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Coherent superposition states as quantum rulers
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We explore the sensitivity of an interferometer based on a quantum circuit for coherent states. We show that
its sensitivity is at the Heisenberg limit. Moreover, we show that this arrangement can measure very small
length intervals.
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There exists a well-known isomorphism between interfer-Thus the state of the optical field after the first Hadamard
ometers and basic quantum processing circuits. In particulagate is
the circuit comprising a Hadamard gate followed by a phase
gate and then a second Hadamard gate is equivalent to a 1
single photon, optical interferometer with a phase shift in E(|0>+|a>)- 2
one arm(see Fig. L Historically this observation has helped

to identify candidate quantum circuifd]. An alternative s js 4 macroscopic quantum superposition state, often re-

viewpoint is to consider the efficacy of such quantum CircuitStg e tg as a cat state. Now consider small changes in path
in performing more traditionally interferometric tasks-5]. length(i.e. phase shiffsaround an integral number of wave-

We have recently proposed an efficient quantum COMpUangihs () between the two Hadamard gates. Propagation
tation scheme based on a coherent-state qubit encoding, CONer a distance\ can be modeled by the unitary operator
ditioned linear optics, and coherent superposition state reLxJ o) — 9)aa where = 2A/x. The effect of
sources[6]. Here we investigate how sensitively distance (6) =exp(6)a’awhereg=2mA/\. The effect of propaga-

measurements can be made using the equivalent of the cilili-On on an arbitrary qubitg), whereg=0 or a, is obtained

cuit in Fig. a) when realized using this scheme. We find Y examining the overlap
that its sensitivity to small perturbations in length is at the N _ .
Heisenberg limit. Further more we find that its sensitivity in (8U(6)[8)=(B|B(cosb+isin6))

measuring smallength intervalsis also at the Heisenberg =ex — B2(1— cosf—isin ) |~exd i 682]
limit. We refer to this effect as guantum ruler
Our logical qubits are encoded as follows: the zero state is 3

the vacuum|0), =|0), and the one state is the coherent Statewhere the approximate final result is true in the limit that the
of amplitude @, |1), =|a). We assume that the coherent PP

. 2 < . . .
amplitude is real and that>1. Note that this qubit encod- ::?gglr';tsngzlIiseg?g?get:lflzcé i;tiglr%ghiﬁ;[aliljss'tjrjfell?ﬁr?g)e/r
ing is distinct from other quantum circyi?,8] and interfero- 9 @ - B4 P
metric[9] proposals. We begin by investigating the sensitiv-

. X . . . . . Phase
ity of the idealized circuit of Fig. (8 using our coherent- @ gate
state qubit encoding and comparing this with the sensitivity @ @ @ >
of a standard interferometer with a squeezed vacuum input Hadamard Hadamard
We then introduce a physical realization of the quantum cir- gate gate
cuit and consider some more practical issues.
Consider the case of the logical zero state, i.e., the
vacuum, entering the first Hadamard gate. The effect of g,
Hadamart_j gate is to produce the following transformations 1> \
in the logical basis: 0>
50:50
BS
1 ] g%:so
|0>L_’E(|O>L+|1>L)y v >
Phase \ﬁ
shift
1 FIG. 1. Schematics of quantum circ#) and optical interfer-
|1).— —=(|0).—|1)). (1)  ometer(b). If a single photon is incident on the interferometer then
\/E the description of the path of the photon is mathematically equiva-

lent to the description of the state of the qubit in the quantum circuit
with the beam splitter8S) playing the role of the Hadamards and
*Email address: ralph@physics.ug.edu.au the phase shift that of the phase gate.
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Displacement

these conditiond) (6)|8)~exdifB?]|B) and thus propaga- ? plus pholon
tion over short distances constitutes a phase gate for thit @ ¢ |
system fmerel - - =Yoo A= = P
Hi?hly. d
A 100 slectve) donsre
0(6)(0)+|a))~[0) +€'/| ). (@) E ol apitce

Hence, the effect of propagation through the entire circuit is
given by

50.50
BS

Coherent
Reference
Beam

| #)ou=HO(0)A|0)~3[(1+€'7)[0) + (1—€?=") | a)].
& FIG. 2. Schematic of a physical realization of the quantum cir-
Clearly the output state is changed as a function of the propaeuit of Fig. (@) using coherent-state encoding. Solid lines are used
gation distance between the Hadamard gates. We now calcte indicate coherent beams whilst dashed lines are beams that, in
late the sensitivity to that change. general, are in superposition states.
If no perturbation of the length around zero phase shift

occurs then the output state will be the vacuum. Thus thequal power in the coherent beam and the squeezed vacuum
signal strength corresponds to the probability of finding theand that the squeezed vacuum is strongly squeexgd (

output in the stat¢e). The measurement noise is the prob- <1).

ability that we none the less obtain the vacuum st@eat

We see that the signal-to-noise’s scale in the same way as

the output. The signal-to-noise ratio for measuring small function of photon number for the two systems. This cor-

fluctuations in length around zero phase shift is, hence, give

by
_|<a|¢>out|2 V0a'4_ 2
= =V,n?,
[(Ol#)oud® 4

where the bar indicates a time average ¥pe | 6(t)|? is the
time-averaged power in the length fluctuations waft)

(6)

Hesponds to an amplitude sensitivity that scales asilé.,
the Heisenberg limit. Thus both systems perform at the ideal
limit set by the uncertainty relationd1]. The factor of 4
increase in signal to noise achieved by the quantum circuit
may not be significant. When we examine a particular physi-
cal realization later in this paper we will find this advantage
disappears.

On the other hand, there is a significant difference in the

taken to be a zero-mean stochastic variable. The averag¥dy the increased sensitivity is reached in the two systems

photon number in the cat state between the Hadmard gatestizat makes the quantum circuit more versatile. In the
given byﬁ= o212, squeezed-state interferometer the increase in sensitivity

We now compare the sensitivity of the coherent-state?'ises from the decrease in background noise in the measure-
quantum circuit to that of a standard interferometer using ag1ent. H%wever, in the coherent-state r(]nrcmt tlhedlncreahse IS
squeezed light input. We consider the scheme originally produ€ t0 a decreasing fringe spacing as the amplitude of the cat

posed by CaveEL0]. A beam in a coherent state with a real is increased. T_his means, that@ass increas_ed, smalle_r_ a_nd
amplitude is injected into one input port of an interferom- SMaller length intervals can be resolved with a sensitivity at
eter whilst a phase-squeezed vacuum is injected into thihe He|senberg I|m|t._ Th|§ effect IS similar to that recently
other input port. We assume the interferometer is balanceProposed for increasing lithographic resolutict] and ear-
(equal path lengths in each arand consider the null output € interferometric proposalgl2]. Increasing the power in
port. Small-length fluctuations couple into the phase quadral'® cat state is effectively the same as increasing the fre-

ture of this port. Thus we perform balanced homodyne deduency of the light in a standard interferometer, and thus
tection of the phase quadratuxe , of the null output port. decreasing the fringe spacing. Ir_1 the _earller proposals in-
For small-length fluctuations we obtain creased power also led to the simulation of shorter wave-

lengths, however, these were based on number state rather
than coherent-state superpositions and used quite different
manipulations. Other recent schemes for positioning and
clock synchronization-type task3,4] are more similar to the
squeezed-state interferometer, relying on decreased noise for
their increased sensitivity. We believe this quantum-ruler ef-
fect could have important applications.

We now consider a physical implementation of our quan-
tum circuit. This is shown schematically in Fig. 2. A
coherent-state phase reference beam is divided at a 50:50
beam splitter. One of the beams is sent to a “generator” of
macroscopic quantum superposition states of some (kiad
whereV, is the noise power in the squeezed quadrature oftate maker which produces the state given by E@), in
the squeezed vacuum. In obtaining the final result in terms gbhase with the reference beam. Such a device is not trivial of
the average photon number we have assumed that there dsurse, though some limited success has been achieved in

X ~XI=+X;, 7)

where X, is the phasdi.e. the squeezedjuadrature of the
squeezed vacuum and, is the amplitude quadrature of the
coherent input. The signal to noise is then given by

(B, Vyn?

S/N ,
av, 4

8
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making analogous devices experimentdll@]. Also the cat- Probability
state maker need not necessarily be deterministic. In prin{a)

ciple, one could imagine building up a resource of the re-

quired cat states that are then fed into the interferometer

when the measurement is required. A number of nondeter-

ministic schemes for producing cat states have been pro =5
posed 14]. These schemes require only linear optics, squeez-
ing, and photon counting for their operation.

The cat-state maker performs the role of the first Had-
amard gate in the idealized circyFig. 1(a)]. The cat-state
beam is then passed along the path whose distance is to t
measured. In order to implement the second Hadamard gat
we use the scheme proposed in Hél. A second cat state,
identical to the first, and phase locked to the second coheren
reference beam, is weakly mixed with the beam at a highly Probability
reflective beam splitter. A surprising result from R3] is (b)
that such a beam splitter, with reflectivity é@s where
$2a®<1 but pa®=x/2, will act as a control sign gafd 5]
for our coherent-state qubits. As a result if output state a=10 €
Fig. 2 is measured in the “cat basig5ee below and is
found to be in the same cat state as was injected, then thi o}a
required Hadamard transformation is implemented onto
beamd. Alternatively if the output is found in théneay h 0.
orthogonal state 14(2)(|0) — | )), then the output state is a ghi?tse
bit-flipped version of the Hadamard gate. The data from the -0.2 -0.1 0.1 0.2
final coherent-state measurement of the outhus collected
in two bins according to the results of the cat-basis measure
ments.

Notice our physical implementation requires two cat
states as resources. Clearly this other resource should be ir( )
cluded in calculating the signal to noise in terms of the pho-
ton number. The extra factor of 2 will then make the results
for the squeezed state and cat schemes equivalent in thi =20
realization.

We now introduce explicit models for the measurements.

The cat-basis projection would require a high nonlinearity

for an exact realization. However, approximate cat-basis phase
measurements can be made by combining displacements ar shift
photon-number measuremen®. The procedure is first dis-

place by—a/2. This transforms our Qx superposition into FIG. 3. Probability of obtaining “0” result as a function of the
“al2,"* —al2” superposition: phase shift/distance shift in the interferometer. The coherent ampli-
tude is varied between the three graphdane=5, (b) =10, and

(c) @=20. Note that the scale on the horizontal axis of each graph
is scaled by 1.

phase
shift

-0.1 -0.05

D(— al2)12(|0) = |a)) = 1\2(| - al2) = |al2)). (9)

The_se new states are parity eigenstqte;. Thus if pho_ton NUMArises because althoudh exdid))~exiifa?]|a) we have
ber is measured then an even result indicates detection of thgat

state 142(|a/2)+|—al2)), and therefore, 4/2(|0)+|a))

whilst similarly an odd result indicates detection of D(— al2)|aexdi6])=|a(exdin]—1/2)
1/J2(|0)—|@)). This measurement technique is different in o
two major ways from the ideal projection measurement: ~exflifa’/2]|a).

(i) If the state being measured is not in just a superposi-
tion of |0) and|a), which, in general, will always be true to This again reduces the prefactor for the sensitivity but does
some extent, then the projective measurement may returnreot alter its scaling with photon number. We also replace the
null result, i.e., neither the plus cat or the minus cat. Thefinal coherent-state projection with the approximately
photon counting technique always returns either an odd oequivalent technique of homodyne detection of the amplitude
even result. quadrature.

(ii) The displacement operation prior to photon counting Having a physical implementation we can now make re-
increases the fringe separation by a factor of 2. This effecalistic calculations to confirm the efficacy of the protocol for
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finite values ofe. To do this we use the exact solution for the means that without the cat-basis measurements to distinguish
output field for which no assumptions about the magnitudehe two cases the fringes would be completely washed out.
of a have been made. Using the beam-splitter relationship With the cat-basis binning of the results we are able to
[7)al B)p— |cOSOy+isinOB),/cosdB+isindy),, a straight- form the following function: &n P-—2, P,+1)/2,

forward calculation gives which corrects for the bit flip between the results and now
sums over all photon numbers. This is evaluated numerically
(A.]|0)+B.|iasin¢)e'’) and plotted for various values @f in Fig. 3. The width of
the middle fringe scales asd between the three graphs
(note changing axis scaleThis indicates sensitivity at the
Heisenberg limit.
(10 The quantum ruler effect is also clear. Asincreases, a
number of high visibility, narrowly spaced fringes emerge.
The fringe spacing is as expected for the parity measurement
A.=(n.|—al2), scheme. The fringes could enable very short-length intervals
to be accurately measured. As an example suppose our laser
B.=(n.|a[cog ¢)e'’—1/2]), wavelength is 1 um. In a standard interferometer this would
(11) enable length intervals of 0..xm to be stepped off. The use
o of squeezing would increase the precision of our measure-
C.=(n.|a(ising—1/2)), ments but would not change the length scale. However, using
B . o the cat-state interferometer with anof 20 [Fig. 3(c)] leads
D.=(n.|a(cos¢+isin(¢)e'"~1/2)), to the fringe separation being reduced to 3.3 nm.
We have introduced an interferometer based on a recently
iscussed quantum circuit for coherent states and their super-
position. We have shown that this arrangement has a sensi-
tivity at the Heisenberg limit and also displays a quantum
ruler effect that could be used to resolve precisely very small
1 (an length intervals. This work highlights the different mecha-
P.=— |(x"|out)|?dx’, (12) nisms at play between squeezing and quantum-circuit me-
NERE trology. The present analysis does not consider imperfections
i . in the cat-state resources, optical networks or detectors. Due
where = (X'|out).. is the amplitude quadrature wave ¢4 the fragility of large cat stategl6] it is likely that the
function of the output field and can be calculated using  interferometer would have very low tolerances to such im-
2 perfections. The experiments suggested here would thus be
(lplE=eng -

out), =————
oy = e

+C.|acosg)+D.|a(cosp+isin(p)e'?)),

where

and ¢=/(2a?) and an ever(odd numbern, (n_) of
photons have been counted. The state overlaps can
calculated using the relationship [16] (n|a)
=exd —||%2]a"//n!. We then calculate

*

vty
2

!

(13 extremely technologically demanding for large None the

less it is of considerable interest that, in principle, only linear
optics, squeezed sources, and photon counting is required for
a demonstration. As well as possible applications in metrol-
ogy the experiments suggested here may also serve as an
initial testing ground for coherent-state quantum circuits.

Equation(12) gives the probability that a measurement of the
amplitude quadrature of output beaigives a result lying
below a/2. This we consider a “0” result. When an even
number of photons is counted at output/e label this result
P. . When an odd number of photons is found at outpwe We acknowledge useful discussions with G. J. Milburn
label the resulP _ . The two probabilities show fringes as a and W. J. Munro. This work was supported by the Australian
function of 6 but they arew/2 out of phase. Note that this Research Council.
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