide an indication of the locations of faults in the
. area, for these competent units tend to propagate faults at their boundaries and into weaker units. The channel

sandstones trend north — east to south — west across the lease, and an area surrounding the sandstone was defined
where the soft probability of faulting is high.

Thf‘ ‘-‘Dallal_dlsmbunon_of_other hthologxcal_umts_ln_the_mof_stmta prm'lded further means-of_dwldmg_the_}eas(g_
into_areas_with-similar_propensity. for_faultmg --Roof-strata-were_divided-into_three-sections-.each_with_ different

fault™

geotechnical characteristics. Roof type A is characterised by interbedded sandstone and siltstone. Roof type B is

similar to type A but is underlain by highly carbenaceous siltstone and mudstone. Roof type C is also similar to type

oint ; A but is underlain by massive sandstone. Roof type C is the strongest and will therefore have a low soft probability,
while Roof type B, the weakest, will have a high soft probability.
: In combining all the soft information sources, it was necessary to decide which source is most likely to find
previously unidentified faults. Local indicators of faulting and sandstone boundaries are the most predictive sources
of soft information. In all other arcas, the roof strata provide the best indication of possible faulting. Soft data
4) . sources are the same for all.fault populations. ' _
; Average soft probabilities assigned to the sources discussed above are presented in Table 1. The probability as-
1ce signed to each source is reported in the middle column. The probability of the intersection of local indicators with
the sandstone boundary is given in the third column.
ral After the soft information is numerically coded (Li et al. , 2001), it is used to generate soft probabilities of
1ar faulting for the simulation of the fault populations ( Fig. 8). Tt is important to note that the area of the open pit was
o- given a probability of ‘0’. Ii is assumed that all faults have been identified in this area, and in the area directly
e- ‘. adjacent to the open pit. Note that the soft probability values shown in Table 1 reflect the relative variation of faul-
e- ting probability between each zone arid have been assigned to maintain the relatwe order of probablllty rather than to

be an exact value.
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"« Southeast T "1 = Southeast - . I = Southeast .
03 2 i - show
E " Eo03 E 03r d
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0.1 0.t 01 show_
. \ . \ . . L ) N " . . . ; . L N . : . ] isath
0 2000 4 000 6000 0 2000 4 000 6000 8000 0 2000 4000 6 000 .
Distance / m Distance / m Distance / m dists
(a) (b) - (¢) the
Fig.8 One realisation of probability field for three populations by 1
The relative ranking of different parts of the study area provides prior probabilities thit are not, technically, repr
true probabilities (hence their description as ‘soft” }. The prior soft values are updated using the method of se- duc
quential indicator simulation. Posterior probabilities are generated and these correspond (o true probabilities. Un-
derlying probability fields (P fields) , which are used to assess the selection of fault location, were generated for
each fault population realisation based upon the geclogical information available and inputs to the method of sequen-
tial indicator simulation,
3.4 Cenditional simulations
The fault simulation algorithm described in section 2 is used here to simulate the fault population in the study
area. The simulation is based on the population statistics discussed in section 3. 1 and the underlying spatiial char-
.................... —acteristics-of-the-fault-system.-The-underlying-spatial-characteristic-of-a-fault-system-is-accounted “for by themodel=—7———
ling of continuity and anisotropy of the spatial fault distribution. The variogram of fault density reveals the direction
- of: greatercontmmtyandtheamsotropy l‘atIO.Fal.iltdenS]ty lsestlmatedusmgthe HJEthOddeSCﬂbEdlﬂsect10n3.2 e R
Fig. 9 and Table 2 shows the variograms for Populations 1, 2 and 3 respectively.
7656 600 7 656 600 7 656 600
: 3 e
2z Z | 2
7 646 200 7 646 200 S SR 7 646 200 bkt :
592 680.00 Easting 592 980.00 592 980.00 Easting 592 980.00 592 980.00 Easting 592 980.00
Fig, 9 Variogram models nsing fault density data for Populations 1, 2 and 3 3
Table 2  The variograms for Populations 1, 2 and 3 respectively
F
Type - P1 Type — P2 Type - P3 .
Direction L
Sil Range  Anisotropy ratio Silt Range  Anisotropy ratie Silt Range  Anisotrapy ratio
g
Nugget 0.06 0.06 0. 026 i
Southeast 0.2 3610 0. 926 0.102 2850 0.702 0.152 219 0. 855 932
Spherical

Northeast 0.074 4980 0.936 0.148 9920 0.335 0.131 4720 0. 885 845
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Based on the underlying characteristic of spatial fanlt distribution, and other geological information, the fault
probability fields can be simulated. The geological information consists of lithological and geotechnical characteris-
tics of seam roof strata, monocline zones and the distribution of massive channel sandstones in this study. Fig. 8
shows one probability field realisation for Populations 1, 2 and 3 from lefi to right. The simulated fault probability
fields are used in deciding the locations of simulated faults along with the fault density information.

Distance step and direction tolerance used in step 3) of the simulation are 200 m and 5° respectively. Fig. 10
shows two realisations of fault simulation in the study area based on the three probability fields in Fig. 8. The real-

oo isations reproduce the original faults and their statistical characteristics including the power — law model of throw
distribution, the model of the relationship between fault length and throw, and the distribution of fault strikes. At
the same time the realisations also reproduce the underlying spatial characteristics of the fault population identified
by the variogram modelling. Fig. 11 shows the repreduction of the strike for the fault populations in the area and the

aally, reproduction of the power — law models of the throw in the same realisation. The example suggests that the repro-

o se- duction of data characteristics is excellent.

Un- 7656618 7656 618
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[uen-
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7646 3509'03 080 598{—2; . 764 350903‘08(4)7 59;‘239

“Fig. 10° Two realisations of all fauit populations usinig the pessimistic models
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= >
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. Throw /m s

Fig. Il Pessimistic power —law models and strike distribution repreduced in simulations for Populations 1, 2 and 3

3.5 Fault uncertainty assessment and its application

A large number of fault realisations are combined to generate probability maps over the study area, showing the
probability of having faults of given specifications of interest. Fig. 12 shows probability maps having faults with
throws over 1m in the case study. This probability mapping is a useful tool to measure the uncertainty of the fault
system studied. In particular, the fault uncertainty information is spatially presented. This facilitates its application

in longwall coal mining.

The fault probability maps quantify the uncertainty of having faults with throws larger than 1m that can be used
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to select low risk areas for mine development, such as the area in the northern part of the study area. Furthermore, 3]
the probabilities of faults may also be locally used to optimise the layout of Iongwall panels so as to minimise the
fault occurrence within them. Fig. 13 shows the integration of the quantified fault uncertainty information into a
longwall design and plan. Through the integration of quantiﬁeﬂ fault risk, a longwall panel layout may avoid the {41
fault risk and be optimised. (5]
7636 618 7 656 618y
(6}
-57651459 57651459 (7]
[8]
: " [9]
5 080 508239 T S0 598239
[10]
Fig. 12 Fault probability map for all ) Fig. 13 A longwall Iayout based on
populations using the p&;gimistic models guantified faunlt probability mapping
Additional scenarios may be generated based on different geologieal interpretations, coding of prior information (11
or the use of additional sources of soft data. Finally, the uncertainty of the fault statistics used may be assessed.
4 Conclusions (2
A method to simulate fault systems in two dimensions is founded upon the statistical characterisation of fault
populations-and: the-use-of this:characterisation: to. simulate equally. probable ;--geologically ‘meaningful -fault- popula—.__._ E “3
tions. A new algorithm is based on the thinning of a Poisson process which is used to place the centres of Tault [
traces and on generally accepted power — law models that define interrelationships of fault attributes. The thinning of
a Poisson process is based on a simulated probability field reflecting the spatial continuity of fault densities and in- [
tegrating soft data, including geological and geomechanical interpretations. The algorithm also honours the available
faults at their locations and reproduces their statistics. }!
The combination of large numbers of realisations of fault systems in an area of interest for longwall coal mining
provides probability maps that quantify the uncerlainty of having a fault in a given location. Probability maps are [
tools that can enhance longwall design, as well as the planning and management of risk. _
Quantification of geological risk provides practically useful results that can be incorporated into the decision - L
making process in a way that is not possible when using qualitative (i. e. subjective, inlerpretative or relative ) :
risk_assessments. Qualitative risk assessments are unable to be linked to mine design and planning, whereas quanti- [
tative risk assessments that incorporate local geological understanding offer accurate risk assessments and can be [

used directly in mine design and planning.
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