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Coherent superposition states as quantum rulers
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We explore the sensitivity of an interferometer based on a quantum circuit for coherent states. We show that
its sensitivity is at the Heisenberg limit. Moreover, we show that this arrangement can measure very small
length intervals.
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There exists a well-known isomorphism between interf
ometers and basic quantum processing circuits. In partic
the circuit comprising a Hadamard gate followed by a ph
gate and then a second Hadamard gate is equivalent
single photon, optical interferometer with a phase shift
one arm~see Fig. 1!. Historically this observation has helpe
to identify candidate quantum circuits@1#. An alternative
viewpoint is to consider the efficacy of such quantum circu
in performing more traditionally interferometric tasks@2–5#.

We have recently proposed an efficient quantum com
tation scheme based on a coherent-state qubit encoding,
ditioned linear optics, and coherent superposition state
sources@6#. Here we investigate how sensitively distan
measurements can be made using the equivalent of the
cuit in Fig. 1~a! when realized using this scheme. We fin
that its sensitivity to small perturbations in length is at t
Heisenberg limit. Further more we find that its sensitivity
measuring smalllength intervalsis also at the Heisenber
limit. We refer to this effect as aquantum ruler.

Our logical qubits are encoded as follows: the zero stat
the vacuum,u0&L5u0&, and the one state is the coherent st
of amplitude a, u1&L5ua&. We assume that the cohere
amplitude is real and thata@1. Note that this qubit encod
ing is distinct from other quantum circuit@7,8# and interfero-
metric @9# proposals. We begin by investigating the sensit
ity of the idealized circuit of Fig. 1~a! using our coherent-
state qubit encoding and comparing this with the sensitiv
of a standard interferometer with a squeezed vacuum in
We then introduce a physical realization of the quantum
cuit and consider some more practical issues.

Consider the case of the logical zero state, i.e.,
vacuum, entering the first Hadamard gate. The effect o
Hadamard gate is to produce the following transformatio
in the logical basis:

u0&L→
1

A2
~ u0&L1u1&L),

u1&L→
1

A2
~ u0&L2u1&L). ~1!
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Thus the state of the optical field after the first Hadam
gate is

1

A2
~ u0&1ua&). ~2!

This is a macroscopic quantum superposition state, often
ferred to as a cat state. Now consider small changes in
length~i.e. phase shifts! around an integral number of wave
lengths (l) between the two Hadamard gates. Propagat
over a distanceD can be modeled by the unitary operat
Û(u)5exp(iu)â†â whereu52pD/l. The effect of propaga-
tion on an arbitrary qubitub&, whereb50 or a, is obtained
by examining the overlap

^buÛ~u!ub&5^bub~cosu1 isinu!&

5exp@2b2~12cosu2 isinu!#'exp@ iub2#,

~3!

where the approximate final result is true in the limit that t
length is small enough thatu2a2!1 but thata is sufficiently
large thata2u is of order 1. Equation~3! implies that under

FIG. 1. Schematics of quantum circuit~a! and optical interfer-
ometer~b!. If a single photon is incident on the interferometer th
the description of the path of the photon is mathematically equ
lent to the description of the state of the qubit in the quantum circ
with the beam splitters~BS! playing the role of the Hadamards an
the phase shift that of the phase gate.
©2002 The American Physical Society13-1
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these conditionsÛ(u)ub&'exp@iub2#ub& and thus propaga
tion over short distances constitutes a phase gate for
system

Û~u!~ u0&1ua&)'u0&1eiua2
ua&. ~4!

Hence, the effect of propagation through the entire circui
given by

uf&out5ĤÛ~u!Ĥu0&' 1
2 @~11eiua2

!u0&1~12eiua2
!ua&].

~5!

Clearly the output state is changed as a function of the pro
gation distance between the Hadamard gates. We now ca
late the sensitivity to that change.

If no perturbation of the length around zero phase s
occurs then the output state will be the vacuum. Thus
signal strength corresponds to the probability of finding
output in the stateua&. The measurement noise is the pro
ability that we none the less obtain the vacuum stateu0& at
the output. The signal-to-noise ratio for measuring sm
fluctuations in length around zero phase shift is, hence, g
by

S/N5
u^auf&outu2

u^0uf&outu2
'

Vua4

4
5Vun̄2, ~6!

where the bar indicates a time average andVu5uu(t)u2 is the
time-averaged power in the length fluctuations withu(t)
taken to be a zero-mean stochastic variable. The ave
photon number in the cat state between the Hadmard gat
given by n̄5a2/2.

We now compare the sensitivity of the coherent-st
quantum circuit to that of a standard interferometer usin
squeezed light input. We consider the scheme originally p
posed by Caves@10#. A beam in a coherent state with a re
amplitudeb is injected into one input port of an interferom
eter whilst a phase-squeezed vacuum is injected into
other input port. We assume the interferometer is balan
~equal path lengths in each arm! and consider the null outpu
port. Small-length fluctuations couple into the phase quad
ture of this port. Thus we perform balanced homodyne
tection of the phase quadratureX2, of the null output port.
For small-length fluctuations we obtain

X2'Xa
1

u

2
1Xb

2 , ~7!

whereXb
2 is the phase~i.e. the squeezed! quadrature of the

squeezed vacuum andXa
1 is the amplitude quadrature of th

coherent input. The signal to noise is then given by

S/N5
~b211!Vu

4Vb
2

'
Vun̄2

4
, ~8!

whereVb
2 is the noise power in the squeezed quadrature

the squeezed vacuum. In obtaining the final result in term
the average photon number we have assumed that the
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equal power in the coherent beam and the squeezed vac
and that the squeezed vacuum is strongly squeezedVb

2

!1).
We see that the signal-to-noise’s scale in the same wa

a function of photon number for the two systems. This c
responds to an amplitude sensitivity that scales as 1/n̄, i.e.,
the Heisenberg limit. Thus both systems perform at the id
limit set by the uncertainty relations@11#. The factor of 4
increase in signal to noise achieved by the quantum cir
may not be significant. When we examine a particular phy
cal realization later in this paper we will find this advanta
disappears.

On the other hand, there is a significant difference in
way the increased sensitivity is reached in the two syste
that makes the quantum circuit more versatile. In t
squeezed-state interferometer the increase in sensit
arises from the decrease in background noise in the meas
ment. However, in the coherent-state circuit the increas
due to a decreasing fringe spacing as the amplitude of the
is increased. This means, that asa is increased, smaller an
smaller length intervals can be resolved with a sensitivity
the Heisenberg limit. This effect is similar to that recen
proposed for increasing lithographic resolution@2# and ear-
lier interferometric proposals@12#. Increasing the power in
the cat state is effectively the same as increasing the
quency of the light in a standard interferometer, and th
decreasing the fringe spacing. In the earlier proposals
creased power also led to the simulation of shorter wa
lengths, however, these were based on number state r
than coherent-state superpositions and used quite diffe
manipulations. Other recent schemes for positioning a
clock synchronization-type tasks@3,4# are more similar to the
squeezed-state interferometer, relying on decreased nois
their increased sensitivity. We believe this quantum-ruler
fect could have important applications.

We now consider a physical implementation of our qua
tum circuit. This is shown schematically in Fig. 2.
coherent-state phase reference beam is divided at a 5
beam splitter. One of the beams is sent to a ‘‘generator’
macroscopic quantum superposition states of some kind~cat
state maker!, which produces the state given by Eq.~2!, in
phase with the reference beam. Such a device is not trivia
course, though some limited success has been achieve

FIG. 2. Schematic of a physical realization of the quantum c
cuit of Fig. 1~a! using coherent-state encoding. Solid lines are u
to indicate coherent beams whilst dashed lines are beams tha
general, are in superposition states.
3-2
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COHERENT SUPERPOSITION STATES AS QUANTUM RULERS PHYSICAL REVIEW A65 042313
making analogous devices experimentally@13#. Also the cat-
state maker need not necessarily be deterministic. In p
ciple, one could imagine building up a resource of the
quired cat states that are then fed into the interferom
when the measurement is required. A number of nonde
ministic schemes for producing cat states have been
posed@14#. These schemes require only linear optics, sque
ing, and photon counting for their operation.

The cat-state maker performs the role of the first H
amard gate in the idealized circuit@Fig. 1~a!#. The cat-state
beam is then passed along the path whose distance is
measured. In order to implement the second Hadamard
we use the scheme proposed in Ref.@6#. A second cat state
identical to the first, and phase locked to the second cohe
reference beam, is weakly mixed with the beam at a hig
reflective beam splitter. A surprising result from Ref.@6# is
that such a beam splitter, with reflectivity cos2 f where
f2a2!1 but fa25p/2, will act as a control sign gate@15#
for our coherent-state qubits. As a result if output statec in
Fig. 2 is measured in the ‘‘cat basis’’~see below! and is
found to be in the same cat state as was injected, then
required Hadamard transformation is implemented o
beamd. Alternatively if the output is found in the~near!
orthogonal state 1/(A2)(u0&2ua&), then the output state is
bit-flipped version of the Hadamard gate. The data from
final coherent-state measurement of the outputd, is collected
in two bins according to the results of the cat-basis meas
ments.

Notice our physical implementation requires two c
states as resources. Clearly this other resource should b
cluded in calculating the signal to noise in terms of the p
ton number. The extra factor of 2 will then make the resu
for the squeezed state and cat schemes equivalent in
realization.

We now introduce explicit models for the measuremen
The cat-basis projection would require a high nonlinea
for an exact realization. However, approximate cat-ba
measurements can be made by combining displacements
photon-number measurements@6#. The procedure is first dis
place by2a/2. This transforms our 0,a superposition into
‘‘ a/2,’’ ‘‘ 2a/2’’ superposition:

D~2a/2!1/A2~ u0&6ua&)51/A2~ u2a/2&6ua/2&). ~9!

These new states are parity eigenstates. Thus if photon n
ber is measured then an even result indicates detection o
state 1/A2(ua/2&1u2a/2&), and therefore, 1/A2(u0&1ua&)
whilst similarly an odd result indicates detection
1/A2(u0&2ua&). This measurement technique is different
two major ways from the ideal projection measurement:

~i! If the state being measured is not in just a superp
tion of u0& andua&, which, in general, will always be true t
some extent, then the projective measurement may retu
null result, i.e., neither the plus cat or the minus cat. T
photon counting technique always returns either an odd
even result.

~ii ! The displacement operation prior to photon count
increases the fringe separation by a factor of 2. This ef
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arises because althoughua exp@iu#&'exp@iua2#ua& we have
that

D~2a/2!ua exp@ iu#&5ua~exp@ iu#21/2!&

'exp@ iua2/2#ua&.

This again reduces the prefactor for the sensitivity but d
not alter its scaling with photon number. We also replace
final coherent-state projection with the approximate
equivalent technique of homodyne detection of the amplitu
quadrature.

Having a physical implementation we can now make
alistic calculations to confirm the efficacy of the protocol f

FIG. 3. Probability of obtaining ‘‘0’’ result as a function of th
phase shift/distance shift in the interferometer. The coherent am
tude is varied between the three graphs. In~a! a55, ~b! a510, and
~c! a520. Note that the scale on the horizontal axis of each gr
is scaled by 1/a.
3-3
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T. C. RALPH PHYSICAL REVIEW A 65 042313
finite values ofa. To do this we use the exact solution for th
output field for which no assumptions about the magnitu
of a have been made. Using the beam-splitter relations
ug&aub&b→ucosug1i sinub&aucosub1i sinug&b , a straight-
forward calculation gives

uout&65
1

212e2a2/2
~A6u0&1B6u ia sin~f!eiu&

1C6ua cosf&1D6ua~cosf1 i sin~f!eiu&),

~10!

where

A65^n6u2a/2&,

B65^n6ua@cos~f!eiu21/2#&,
~11!

C65^n6ua~ i sinf21/2!&,

D65^n6ua~cosf1 i sin~f!eiu21/2!&,

and f5p/(2a2) and an even~odd! numbern1 (n2) of
photons have been counted. The state overlaps can
calculated using the relationship @16# ^nua&
5exp@2uau2/2#an/An!. We then calculate

P65
1

Ap
E

2`

a/2

u^x8uout&6u2dx8, ~12!

where cout5^x8uout&6 is the amplitude quadrature wav
function of the output field and can be calculated using

u^x8ug&u25expF2S g1g*

2
2x8D 2G . ~13!

Equation~12! gives the probability that a measurement of t
amplitude quadrature of output beamd gives a result lying
below a/2. This we consider a ‘‘0’’ result. When an eve
number of photons is counted at outputc we label this result
P1 . When an odd number of photons is found at outputc we
label the resultP2 . The two probabilities show fringes as
function of u but they arep/2 out of phase. Note that thi
P.

g,

t

in,

t

. A

04231
e
ip

be

means that without the cat-basis measurements to disting
the two cases the fringes would be completely washed o

With the cat-basis binning of the results we are able
form the following function: (Sn2

P22Sn1
P111)/2,

which corrects for the bit flip between the results and n
sums over all photon numbers. This is evaluated numeric
and plotted for various values ofa in Fig. 3. The width of
the middle fringe scales as 1/a2 between the three graph
~note changing axis scale!. This indicates sensitivity at the
Heisenberg limit.

The quantum ruler effect is also clear. Asa increases, a
number of high visibility, narrowly spaced fringes emerg
The fringe spacing is as expected for the parity measurem
scheme. The fringes could enable very short-length interv
to be accurately measured. As an example suppose our
wavelength is 1mm. In a standard interferometer this wou
enable length intervals of 0.5mm to be stepped off. The us
of squeezing would increase the precision of our meas
ments but would not change the length scale. However, u
the cat-state interferometer with ana of 20 @Fig. 3~c!# leads
to the fringe separation being reduced to 3.3 nm.

We have introduced an interferometer based on a rece
discussed quantum circuit for coherent states and their su
position. We have shown that this arrangement has a se
tivity at the Heisenberg limit and also displays a quantu
ruler effect that could be used to resolve precisely very sm
length intervals. This work highlights the different mech
nisms at play between squeezing and quantum-circuit
trology. The present analysis does not consider imperfect
in the cat-state resources, optical networks or detectors.
to the fragility of large cat states@16# it is likely that the
interferometer would have very low tolerances to such i
perfections. The experiments suggested here would thu
extremely technologically demanding for largea. None the
less it is of considerable interest that, in principle, only line
optics, squeezed sources, and photon counting is require
a demonstration. As well as possible applications in met
ogy the experiments suggested here may also serve a
initial testing ground for coherent-state quantum circuits.

We acknowledge useful discussions with G. J. Milbu
and W. J. Munro. This work was supported by the Austral
Research Council.
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