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Quantum dynamics of two coupled qubits
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We investigate the difference between classical and quantum dynamics of coupled magnetic dipoles. We
prove that in general the dynamics of the classical interaction Hamiltonian differs from the corresponding
guantum model, regardless of the initial state. The difference appears as nonpositive-definite diffusion terms in
the quantum evolution equation of an appropriate positive phase-space probability density. Thus, it is not
possible to express the dynamics in terms of a convolution of a positive transition probability function and the
initial condition as can be done in the classical case. It is this feature that enables the quantum system to evolve
to an entangled state. We conclude that the dynamics are a quantum element of nuclear magnetic resonance
guantum-information processing. There are two limits where our quantum evolution coincides with the clas-
sical one: the short-time limit before spin-spin interaction sets in and the long-time limit when phase diffusion
is incorporated.
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I. INTRODUCTION state nuclear magnetic resonari®vIR), we do not know
how to efficiently simulate the evolution of the system on a
Recent work in quantum-information theory has sug-classical computer. For these states, the density matrix can be
gested that quantum computers are more powerful than theiepresented as a sum of separable states with positive coef-
classical counterpartfl—6]. In quantum communication, ficient (to be interpreted classically as probabilities to be in
there already exist algorithms which have been proved to ouhe respective statesHowever, under generic unitary evolu-
perform their classical counterparg,8]. The situation in tions, the choice of separable states must change. No effi-
computation is not as clear: we know of problems whichcient algorithms exist to relate the initial separable states to
have quantum algorithms that are exponentially faster buthe final ones for an increasing number of spins.
only when compared to the known classical ofg8,5,6,9 We do not yet have a generic quantitative measure for
(not the optimum ongsThe special power of quantum com- entanglement, although we do have a measure for absence of
puters is only a conjecture as we have no proof that weentanglement. Pure states are defined as being separable, or
cannot simulate efficiently quantum systems using classicalonentangled, if they can be expressed as products of sub-
computers. Although most physicists would believe this ef-system(such as qubjtwave functions. For mixed states, this
ficient simulation to be impossible, this is at the foundationnotion is generalized to the existence of at least one expan-
of the distinction between classical and quantum computasion of the state in terms of separable pure states with posi-
tion. tive coefficients. Thus an equal mixture of the maximally
If quantum computers are indeed more powerful tharentangled state of two spin®ell state$ does not contain
classical ones, could we pinpoint the origin of this power toany entanglement because this density matrix can be re-
one or a few elements in the quantum-mechanical theory? laxpressed in terms of separable stétesexample, the com-
the “folklore,” the power of quantum computation has been putational states with equal probabi)ityrhe separable states
attributed to entanglement. In quantum computers where thef spin-half systems could be described at a given time as a
initial states are pure it has been claimdd®,1]] that the  probability distribution of a set of classical tops.
presence of entanglement distinguishes quantum and classi- The notion of entanglement for mixed states has been
cal algorithms. Indeed the evolution of a quantum systendeveloped in the context of quantum communication. One
starting in a pure state and evolving unitarily without en-definition corresponds to the number of maximally entangled
tanglementwhich could occur if there were no interactions states that can be an extracted ensemble of these Et&les
between the componentsan be efficiently simulated by a But a computation is inherently a dynamical process, and we
classical system; on the other hand, a classical simulation afo not know in general how to describe the evolution of one
generic quantum evolution for a pure state has no knowmixed separable state to another using an efficient classical
efficient algorithm. At the basis of this argument is the ability description, in contradistinction to the pure state case. The
to efficiently simulate a system by a classical computer.  quantum device can thus provide some information more
The argument employed in Rdfl1], which uses the ex- efficiently that a classical device could.
istence of an efficient classical simulation in the absence of If mixed states are used as initial states of a quantum
entanglement, does not carry through when the initial state isomputer, entanglement does not seem to play the essential
mixed (i.e., not a pure stateThat is, for some highly mixed role in distinguishing quantum and classical algorithms as it
state[12] such as the state of nuclear spins present in liquidmight if we used pure states. A particular example of a quan-
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tum algorithm without a known efficient classical counter-g the number of gategl8]. Even in the three-qubit experi-
part is the one given in Refl14]. The algorithm gives the ments they commented upon, the gates defined by Schack
distribution of eigenvalues of a quantum Hamiltonian. It usesand Caves are not the physical gates implemented in the
as an input state an extremely mixed state, one with a singlexperiment as this would have ruled out their model. In the
qubit in a pure statéa pseudopure stafd5] would also dp  Seven-qubit experiment of Reff19], the model predicted a
and all other qubits are maximally mixed. This algorithm decrease in the signal-to-noise ratio 6fL.0*® smaller than
uses extremely mixed states but can still outperform knowrPbserved, a number which unquestionably rules out the
classical algorithms. For a small number of qubits there willodel. Discrepancies of their theory with older NMR experi-
definitely be no entanglement if a pseudopure state of thE"€nts, although not called quantum computing at the time,
first bit is used: as we increase the number of bits there ma§'e plentiful in the NMR literature, and the readers can re-
or may not be entanglement. But even if it happens anthe ~ View experiments performed twenty years 4§0,21]. ,
qubit, the algorithm will not go through any phase transition; What does make the quantum dynamics so hard to simu-
thus, it would be meaningless to refer to the algorithm adate? Could' there be other classical models .W.hICh epre}m
classical before the presence of entanglement and as qualMR experiments? Can we understand the origin of the dis-
tum afterwards. What distinguishes this algorithm from thecepancy between classical and quantum evolution? In this
classical analog is that the rules for transforming the densit?@P€r we compare the evolution of two coupled spin-half
matrix are the quantum rules, and we do not know how tgparticles _under qua}ntum and classical evolyuon. The work pf
efficiently simulate them by the classical rules. the last fifty years in NMR shows the cpnsstency of experi-

The algorithm in Ref[14] is especially relevant in the r_nental reSl_JIts with quantum mechanlc_s and_the fallurg to
context of recent discussions of experiments in quantumtind & classical description; “The dynamics of isolated spins
information processing using liquid-state NMR technology©an bg understood in terms. of the motlon.of classical mag-
[10,16. The algorithm in Ref[14] could be implemented in netization vectors. To describe coupled spins, hovyever, it is
liquid-state NMR. The authors ¢1.0] commented: “The re- Necessary to have recourse to a quantum-mechanlcal formal-
sults in this letter suggest that current NMR experiments aré®M Where the state of the system is expressed by a state
not true quantum computations, since no entanglement agdnction or, more generally, by a density operafae].”
pears in the physical states at any stage.” This statemer'ﬂ!erea we will give the explicit origin for this dlfferencg for
makes the assumption that entanglement is the necessary El¢ Simplest choice of a classical model; the one with the
ement of quantum computation following the suggestion inS2Me Hamﬂtoman as the quantum model. In the next section
[11]. In the same papdi.0] however, it was recognized that We derlye the. evolution (_equatlon fc'Jr' classical and quantum
it may not be so easy to separate quantum dynamics adateractm_g spin-half partlcles, epr|C|tIy_ der_nonstratmg that
entanglement when trying to pinpoint the power of quantunih classical theorywith the same Hamiltonigncannot re-
computation; “The results in this letter suggest that currenfroduce the quantum equations. We then discuss implica-
NMR experiments are not true quantum computations, sinclons of these equations and draw conclusions.
no entanglement appears in the physical states at any stage.
We stress, however, that we have not proved this suggestion,
since we would need to analyze the power of general unitary
operations in their action on separable states. To reach a firm
conclusion, much more needs to be understood about what it We investigate the equations of motion of classical and
means for a computation to be a ‘quantum’ computation.”quantum spin-half particles and show that the quantum be-
However, the claim that the evolution of unentangled purehavior is fundamentally different from the classical one. We
states can be efficiently simulated by a classical computeshow that even in the cases where the density is highly
[11] does not carry through to mixed states. The power oimixed (nonentangledthe evolution leads to different observ-
guantum computation can come from properties of the dyable quantities. There is some ambiguity in exactly what is
namics, not the state. This was also recognized by Schaakeant by the classical dynamics of such a system. We must
and Cave$16]. Indeed, the real origin of the criteria ji1] agree on some ground rules to make a meaningful compari-
is the dynamical evolution of the system not the state itselfson. Semiclassical dynamics has a long history and some
If we apply the type of unitary transformation usedii]to  rules have been establishg23]. We will assign a classical
a highly mixed statéso that entanglement might not appear analogue for a quantum problem by demanding that the same
it is as hard to simulate on a classical computer as when thieinctional form of the Hamiltonian be used but with the
state is initially pure. This point was not considered in Ref.corresponding classical phase-space variables substituted for
[10]. the quantum canonical operators.

Recognizing this fact, Schack and Caves attempted to ex- In the case of a spin-half system this would appear to
plain some liquid-state NMR experiments using classical dypresent some problems, but the situation is clearer if we al-
namics, without succeq4.7]. They did not derive an equa- ways work in the irreducible representations of the total an-
tion of motion for the behavior of the spins but rather gular momentum of the system. There are two subspaces
provided a model which described the effect of “gates” on corresponding to total angular momentum; quantum numbers
the states. Their model did predict an exponential decay o§=1 ands=0. The dynamics of a single spin-half system
the signal as a function of the number of gates going as (ill conserve angular momentum. However, for two spin-
+22"~1) 79 for n the number of qubits in the experiment and half systems, with arbitrary one- and two-qubit interactions,

Il. CLASSICAL AND QUANTUM DYNAMICS
OF COUPLED SPIN-HALF PARTICLES
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angular momentum need not be conserved and these sub- (1—¢)

spaces will become coherently mixed. It will suffice, how- pe~ 5N 1t epy, (2.8

ever, to consider one particular two qubit gate that does con-

serve angular momentum, which is an important two qubi

gate for quantum computing and for which the classical ant%/

guantum dynamics are completely different except on aE
[

hered=2N is the dimension of the Hilbert space for
ubits, 1 is the identity operator in this tensor product space,
nd p, is an arbitrary density operator. For example, in the
ase of a molecule with two spins and scalar coupling we
Pave,

short-time scale. Furthermore, this is precisely the two qub
gate accessible in NMR quantum computing.

In order to produce entangled states of single spin-hal
systems, a variety of possible interactions could be used;

— ~ (1) ~(2) (1) (1)
however, in NMR the natural interaction is of the form H=fw,07 " +hwy0;" +Jo; o, (2.9

J with J<w,w,, and thus
Hp=7 5,75, (2.2)
b~ ot S50+ u5?) (2.10
with =1 and the subscript 2 indicating that the interaction c 4 4 ‘0

is between two qubits. The dynamics of two spin states that

follows from this Hamiltonian is given by a unitary operator Wherep is the ratio of the Larmor frequencies of spin 2 and
U,(t) where 1. By a carefully tailored sequence of rf pulses, any two-spin

unitary transformation of this state can be achieved. Further-

more, using a spatially nonuniform magnetic-field pulae
2.2 gradient pulsgand averaging the varying phases over the

sample, we can effect particular nonunitary transformations
In addition to this two-spin unitary operator or “gate,” ge- [25]. With these two techniques it is possible to prepare the

neric quantum computation needs single spin dynamics. ThidyStém in & so-callegseudopure statef the form

is easily generated by the scalar coupling of a spin-half mag-

netic dipole with an applied magnetic field. The Hamiltonian p~ (1—e I+ e[ W)V (2.11)
for these single spin rotations for the spin labeiasl e 2N '

J
Uy(t)= exp[ —igtaNe?).

H,=B(t) ¢, (2.3  for [W)X¥| a pure, and possibly entangled, state Xospins.
It is possible to place bounds on the valueedbr which the
where the subscript 1 indicates that the Hamiltonian applietotal state in Eq.(2.10 is entangled[10], that is, a state
to a single qubit, and the corresponding unitary operator iswhich cannot be written as a convex combination of factor-
izable density operators. In typical experimests10 °, a
Uy(t)=exd —iB-¢"]. (2.4)  value which is too small for these states to be entangled. The
pseudopure states produced in two qubit NMR quantum-

We can now uséJ; andU, to generate an entangled state. information processing experiments are not entangled and

For example, the Bell state thus the spin-spin correlations at a fixed time have a purely
classical interpretation.

X 1010 1)o+1)1®]1)2 _ Even though en_tangled .states have_not yet bgen produped

lp")= (2.5 in NMR quantum-information processing experiments, this
V2 does not mean that the system is not quantum mechanical.

The important question is whether there is a classical de-

is generated from the product statg,®| ), by scription of the dynamics of these experiments. This is a
question that can and must be answered in a way that does

|¢+>:e*i77/4ei<ﬂ/4><’(x2)ei(ﬂf4>0(zl)e*i<W/4)"(y2)e*i<77’4>f’(zl)”(zz) not depend on the initial and final states of the system. It is a

A 2 w question cc_mcerning the p_ropagato_r, or Green’'s f_unctionZ for

x gl(mhoy eIy 1y @]1),. (2.6)  the dynamics, not the initial and final states. It is possible

that the initial and final states may exhibit no quantum cor-
In liquid-state NMR we do not begin with initial pure relations and have a perfectly valid classical description, yet
states, but we begin with a mixed state-density operator not be connected by a classical dynamical model, be it de-
terministic or stochastic. In the case of stochastic dynamics
p.=2 te PH (2.7)  the answer to this question will involve a specification of
transition probabilities. As we show below, via a particular
with H the systen{individual nuclear spins on a single mol- but well-motivated classical model, it is possible that the
ecule Hamiltonian, 3= (kgT~ 1) and Z=trp, [22]. At high initial and final states are described by separable states
temperature, as is the case for present-day liquid-state NMEius could be interpreted as a perfectly valid classical prob-
guantum computatiofil5,24], the state is very close to the ability distribution) yet no positive transition probability ex-
identity so ists to connect them either globally or infinitesimally.
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The quantum dynamics of a single spin-half system, deThus, up to an irrelevant additive constant, we obtain
scribed by the Hamiltonian Ed2.3), is equivalent to the
classical dynamics of the corresponding magnetic dipole in
an applied field 16,22. In both cases we find a linear pre-
cession of the average magnetic dipole about the direction of
the applied field. Of course the states involved in the classiThe question of the dynamics is reduced to studying the
cal and quantum case are quite different. In the quantum caspiantum and classical dynamics of this nonlinear top. Note

we can express the time-dependent state of the spin as  that this Hamiltonian commutes wit? the total angular
1 momentum operator. Thus the system cannot evolve out of
- - the subspaces corresponding to the irreducible representa-

=_-[1+ . . , )

p() 2 [1+n()-7] (212 tions of a two-spin system. There are two such subspaces, the

triplet with s=1 and the singlet witls=0. If we begin with
with f(t) a unit vector ands= e+ éyfrerézfrz. If the the state in which both spins are down, we cannot leave the

quantum Hamiltonian i§1=B. & the quantum dynamics are triplet subspace with this Hamiltonian. Of course combina-

given by the solution to the Bloch equations: tions of the two-spin and single-spin unitary operators will
mix the two irreducible subspaces. However, the quantum

di and classical dynamics that result from the nonlinear top
—=—BXn. (2.13 interaction(with the same Hamiltonian forim equivalently

dt the two-spin interaction, are different regardless of the initial
states, as we now show. To be specific we will consider the
dynamics restricted to the triples€ 1) subspace.

sz (2.16

N &

H,=

This is the same equation of motion as a classicailit)

magnetic dipole, in a magnetic fie'F{g- The equation de-  ~ we will follow closely the presentation of Sanddi26]
scribes the linear precession of a pomt,on the unit sphere  concerning the classical and quantum dynamics of nonlinear
around the direction oB at a rate|B|. tops. We will assume that the physical interaction between

Instead of a single classical dipole, suppose we had &wo spins is fixed as the scalar coupling of two magnetic
distribution of dipoles described by some initial probability dipoles. The corresponding Hamiltonian is then fixed and we
distribution function on the spher@,(f). As the precession can compare the dynamics of observable quantities that re-
on the sphere is linear, each vector will precess at the samsilts when the interaction is treated either quantum mechani-

rate|B| around the direction oB. The distribution at time is  cally or classically. It is conceivable that the exact quantum
then simply Qq(fi(t)). In other words the solution of Eq. dynamics could be simulated exactly by a different classical
(2.13 is the characteristic equations for the equation of modtamiltonian. After all we could always simulate the quantum
tion of the distribution function. The distribution simply ro- System on a classical computer, which is indeed a classical
tates without distortion at a constant rate aroénd system with a very C.Omp'ex. time-dependent I—!amﬂtoman.
However, the classical and quantum dynamics that resuFowever, we believe it is unlikely that any classical Hamil-
for two magnetic dipoles interacting via the spin-spin inter- onian, no matter hOW CQmp'?X’ could S|mu_late the quantum
action Eq.(2.1), an entangling interaction, are very different dyf‘afT"CS over a f”?ed time interval. We will return to this
as we show below. Thus we conclude that, while at preserﬁOlnt in the cﬂscussmn section below. . .
liquid-state NMR may not have access to entangled quantu The c!aSS|.caI dynamics of a nonlinear top is defined by
states, it does allow us to realize quantum dynamics for thos e Hamiltonian
states that will not be realized classically. It is the dynamics J
that are quantum in liquid-state NMR not the states. Liquid- H=wS,+ —Sﬁ, (2.17
state NMR allows us to experimentally study the quantum 2s
dynamics of many coupled qubits and at present probably the . . . .
myost interesting gleme[?\t is?o understanc?the ampount of%orfhere we havg included a Imear_precessmn term .V.”'me
trol we have on these dynamics. The corresponding classic piear precession frequency. In this case the quasiiy the

system, with the same Hamiltonian, could never achieve thi ﬁorppc:r;ent oé the %Iasstlrcl:all'angular momgntun;t(r)]f the tolp.
To explain this we first note an equivalence between the € lrst erm tescrlb est thga l_neatrt[ra]recesslonto teeTﬁngu ar
spin-spin interaction of Eq2.1) and a nonlinear top model. momentum vector abou XIS at the constant ra e

Consider th lecti | Sord second term describes a nonlinear precession abouatatkis
onsider the collective angular momentum oper&pde- 4 5 frequency that depends on theomponent of angular

fined by momentum. The classical mechanics is described by the mo-
tion of a point in a spherical phase space embedded in the
‘SZZE(&(ZDJF&(ZZ))_ (2.14 three-dimensional Euclidean space with coordin&gsS, ,
2 S, with S{+S)+ S2=s?1 [27]. The classical states are prob-
. ability distributions which describes an ensemble of tops
It is then easy to see that with a distribution of angular momentum directiotevery
top in the ensemble has the same magnitude of total angular
ASi:E(lJF a<21>&<zz)). (2.15 momentun. The points on the sphere of radisiare conve-

niently parametrized in polar coordinates as
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S/s=(sinf cose,sinf sing,cosh). (2.18 where the equations of motion are
112
However, we will use the stereo—g_raphic projection of the F—i w+31_|2|2 z. (2.25
sphere onto the complex plane defined by the map 1+17|
7= elbtang/2 2.19 The solution to this is easily found after noting thaf is a
' ' constant of motion. Thus
The north poIe_$z=s) is map_pe_d to the originz& 0_) and _ 1-z?
the south pole is mapped to infinity. The equator is mapped z(t)=exp —it w+J1+—|z|2 z(0), (2.26

to the unit circle. In this conformal mapping, distributions
with circular contours are mapped to distributions with cir-which in polar coordinates becomes
cular contours in the complex plane. The dynamics of a dis-
tribution of points is easily described. A linear precession o(t) = 6o, (2.27)
about thez axis simply causes a distribution of a point to o
rotate about the origin in the complex plane without chang- ¢(1)= do wt=Jtcosty, (2.28
ing it shape. However, the nonlinear precession causes thehere¢,, 6, are the initial values. In this form it is particu-
distribution to shear as different parts of the distribution withlarly easy to see that the dynamics are a rotational shear of
different values foiS, may have different precession rates. In the sphere around theaxis.
the long-time limit the distribution will tend to become  The solution for the probability density is
smeared around the origin in the complex plésee Sanders
[26] for a pictorial representationAs we will see this is very Q(z,t)= f d?z' T(z,2":1)Q(Z’,0), (2.29
different from what happens in the quantum case where the
shearing ceases after some time and revivals and fractionglyere the propagator is defined by
revivals of the initial state occur.

In order to make a comparison with the quantum dynam- T(z,2';t)=6%(z' (1) - 2), (2.30
ics we need to consider the dynamics of a distribution of s . . . .
points on the sphere. This is because a quantum state canrfhtrez (t).'s the §qll_1t|on FO tbe equation of motion for time
be perfectly localized at a point on the sphere. The classicd/Starting with the initial poin-. WhenJ_zO.we rfecover.th(_a
state of the system is described by a probability distributiorPr€Vious result for a classical magnetic dipole; the distribu-

Q(2) of the vectorS corresponding t@ The expectation t|gn Stlmply rpta_tre;]s, V\f'_'rth?[mf ?r:stortloln, at ? constant ;@te |
values for the components of angular momentum are give outth& axis. The efiect ol In€ honlinear term proportiona
by to J causes a rotational shearing of the distribution around

the z axis.
s(1—|z?) We may include additional stochastic dynamics on top of
E(Sz)zf dM(z)Q(z)1+—|z|2, (2.20 the Hamiltonian dynamics. However, it is important to note

that if Q(z,t) is a probability distribution then the propaga-
- torsT must be positive_and_ may be ?nterpreteq as transition
5(Sx_i5y):f du(2)Q(2) -3, (2.21  probabilities. The Hamiltonian Liouville evolution is a spe-
1+|z] cial case. As the propagator is simply the Green’s function
) ) . ) _for the evolution equation the positivity requirement for the
where the integration measure in the stereographic plane i$yronagator restricts the allowed form of evolution equations.
It is well known that the allowed forms correspond to
_ 2s+1 2y-2 Fokker-Planck equations and can contain at most second-
du(z) (1+[7%)7~ (2.22 o : " i .
™ order derivatives with positive definite diffusion matrices
] [28]. In other words, if the propagators are to be positive the
We have chosen the prefactos 21 as a scaling of the clas- eyolution equation is necessarily restricted regardless of the
sical probability distribution, which makes the comparisoninitial or final conditions. We may thus define allowed clas-

with the quantum case more convenient. o sical dynamics either in terms of positive transition prob-
~ The classical dynamics are described by a Liouville equagpjjities or in terms of the differential operator for the dy-
tion namics.
To compare the quantum and classical dynamics we now
@ ={H,Q} (2.23 need to define a relevant quantum distribution. It is argued in
at T ' Refs.[26,29 that the appropriate object is the matrix ele-

. . _ ment of the quantum density operator in a coherent state
where the Poisson brackef} may be determined using basis. In the case of the harmonic oscillator, these are the
{Si,Sj}=Z2keijSk. The Liouville equation is a first-order coherent states of the Heisenberg-Weyl group, and the result-

partial differential equation of the form ing distribution is a trudi.e., positive probability distribu-
9Q(z,1) P tion for simultaneous measurement of position and momen-
z, _
=-7z—Q(zt)+c.c., (2.24 tum [30]. In the case of angular momentum we can use the
o 0z SU(2) coherent statel81] defined by
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|z)=R(2)|s,s), (2.31) Thus, even though th® function is a true probability
distribution, its marginals do not give the quantum expecta-
25 19g\ 112 tion values; an additional rule is needed to connect averages
=(1+ |z|2)*52 ( m) over theQ function to the quantum averages. This is analo-
m=0

gous to the case for the harmonic-oscillator coherent states
(2.32 [29]. In the case of a spherical phase space, however, the
difference appears already at the level of the first-order mo-
ments.
Taking matrix elements of the quantum Liouville equation

xzZ"s,s—m),,

where|s,n) are the 2+ 1 eigenstates d,, and the rotation
operator is

R . d

R(z)=exd —i6n-S] (2.33 d_lz: —i[H,p], (2.40
with the unit vectorn=(sin¢,cos¢,0). The statesz) are
product states in terms of the qubits, which are rotated fronwe obtain the evolution equation
the statg0),|0), by the angleg and 6 on the Bloch sphere:

? azt=—i[ w32 Lo ) L oz
1 —Q(z,t)=—i|l ot +——— 5=z2—|z—=Q(zt)+c.c..
_ at 1+|z|* 2s"adz) 9z
1) 1+12P (10)1+2/1)1)®(]|0),+2]1),). (2.41)
The function This equation is linear iQ; thus, p; in Eq. (2.8) will obey
exactly the same equation. In the limit 8f>00, with o, \
Q(z,H)=Tr(p(1)[2)(z) (2.34  neld constant, the equation reduces to the first-order differ-

ential equation of classical dynamics. The difference be-
tween quantum and classical dynamics is due to the second-
5 re e Brder differential operators. Note that while these terms are
|2)(2|d*z/27. Note that all allowed distributions are neces- second order, they are certainly not of the kind expected for
sarily positive (and bounded from the construction of 5 gitfysion equation, as the corresponding diffusion matrix
Q(z,t) as a trace of the product of a positive operator and gyqy|d not be positive definite. This is a familiar feature of

projection operator. For example, tgfunction for a par-  he difference between classical and quantum dynamics as

is a true(that is positive probability distribution for mea-
surements defined by the projection operator valued measu

ticular atomic coherent stafey) is reflected in the dynamics of a quasiprobability distribution
" 1125 and was first noted in the context of quantum opfR2].
Q(z)= (1+252)(1+22 )} (2.39 In Ref. [26] it was shown how extreme this difference
(1+2025)(1+22") could be. For example, at timés: 7rs/J, an initial coherent

. . ) state(or coherent pseudopure state,) would evolve in the
The first moments are given by integrals over @&unc-  rotating frame =0) into the pure state
tion as
2—1/ e—iTr/AZ +(—1 Sei71'/4_Z 2.4
o o Te ™z + (-1 -z)] (242
<S><_|Sy>:f dM(Z)Q(Z)1+—|Z|2, (2.39

for which the resultingQ function is double peaked. The
state is entangled in terms of the pure state representation.
(s+1)(1-12? No state such as this could ever be obtained from the classi-
1+ [47 ) (2.30  ¢q dynamics given in Eq(2.29 starting from the initial
state Eq.(2.35.

<SFJdMDmD

The important point to notice is that the averageSofare
given by the same functional form as the classical case, apart Il. DISCUSSION

from an additional term that becomes negligible in the semi- )
classical limit as— . The second-order moments are given Ve noted above that the difference between the quantum

by and classical dynamics appears through the second-order de-
rivatives in Eq.(2.41). How does this difference become
. 2(2s+3)(s+1)z*? manifest in the propagator for the equation? It is far from
<S§>:f dﬂ(Z)Q(Z)( 11272 ) (2.38  clear that we can find a positive propagator corresponding to
the differential operator on the right-hand side of E3j41),
especially as this equation is not of Fokker-Planck fdtine

<”s§>: f du(2)Q(2) diffusion matrix is not positive definije Nonetheless all ini-
tial and finalQ functions must be positive by construction.

(s+1)2—2s(s+2)|2|?+ (s*+4j+5)|2* We now show that the quantum evolution of fQefunction
( FENERE ) cannot be written in terms of transition probability propaga-

tors. Despite this it can be obtained uniquely from the initial
(2.39 condition,Q(z,t=0)
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To begin we define th€-function amplitude for a pure It is generally accepted that uncontrolled interactions with
state| y(t)) an environment enable the quantum and classical dynamics
to be reconciled when states of the environment are averaged

Az,1)=(Z|¥(1)). (3.1 over[33]. In the case of two coupled spins, there are a vari-

N ety of possible environmental interactions. In order to illus-
The Q functlon Isgiven by_the modzulus sqyarec_] of the yrate the principle of decoherence, we take the simplest pos-
Q-function amplitude,Q(z,t)=|Q(z,t)[" The linearity of  gihie case in which both spins are coupled equally to the

the Schrdinger equation now requires that the dynamics ofs3me environment with a Hamiltonian that conserves the to-

the Q amplitude can be written in terms of a linear propaga- A . .
tor Qamp propaga-, , component of angular momentu8y. While this col-

lective dephasing model is not very realistic for NMR ex-
periments, it will illustrate how decoherence can cause the
Q(Z,t)=j d?z' L(z,2';1)Q(2',0), (3.2  quantum propagator in E¢3.6) to become diagonal.
The collective dephasing master equation is given2e}
where Q(z,0) is the Q-function amplitude for the initial
state, and the propagat@or s=1) is constructed from the

. _ Y s re
unitary time evolution operatdd (t) as p=Dp=~ilH.p] ZS[SZ'[SZ'p]]' @7

L(z,21;0)=(z|U(1)|zy) (33 The general solution for th® function may then be written
as
3 1
(1+[2)(1+]z/?) o [
Q(zt)=| d?z1 | d*2,P(2,21,25,t)(21|p(0)|2,),
) J
X ex;{—l o+ — t} 3.9
2s
J where the propagator is given in terms of the coherent-state
+275 2+ 7% expg —i| —w+ |t ) (3.4  matrix elements of the dynamically propagated off-diagonal
2s projector

Thus the Q-function dynamics can be written in integral

form as P(2,21,22,t) = (2| €™ (|21)(22])|2). (3.9

o . For short times we can expand this to linear ordet. ifihe
Q(Z’t):f d°2,d°2,£(2,2,;1) L*(2,22;1) dominant non-Hamiltonian terms in total spirare given by

X Q(21,0* Q(2,,0). (3.9 yst |2)%2—2,|? 2
- . A e N e P TP
In the case of a general initial stap€0) the equation be- 1 2
comes XP(Z;241,25,0)+--. (3.10
Q(Z’t):j d?2,0%2,L(2,2, ;1) L* (2,25;1)(z4] p(0) | 2). The cofactor ofyst/2 is less than unity. For two spin-half
systems withs=1, the coherence decay rate is then set en-

(3.6 tirely by vy, which could be small compared to the time scale

This last expression seems to suggest we need to knoGet by the coherent interactian 1. When the initial state is
more than just the initial conditio®(z,0), but this is not the concentrated of,| =[z,| the decoherence is also small. The

case. The matrix elements pfin the coherent-state basis conerence decay rate for large semiclassical systems for
suffice to uniquely determine the state and thus uniquelyVhich s>1 can be large. Of course the resulting propagator

determine the off-diagonal matrix elemefigd] by analytic 'S not the same as the classical Hamiltonian regkl).
continuation. A similar statement may be made about thé2-29] in the absence of dephasing as the coupling to the

propagator in Eq(3.6). We only need to know the diagonal environment would add some level of phase diffusion to the
matrix element olUT|z)(z|U in order to determine the total classical dynamics as well, broadening @éunction in Eq.
propagator in Eq(3.6). Thus knowledge of the initia (2.29. Ir_1 the case o6=1 C(_)n5|dered her(_-:- one would_ need
function Q(z,0) and a positive linear propagathi(z,z; ;t) to consider all th.e term;s in the short-time expansion for
—(2,]U(1)T|2)(z]U(t)|z;) uniquely determines the solution P(z;21,25,t), but it remains the case that terms with large
to the quantum evolution equation for tRefunction. Thisis ~ Values of|zy| —[2,| are rapidly suppressed.

of course also true for the classical evolution equation, Other two-qubit interactions might be considered, for ex-
through a simple convolution of the initial state and the@MPle, the exchange interactifdd],

propagator. However, the propagation integral in the quan-

tum case, EQq(3.6), is not a positivelor even real function H 235(1).&(2)22 3.8 E (3.11)
and can have no interpretation as a transition probability. 4 2)’ '
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where the total spin operator B= (M +¢@)/2. This is  conjecture that a sequence of pulsé$(6,,bn,xn)

the Hamiltonian for a rigid body with an isotropic moment of =exp(—ié, ﬁn'é)exp(_i)(n 522), wherefi= (cosp,sin ¢,0) will
inertia with no external torques and with moment of inertiasufﬁce to perform guantum a|gorithms in the Hilbert space of
J~%. The classical phase space is a cylinder with canonicahe nonlinear top. Further work remains to be done to deter-
coordinatesS on the axis of the cylinder and around the  mine whether there are interesting efficient algorithms in
circumference. The classical equations are the same as thog@ms of the number of pulses afshy) log(s).

of a free mass with periodic boundary conditions in position

at = 7:=Js and S=0. The first of these again indicates a

rotational shearing of a localized distribution on the phase IV. CONCLUSION
space. When the shec_':lrlng causes different parts of the state tOWe have investigated classical and quantum Hamiltonians
overlap on the classical phase space, we expect the corre:

sponding quantum system to exhibit interference fringes the nonlinear top and show that they produce different
P 94 Y . . ! 9€Supservables even in the presence of highly mixed states. This
Thus the quantum and classical dynamics of two interactin

magnetic dipoles with such an interaction must differ.%hows that even if a state is separable, its classical and quan-

(Clearly such an interaction would need a different mecha:[um evolution can differ. Thus this fortifies the claim that the

- . X ; evolution is one of the quantum elements of liquid-state
nism in classical systems as exchange interactions are quaﬂ- inf - . it d
tum mechanical. MR quantum information processing. However it does not

. prove that bulk ensemble NMR quantum computation is

As we have seen, the nonlinear top can generate the su- : | h d icul lassical
erposition state e(*i”’4|s s) +e*i”’4|s ~s),). A similar uniquely qu_antum. Wg ave used a parucu ar classica
gtate can be generated l3y Za sequen(’:er\mZT 'gates onN model, that is one motivated by the physics of two interact-
X ) . .. ing magnetic dipol mpare th ntum and classical
=log, (2j+1) qubits. A product state & qubits can be writ- g magnetic dipoles, to compare the guantum and classica

; t 2 bi : e h i< th dynamics. It may well be the case that for states that are
ten in terms of a binary stringX) =I17|x;), wherex; is the  ¢joqe 16 the maximally mixed state there is another classical

ith term of the stringX. Alternatively X could encode an  ,qqe|(in effect a hidden variable modethat correctly de-
integerk in binary form. The maximally entangled stateMf . ipes the dynamics as far as is required to model the ob-

qubits, |000...0)+|1&1...]} would the_n takg the forniO)_ served results in NMR experimer{ts6].

+[M), whereM=2". Such as state is easily generated in a  Eyen if the transformation of the state is not classical, our
quantum computer by a single Hadamard gate on the fir§fesent paper does not show that using these mixed state
qubit followed by a cascaded sequence of contraled- ¢ phits is as powerful as a pure state quantum computer. If we
gates. If we change the notation for angular momentumyse the pseudopure state as has been done in present experi-
states so thgs,m—s),=|m), wherem=0, 1,..3, then the  ents; the signal-to-noise ratio decreases exponentially, thus
angular momentum superposition state generated by the nopsngering the algorithms inefficient. In this case liquid-state
linear top is equivalent to the maximally entangled statenymR does not provide any advantagyeith respect to speed
This equivalence suggests that a nqn”neaf tOP may itself bgyer classical computers. In the absence of noise, Schulman
made to act as a quantum computer in tse-2 dimensional g1 vazirani[36] have shown how to efficiently transform
Hilbert space. Indeed numerical evidence exi85] that @  tne injtial mixed state into a pure state. Some simulations of
time-dependent Hamiltonian of the forrhl(t)=B(t)-S  quantum systems evolving under unitary transform and the
+J(t)S§ can generate any state in the Hilbert space by algorithm suggested if87] could also be implemented effi-
suitable choice of the time-dependent coefficients. Weiently as long as noise is negligible. Thus liquid-state NMR

FIG. 1. Comparison between the classical and
gquantum evolution of th€(z) function. The ini-
tial state is given by(a). It corresponds to the
distribution for the quantum state=1). (b) and
(c) depict the classical and quantum distribution
at timet=27/J (for ®=0). The classical evolu-
tion follows the equation of motion Eq2.24)
and the quantum one E(R.41). The discrepancy
between the classical evolution and the quantum
one is evident.

b)
Q%)

cooo
otk o @ P
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(in the absence of noise, i.e., on time scales smallerthan required to produce the answer of some problem starting
offers a testing ground for QIP. The dynamics are correctfrom a fiducial state. Classical devices require an exponential
Moreover it has the right error model to provide a test bedamount of algorithmic information compared to a quantum
for small quantum computatior(sip to roughly 10 qubifs = computer to answer certain problems. Simulating liquid-state
The difference between liquid-state NMR and other proposNMR experiments is one such problem compared to known
als for quantum computation is that, in the former case we delassical algorithms.
not have, even in principle, a method to make the quantum So where did the power of quantum computation come
evolution robust. In practice this does not distinguish NMRfrom? In this paper we have argued that the power comes
from other present devices as none have approached the dom the dynamics of the system. A similar argument has
curacy needed for scalability. been made by otheld0,16. We have criticized the view

In the present paper we have neglected the possibility ofhat entanglement is the source of power of quantum com-
hidden variables. The reason is that there is a trivial hiddeputation by giving algorithms and dynamical evolution,
variable model that would explain all the present experi-which do not depend on entanglement. There may be a vari-
ments in QIP(including not only NMR but also other tech- ety of elements which make these devices more powerful,
nologieg as long as observations are not made on spacelikend for another unusual method to quantum compute see
surfaces. The model can be thought of as a classical comi38]. However, as long as we lack a proof that we cannot
puter that simulates the quantum evolution and tells the bitsimulate quantum systems efficiently, it is hard to attribute
of the physical system how to behave so they mimic quanthe source of the power of quantumness, and we await more
tum mechanics. Although this model can describe all thepowerful arguments.
experiments in QIP today, the amount of resources it uses
compa.red.to its qL_Jantum counterpart always seem to be ex- ACKNOWLEDGMENTS
ponential in the size of the problefthe model of Schack
and Caves is such a modgldlt is important that the resources ~ G.J.M. gratefuly acknowledges discussions with Carl
account for not only the signal-to-noise but all resources as i€aves. E.K. and R.L. acknowledge support from the U.S.
is usually easy to trade one resource for another. We woul®OE under Contract No. W-7405-ENG-36. Much of this
like to conjecture that what distinguishes classical and quanwvork was completed while G.J.M., R.L., and E.K. were at
tum computation is the amount of algorithmic information the Aspen Center for Physics.
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