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Quantum dynamics of two coupled qubits
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We investigate the difference between classical and quantum dynamics of coupled magnetic dipoles. We
prove that in general the dynamics of the classical interaction Hamiltonian differs from the corresponding
quantum model, regardless of the initial state. The difference appears as nonpositive-definite diffusion terms in
the quantum evolution equation of an appropriate positive phase-space probability density. Thus, it is not
possible to express the dynamics in terms of a convolution of a positive transition probability function and the
initial condition as can be done in the classical case. It is this feature that enables the quantum system to evolve
to an entangled state. We conclude that the dynamics are a quantum element of nuclear magnetic resonance
quantum-information processing. There are two limits where our quantum evolution coincides with the clas-
sical one: the short-time limit before spin-spin interaction sets in and the long-time limit when phase diffusion
is incorporated.
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I. INTRODUCTION

Recent work in quantum-information theory has su
gested that quantum computers are more powerful than
classical counterparts@1–6#. In quantum communication
there already exist algorithms which have been proved to
perform their classical counterparts@7,8#. The situation in
computation is not as clear: we know of problems wh
have quantum algorithms that are exponentially faster
only when compared to the known classical ones@1,3,5,6,9#
~not the optimum ones!. The special power of quantum com
puters is only a conjecture as we have no proof that
cannot simulate efficiently quantum systems using class
computers. Although most physicists would believe this
ficient simulation to be impossible, this is at the foundati
of the distinction between classical and quantum comp
tion.

If quantum computers are indeed more powerful th
classical ones, could we pinpoint the origin of this power
one or a few elements in the quantum-mechanical theory
the ‘‘folklore,’’ the power of quantum computation has be
attributed to entanglement. In quantum computers where
initial states are pure it has been claimed@10,11# that the
presence of entanglement distinguishes quantum and cl
cal algorithms. Indeed the evolution of a quantum syst
starting in a pure state and evolving unitarily without e
tanglement~which could occur if there were no interaction
between the components! can be efficiently simulated by
classical system; on the other hand, a classical simulatio
generic quantum evolution for a pure state has no kno
efficient algorithm. At the basis of this argument is the abil
to efficiently simulate a system by a classical computer.

The argument employed in Ref.@11#, which uses the ex-
istence of an efficient classical simulation in the absence
entanglement, does not carry through when the initial stat
mixed ~i.e., not a pure state!. That is, for some highly mixed
state@12# such as the state of nuclear spins present in liqu
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state nuclear magnetic resonance~NMR!, we do not know
how to efficiently simulate the evolution of the system on
classical computer. For these states, the density matrix ca
represented as a sum of separable states with positive c
ficient ~to be interpreted classically as probabilities to be
the respective states!. However, under generic unitary evolu
tions, the choice of separable states must change. No
cient algorithms exist to relate the initial separable state
the final ones for an increasing number of spins.

We do not yet have a generic quantitative measure
entanglement, although we do have a measure for absen
entanglement. Pure states are defined as being separab
nonentangled, if they can be expressed as products of
system~such as qubit! wave functions. For mixed states, th
notion is generalized to the existence of at least one exp
sion of the state in terms of separable pure states with p
tive coefficients. Thus an equal mixture of the maxima
entangled state of two spins~Bell states! does not contain
any entanglement because this density matrix can be
expressed in terms of separable states~for example, the com-
putational states with equal probability!. The separable state
of spin-half systems could be described at a given time a
probability distribution of a set of classical tops.

The notion of entanglement for mixed states has b
developed in the context of quantum communication. O
definition corresponds to the number of maximally entang
states that can be an extracted ensemble of these states@13#.
But a computation is inherently a dynamical process, and
do not know in general how to describe the evolution of o
mixed separable state to another using an efficient class
description, in contradistinction to the pure state case.
quantum device can thus provide some information m
efficiently that a classical device could.

If mixed states are used as initial states of a quant
computer, entanglement does not seem to play the esse
role in distinguishing quantum and classical algorithms a
might if we used pure states. A particular example of a qu
©2002 The American Physical Society16-1

https://core.ac.uk/display/14999368?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


r-

e
ng

m
w
i
th
a

n
a
u
h
si
t

m
gy

a
a
e

ry
i
t
a

um
en
nc
ta
tio
ta
fi
a
n.
ur
ut

o
dy
a

el

r
t

ef

e
dy
-
er
on
y

(
d

-
ack
the

the

the
ri-

e,
re-

mu-
lain
is-
this
alf
of

ri-
to

ins
ag-
it is
mal-
tate

r
the
tion
um
at

ica-

nd
be-
e

hly
-

t is
ust
ari-
me

l
ame
e
d for

to
al-

an-
ces
ers
m
in-
ns,

MILBURN, LAFLAMME, SANDERS, AND KNILL PHYSICAL REVIEW A 65 032316
tum algorithm without a known efficient classical counte
part is the one given in Ref.@14#. The algorithm gives the
distribution of eigenvalues of a quantum Hamiltonian. It us
as an input state an extremely mixed state, one with a si
qubit in a pure state~a pseudopure state@15# would also do!
and all other qubits are maximally mixed. This algorith
uses extremely mixed states but can still outperform kno
classical algorithms. For a small number of qubits there w
definitely be no entanglement if a pseudopure state of
first bit is used; as we increase the number of bits there m
or may not be entanglement. But even if it happens at thenth
qubit, the algorithm will not go through any phase transitio
thus, it would be meaningless to refer to the algorithm
classical before the presence of entanglement and as q
tum afterwards. What distinguishes this algorithm from t
classical analog is that the rules for transforming the den
matrix are the quantum rules, and we do not know how
efficiently simulate them by the classical rules.

The algorithm in Ref.@14# is especially relevant in the
context of recent discussions of experiments in quantu
information processing using liquid-state NMR technolo
@10,16#. The algorithm in Ref.@14# could be implemented in
liquid-state NMR. The authors of@10# commented: ‘‘The re-
sults in this letter suggest that current NMR experiments
not true quantum computations, since no entanglement
pears in the physical states at any stage.’’ This statem
makes the assumption that entanglement is the necessa
ement of quantum computation following the suggestion
@11#. In the same paper@10# however, it was recognized tha
it may not be so easy to separate quantum dynamics
entanglement when trying to pinpoint the power of quant
computation; ‘‘The results in this letter suggest that curr
NMR experiments are not true quantum computations, si
no entanglement appears in the physical states at any s
We stress, however, that we have not proved this sugges
since we would need to analyze the power of general uni
operations in their action on separable states. To reach a
conclusion, much more needs to be understood about wh
means for a computation to be a ‘quantum’ computatio
However, the claim that the evolution of unentangled p
states can be efficiently simulated by a classical comp
@11# does not carry through to mixed states. The power
quantum computation can come from properties of the
namics, not the state. This was also recognized by Sch
and Caves@16#. Indeed, the real origin of the criteria in@11#
is the dynamical evolution of the system not the state its
If we apply the type of unitary transformation used in@11# to
a highly mixed state~so that entanglement might not appea!
it is as hard to simulate on a classical computer as when
state is initially pure. This point was not considered in R
@10#.

Recognizing this fact, Schack and Caves attempted to
plain some liquid-state NMR experiments using classical
namics, without success@17#. They did not derive an equa
tion of motion for the behavior of the spins but rath
provided a model which described the effect of ‘‘gates’’
the states. Their model did predict an exponential deca
the signal as a function of the number of gates going as
122n21)2g for n the number of qubits in the experiment an
03231
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g the number of gates@18#. Even in the three-qubit experi
ments they commented upon, the gates defined by Sch
and Caves are not the physical gates implemented in
experiment as this would have ruled out their model. In
seven-qubit experiment of Ref.@19#, the model predicted a
decrease in the signal-to-noise ratio of;1040 smaller than
observed, a number which unquestionably rules out
model. Discrepancies of their theory with older NMR expe
ments, although not called quantum computing at the tim
are plentiful in the NMR literature, and the readers can
view experiments performed twenty years ago@20,21#.

What does make the quantum dynamics so hard to si
late? Could there be other classical models which exp
NMR experiments? Can we understand the origin of the d
crepancy between classical and quantum evolution? In
paper we compare the evolution of two coupled spin-h
particles under quantum and classical evolution. The work
the last fifty years in NMR shows the consistency of expe
mental results with quantum mechanics and the failure
find a classical description; ‘‘The dynamics of isolated sp
can be understood in terms of the motion of classical m
netization vectors. To describe coupled spins, however,
necessary to have recourse to a quantum-mechanical for
ism where the state of the system is expressed by a s
function or, more generally, by a density operator@22#.’’
Here, we will give the explicit origin for this difference fo
the simplest choice of a classical model; the one with
same Hamiltonian as the quantum model. In the next sec
we derive the evolution equation for classical and quant
interacting spin-half particles, explicitly demonstrating th
the classical theory~with the same Hamiltonian! cannot re-
produce the quantum equations. We then discuss impl
tions of these equations and draw conclusions.

II. CLASSICAL AND QUANTUM DYNAMICS
OF COUPLED SPIN-HALF PARTICLES

We investigate the equations of motion of classical a
quantum spin-half particles and show that the quantum
havior is fundamentally different from the classical one. W
show that even in the cases where the density is hig
mixed~nonentangled! the evolution leads to different observ
able quantities. There is some ambiguity in exactly wha
meant by the classical dynamics of such a system. We m
agree on some ground rules to make a meaningful comp
son. Semiclassical dynamics has a long history and so
rules have been established@23#. We will assign a classica
analogue for a quantum problem by demanding that the s
functional form of the Hamiltonian be used but with th
corresponding classical phase-space variables substitute
the quantum canonical operators.

In the case of a spin-half system this would appear
present some problems, but the situation is clearer if we
ways work in the irreducible representations of the total
gular momentum of the system. There are two subspa
corresponding to total angular momentum; quantum numb
s51 ands50. The dynamics of a single spin-half syste
will conserve angular momentum. However, for two sp
half systems, with arbitrary one- and two-qubit interactio
6-2
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QUANTUM DYNAMICS OF TWO COUPLED QUBITS PHYSICAL REVIEW A65 032316
angular momentum need not be conserved and these
spaces will become coherently mixed. It will suffice, ho
ever, to consider one particular two qubit gate that does c
serve angular momentum, which is an important two qu
gate for quantum computing and for which the classical a
quantum dynamics are completely different except on
short-time scale. Furthermore, this is precisely the two qu
gate accessible in NMR quantum computing.

In order to produce entangled states of single spin-h
systems, a variety of possible interactions could be us
however, in NMR the natural interaction is of the form

H25
J

4
ŝz

~1!ŝz
~2! ~2.1!

with \51 and the subscript 2 indicating that the interacti
is between two qubits. The dynamics of two spin states
follows from this Hamiltonian is given by a unitary operat
U2(t) where

U2~ t !5expF2 i
J

4
tŝz

~1!ŝz
~2!G . ~2.2!

In addition to this two-spin unitary operator or ‘‘gate,’’ ge
neric quantum computation needs single spin dynamics. T
is easily generated by the scalar coupling of a spin-half m
netic dipole with an applied magnetic field. The Hamiltoni
for these single spin rotations for the spin labeledi is

H15BW ~ t !•sW ~ i !, ~2.3!

where the subscript 1 indicates that the Hamiltonian app
to a single qubit, and the corresponding unitary operator

U1~ t !5exp@2 iBW •sW ~ i !#. ~2.4!

We can now useU1 andU2 to generate an entangled sta
For example, the Bell state

uf1&5
u↓&1^ u↓&21u↑&1^ u↑&2

&
~2.5!

is generated from the product stateu↓&1^ u↓&2 by

uf1&5e2 ip/4ei ~p/4!sx
~2!

ei ~p/4!sz
~1!

e2 i ~p/4!sy
~2!

e2 i ~p/4!sz
~1!sz

~2!

3ei ~p/4!sy
~2!

e2 i ~p/4!sy
~1!

u↓&1^ u↓&2 . ~2.6!

In liquid-state NMR we do not begin with initial pur
states, but we begin with a mixed state-density operator

re5Z21e2bH ~2.7!

with H the system~individual nuclear spins on a single mo
ecule! Hamiltonian,b5(kBT21) andZ5trre @22#. At high
temperature, as is the case for present-day liquid-state N
quantum computation@15,24#, the state is very close to th
identity so
03231
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re;
~12e!

2N 11er1 , ~2.8!

where d52N is the dimension of the Hilbert space forN
qubits,1 is the identity operator in this tensor product spa
and r1 is an arbitrary density operator. For example, in t
case of a molecule with two spins and scalar coupling
have,

H5\v1ŝz
~1!1\v2ŝz

~2!1Jsz
~1!sz

~1! ~2.9!

with J!v1 ,v2 , and thus

re'
1
4

1
e

4
~ ŝz

~1!1mŝz
~2!! , ~2.10!

wherem is the ratio of the Larmor frequencies of spin 2 a
1. By a carefully tailored sequence of rf pulses, any two-s
unitary transformation of this state can be achieved. Furth
more, using a spatially nonuniform magnetic-field pulse~a
gradient pulse! and averaging the varying phases over t
sample, we can effect particular nonunitary transformatio
@25#. With these two techniques it is possible to prepare
system in a so-calledpseudopure stateof the form

re'
~12e!

2N 11euC&^Cu ~2.11!

for uC&^Cu a pure, and possibly entangled, state forN spins.
It is possible to place bounds on the value ofe for which the
total state in Eq.~2.10! is entangled@10#, that is, a state
which cannot be written as a convex combination of fact
izable density operators. In typical experimentse'1025, a
value which is too small for these states to be entangled.
pseudopure states produced in two qubit NMR quantu
information processing experiments are not entangled
thus the spin-spin correlations at a fixed time have a pu
classical interpretation.

Even though entangled states have not yet been prod
in NMR quantum-information processing experiments, t
does not mean that the system is not quantum mechan
The important question is whether there is a classical
scription of the dynamics of these experiments. This is
question that can and must be answered in a way that d
not depend on the initial and final states of the system. It
question concerning the propagator, or Green’s function,
the dynamics, not the initial and final states. It is possi
that the initial and final states may exhibit no quantum c
relations and have a perfectly valid classical description,
not be connected by a classical dynamical model, be it
terministic or stochastic. In the case of stochastic dynam
the answer to this question will involve a specification
transition probabilities. As we show below, via a particu
but well-motivated classical model, it is possible that t
initial and final states are described by separable states~and
thus could be interpreted as a perfectly valid classical pr
ability distribution! yet no positive transition probability ex
ists to connect them either globally or infinitesimally.
6-3
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MILBURN, LAFLAMME, SANDERS, AND KNILL PHYSICAL REVIEW A 65 032316
The quantum dynamics of a single spin-half system,
scribed by the Hamiltonian Eq.~2.3!, is equivalent to the
classical dynamics of the corresponding magnetic dipole
an applied field@16,22#. In both cases we find a linear pre
cession of the average magnetic dipole about the directio
the applied field. Of course the states involved in the cla
cal and quantum case are quite different. In the quantum
we can express the time-dependent state of the spin as

r~ t !5
1

2
@11nW ~ t !•sW # ~2.12!

with nW (t) a unit vector andsW 5eW xŝx1eW yŝy1eW zŝz . If the
quantum Hamiltonian isĤ5BW •sW the quantum dynamics ar
given by the solution to the Bloch equations:

dnW

dt
52BW 3nW . ~2.13!

This is the same equation of motion as a classical~unit!
magnetic dipole,nW , in a magnetic fieldBW . The equation de-
scribes the linear precession of a point,nW , on the unit sphere
around the direction ofBW at a rateuBu.

Instead of a single classical dipole, suppose we ha
distribution of dipoles described by some initial probabil
distribution function on the sphere,Q0(nW ). As the precession
on the sphere is linear, each vector will precess at the s
rate uBu around the direction ofBW . The distribution at time is
then simplyQ0„nW (t)…. In other words the solution of Eq
~2.13! is the characteristic equations for the equation of m
tion of the distribution function. The distribution simply ro
tates without distortion at a constant rate aroundBW .

However, the classical and quantum dynamics that re
for two magnetic dipoles interacting via the spin-spin int
action Eq.~2.1!, an entangling interaction, are very differe
as we show below. Thus we conclude that, while at pres
liquid-state NMR may not have access to entangled quan
states, it does allow us to realize quantum dynamics for th
states that will not be realized classically. It is the dynam
that are quantum in liquid-state NMR not the states. Liqu
state NMR allows us to experimentally study the quant
dynamics of many coupled qubits and at present probably
most interesting element is to understand the amount of c
trol we have on these dynamics. The corresponding class
system, with the same Hamiltonian, could never achieve t

To explain this we first note an equivalence between
spin-spin interaction of Eq.~2.1! and a nonlinear top mode
Consider the collective angular momentum operatorŜz de-
fined by

Ŝz5
1

2
~ ŝz

~1!1ŝz
~2!!. ~2.14!

It is then easy to see that

Ŝz
25

1

2
~11ŝz

~1!ŝz
~2!!. ~2.15!
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Thus, up to an irrelevant additive constant, we obtain

H2[
J

2
Ŝz

2. ~2.16!

The question of the dynamics is reduced to studying
quantum and classical dynamics of this nonlinear top. N
that this Hamiltonian commutes withŜ2 the total angular
momentum operator. Thus the system cannot evolve ou
the subspaces corresponding to the irreducible represe
tions of a two-spin system. There are two such subspaces
triplet with s51 and the singlet withs50. If we begin with
the state in which both spins are down, we cannot leave
triplet subspace with this Hamiltonian. Of course combin
tions of the two-spin and single-spin unitary operators w
mix the two irreducible subspaces. However, the quant
and classical dynamics that result from the nonlinear
interaction~with the same Hamiltonian form!, equivalently
the two-spin interaction, are different regardless of the ini
states, as we now show. To be specific we will consider
dynamics restricted to the triplet (s51) subspace.

We will follow closely the presentation of Sanders@26#
concerning the classical and quantum dynamics of nonlin
tops. We will assume that the physical interaction betwe
two spins is fixed as the scalar coupling of two magne
dipoles. The corresponding Hamiltonian is then fixed and
can compare the dynamics of observable quantities tha
sults when the interaction is treated either quantum mech
cally or classically. It is conceivable that the exact quant
dynamics could be simulated exactly by a different class
Hamiltonian. After all we could always simulate the quantu
system on a classical computer, which is indeed a class
system with a very complex time-dependent Hamiltonia
However, we believe it is unlikely that any classical Ham
tonian, no matter how complex, could simulate the quant
dynamics over a fixed time interval. We will return to th
point in the discussion section below.

The classical dynamics of a nonlinear top is defined
the Hamiltonian

H5vSz1
J

2s
Sz

2, ~2.17!

where we have included a linear precession term withv the
linear precession frequency. In this case the quantitySz is the
z component of the classical angular momentum of the t
The first term describes the linear precession of the ang
momentum vector about thez axis at the constant ratev. The
second term describes a nonlinear precession about thez axis
at a frequency that depends on thez component of angular
momentum. The classical mechanics is described by the
tion of a point in a spherical phase space embedded in
three-dimensional Euclidean space with coordinatesSx , Sy ,
Sz with Sx

21Sy
21Sz

25s21 @27#. The classical states are prob
ability distributions which describes an ensemble of to
with a distribution of angular momentum directions~every
top in the ensemble has the same magnitude of total ang
momentum!. The points on the sphere of radiuss are conve-
niently parametrized in polar coordinates as
6-4
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QUANTUM DYNAMICS OF TWO COUPLED QUBITS PHYSICAL REVIEW A65 032316
S/s5~sinu cosf,sinu sinf,cosu!. ~2.18!

However, we will use the stereo-graphic projection of t
sphere onto the complex plane defined by the map

z5eif tanu/2. ~2.19!

The north pole (Sz5s) is mapped to the origin (z50) and
the south pole is mapped to infinity. The equator is map
to the unit circle. In this conformal mapping, distribution
with circular contours are mapped to distributions with c
cular contours in the complex plane. The dynamics of a d
tribution of points is easily described. A linear precess
about thez axis simply causes a distribution of a point
rotate about the origin in the complex plane without cha
ing it shape. However, the nonlinear precession causes
distribution to shear as different parts of the distribution w
different values forSz may have different precession rates.
the long-time limit the distribution will tend to becom
smeared around the origin in the complex plane~see Sanders
@26# for a pictorial representation!. As we will see this is very
different from what happens in the quantum case where
shearing ceases after some time and revivals and fracti
revivals of the initial state occur.

In order to make a comparison with the quantum dyna
ics we need to consider the dynamics of a distribution
points on the sphere. This is because a quantum state ca
be perfectly localized at a point on the sphere. The class
state of the system is described by a probability distribut
Q(z) of the vectorS corresponding toz. The expectation
values for the components of angular momentum are gi
by

E~Sz!5E dm~z!Q~z!
s~12uzu2!

11uzu2
, ~2.20!

E~Sx2 iSy!5E dm~z!Q~z!
2sz*

11uzu2
, ~2.21!

where the integration measure in the stereographic plan

dm~z!5
2s11

p
~11uzu2!22. ~2.22!

We have chosen the prefactor 2s11 as a scaling of the clas
sical probability distribution, which makes the comparis
with the quantum case more convenient.

The classical dynamics are described by a Liouville eq
tion

]Q

]t
5$H,Q%, ~2.23!

where the Poisson bracket$,% may be determined usin
$Si ,Sj%5(ke i jkSk . The Liouville equation is a first-orde
partial differential equation of the form

]Q~z,t !

]t
52 ż

]

]z
Q~z,t !1c.c., ~2.24!
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where the equations of motion are

ż5 i S v1J
12uzu2

11uzu2D z. ~2.25!

The solution to this is easily found after noting thatuzu2 is a
constant of motion. Thus

z~ t !5expF2 i t S v1J
12uzu2

11uzu2D Gz~0!, ~2.26!

which in polar coordinates becomes

u~ t !5u0 , ~2.27!

f~ t !5f02vt2Jt cosu0 , ~2.28!

wheref0 , u0 are the initial values. In this form it is particu
larly easy to see that the dynamics are a rotational shea
the sphere around thez axis.

The solution for the probability density is

Q~z,t !5E d2z8T ~z,z8;t !Q~z8,0!, ~2.29!

where the propagator is defined by

T ~z,z8;t !5d2
„z8~ t !2z…, ~2.30!

wherez8(t) is the solution to the equation of motion for tim
t starting with the initial pointz8. WhenJ50 we recover the
previous result for a classical magnetic dipole; the distrib
tion simply rotates, without distortion, at a constant ratev
about thez axis. The effect of the nonlinear term proportion
to J causes a rotational shearing of the distribution arou
the z axis.

We may include additional stochastic dynamics on top
the Hamiltonian dynamics. However, it is important to no
that if Q(z,t) is a probability distribution then the propaga
tors T must be positive and may be interpreted as transit
probabilities. The Hamiltonian Liouville evolution is a spe
cial case. As the propagator is simply the Green’s funct
for the evolution equation the positivity requirement for t
propagator restricts the allowed form of evolution equatio
It is well known that the allowed forms correspond
Fokker-Planck equations and can contain at most seco
order derivatives with positive definite diffusion matrice
@28#. In other words, if the propagators are to be positive
evolution equation is necessarily restricted regardless of
initial or final conditions. We may thus define allowed cla
sical dynamics either in terms of positive transition pro
abilities or in terms of the differential operator for the d
namics.

To compare the quantum and classical dynamics we n
need to define a relevant quantum distribution. It is argued
Refs. @26,29# that the appropriate object is the matrix el
ment of the quantum density operator in a coherent s
basis. In the case of the harmonic oscillator, these are
coherent states of the Heisenberg-Weyl group, and the re
ing distribution is a true~i.e., positive! probability distribu-
tion for simultaneous measurement of position and mom
tum @30#. In the case of angular momentum we can use
SU(2) coherent states@31# defined by
6-5
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uz&5R~z!us,s&z ~2.31!

5~11uzu2!2s (
m50

2s S 2s
m D 1/2

3zmus,s2m&z , ~2.32!

whereus,m& are the 2s11 eigenstates ofŜz , and the rotation
operator is

R̂~z!5exp@2 iun•Ŝ# ~2.33!

with the unit vectorn5(sinf,cosf,0). The statesuz& are
product states in terms of the qubits, which are rotated fr
the stateu0&1u0&2 by the anglef andu on the Bloch sphere

uz&5
1

~11uzu2!
~ u0&11zu1&1) ^ ~ u0&21zu1&2).

The function

Q~z,t !5Tr~r~ t !uz&^zu! ~2.34!

is a true~that is positive! probability distribution for mea-
surements defined by the projection operator valued mea
uz&^zud2z/2p. Note that all allowed distributions are nece
sarily positive ~and bounded! from the construction of
Q(z,t) as a trace of the product of a positive operator an
projection operator. For example, theQ function for a par-
ticular atomic coherent stateuz0& is

Q~z!5F ~11z0* z!~11z0z* !

~11z0z0* !~11zz* !G
2s

. ~2.35!

The first moments are given by integrals over theQ func-
tion as

^Ŝx2 iŜy&5E dm~z!Q~z!
2~s11!z*

11uzu2 , ~2.36!

^Ŝz&5E dm~z!Q~z!S ~s11!~12uzu2!

11uzu2 D . ~2.37!

The important point to notice is that the averages ofŜ6 are
given by the same functional form as the classical case, a
from an additional term that becomes negligible in the se
classical limit ass→`. The second-order moments are giv
by

^Ŝ2
2 &5E dm~z!Q~z!S 2~2s13!~s11!z* 2

~11uzu2!2 D , ~2.38!

^Ŝz
2&5E dm~z!Q~z!

3S ~s11!222s~s12!uzu21~s214 j 15!uzu4

~11uzu2!2 D .

~2.39!
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Thus, even though theQ function is a true probability
distribution, its marginals do not give the quantum expec
tion values; an additional rule is needed to connect avera
over theQ function to the quantum averages. This is ana
gous to the case for the harmonic-oscillator coherent st
@29#. In the case of a spherical phase space, however,
difference appears already at the level of the first-order m
ments.

Taking matrix elements of the quantum Liouville equati

dr

dt
52 i @H,r#, ~2.40!

we obtain the evolution equation

]

]t
Q~z,t !52 i S v1J

12uzu2

11uzu2
2

J

2s
z

]

]zD z
]

]z
Q~z,t !1c.c..

~2.41!

This equation is linear inQ; thus,r1 in Eq. ~2.8! will obey
exactly the same equation. In the limit ofs→`, with v, l
held constant, the equation reduces to the first-order dif
ential equation of classical dynamics. The difference
tween quantum and classical dynamics is due to the sec
order differential operators. Note that while these terms
second order, they are certainly not of the kind expected
a diffusion equation, as the corresponding diffusion mat
would not be positive definite. This is a familiar feature
the difference between classical and quantum dynamic
reflected in the dynamics of a quasiprobability distributi
and was first noted in the context of quantum optics@32#.

In Ref. @26# it was shown how extreme this differenc
could be. For example, at timest5ps/J, an initial coherent
state~or coherent pseudopure state! uz0& would evolve in the
rotating frame (v50) into the pure state

221/2@e2 ip/4uz0&1~21!seip/4u2z0&] ~2.42!

for which the resultingQ function is double peaked. Th
state is entangled in terms of the pure state representa
No state such as this could ever be obtained from the cla
cal dynamics given in Eq.~2.29! starting from the initial
state Eq.~2.35!.

III. DISCUSSION

We noted above that the difference between the quan
and classical dynamics appears through the second-orde
rivatives in Eq. ~2.41!. How does this difference becom
manifest in the propagator for the equation? It is far fro
clear that we can find a positive propagator correspondin
the differential operator on the right-hand side of Eq.~2.41!,
especially as this equation is not of Fokker-Planck form~the
diffusion matrix is not positive definite!. Nonetheless all ini-
tial and finalQ functions must be positive by constructio
We now show that the quantum evolution of theQ function
cannot be written in terms of transition probability propag
tors. Despite this it can be obtained uniquely from the init
condition,Q(z,t50)
6-6
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To begin we define theQ-function amplitude for a pure
stateuc(t)&

Q~z,t !5^zuc~ t !&. ~3.1!

The Q function is given by the modulus squared of t
Q-function amplitude,Q(z,t)5uQ(z,t)u2. The linearity of
the Schro¨dinger equation now requires that the dynamics
the Q amplitude can be written in terms of a linear propag
tor

Q~z,t !5E d2z8L~z,z8;t !Q~z8,0!, ~3.2!

where Q(z,0) is the Q-function amplitude for the initial
state, and the propagator~for s51! is constructed from the
unitary time evolution operatorU(t) as

L~z,z1 ;t !5^zuU~ t !uz1& ~3.3!

5
1

~11uzu2!~11uz1u2!

3S expF2 i S v1
J

2sD t G
12z* z11z* 2z1

2 expF2 i S 2v1
J

2sD t G D . ~3.4!

Thus theQ-function dynamics can be written in integr
form as

Q~z,t !5E d2z1d2z2L~z,z1 ;t !L* ~z,z2 ;t !

3Q~z1,0!* Q~z2,0!. ~3.5!

In the case of a general initial stater~0! the equation be-
comes

Q~z,t !5E d2z1d2z2L~z,z1 ;t !L* ~z,z2 ;t !^z1ur~0!uz2&.

~3.6!

This last expression seems to suggest we need to k
more than just the initial conditionQ(z,0), but this is not the
case. The matrix elements ofr in the coherent-state bas
suffice to uniquely determine the state and thus uniqu
determine the off-diagonal matrix elements@31# by analytic
continuation. A similar statement may be made about
propagator in Eq.~3.6!. We only need to know the diagona
matrix element ofU†uz&^zuU in order to determine the tota
propagator in Eq.~3.6!. Thus knowledge of the initialQ
function Q(z,0) and a positive linear propagatorK(z,z1 ;t)
5^z1uU(t)†uz&^zuU(t)uz1& uniquely determines the solutio
to the quantum evolution equation for theQ function. This is
of course also true for the classical evolution equati
through a simple convolution of the initial state and t
propagator. However, the propagation integral in the qu
tum case, Eq.~3.6!, is not a positive~or even real! function
and can have no interpretation as a transition probability
03231
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It is generally accepted that uncontrolled interactions w
an environment enable the quantum and classical dynam
to be reconciled when states of the environment are avera
over @33#. In the case of two coupled spins, there are a va
ety of possible environmental interactions. In order to illu
trate the principle of decoherence, we take the simplest p
sible case in which both spins are coupled equally to
same environment with a Hamiltonian that conserves the
tal z component of angular momentumŜz . While this col-
lective dephasing model is not very realistic for NMR e
periments, it will illustrate how decoherence can cause
quantum propagator in Eq.~3.6! to become diagonal.

The collective dephasing master equation is given by@26#

ṙ5Dr52 i @H,r#2
g

2s
@Ŝz ,@Ŝz ,r##. ~3.7!

The general solution for theQ function may then be written
as

Q~z,t !5E d2z1E d2z2P~z;z1 ,z2 ,t !^z1ur~0!uz2&,

~3.8!

where the propagator is given in terms of the coherent-s
matrix elements of the dynamically propagated off-diago
projector

P~z;z1 ,z2 ,t !5^zueDt~ uz1&^z2u!uz&. ~3.9!

For short times we can expand this to linear order int. The
dominant non-Hamiltonian terms in total spins are given by

P~z;z1 ,z2 ,t !5F12
gst

2 S uz1u22uz2u2

~11uz1u2!~11uz2u2! D
2G

3P~z;z1 ,z2,0!1¯ . ~3.10!

The cofactor ofgst/2 is less than unity. For two spin-ha
systems withs51, the coherence decay rate is then set
tirely by g, which could be small compared to the time sca
set by the coherent interactionJ21. When the initial state is
concentrated onuz1u5uz2u the decoherence is also small. Th
coherence decay rate for large semiclassical systems
which s@1 can be large. Of course the resulting propaga
is not the same as the classical Hamiltonian result@Eq.
~2.29!# in the absence of dephasing as the coupling to
environment would add some level of phase diffusion to
classical dynamics as well, broadening thed function in Eq.
~2.29!. In the case ofs51 considered here one would nee
to consider all the terms in the short-time expansion
P(z;z1 ,z2 ,t), but it remains the case that terms with lar
values ofuz1u2uz2u are rapidly suppressed.

Other two-qubit interactions might be considered, for e
ample, the exchange interaction@34#,

Hex5
J

4
sW ~1!

•sW ~2!5
J

2 S SW •SW 2
3

2D , ~3.11!
6-7



of
tia
ic

th
ion
a
s
te

or
e
tin
er
ha
u

s

fir

um

no
te
f b

y
W

of
ter-
in

ans
ent
This
uan-
e
te
ot
is

ical
ct-
ical
are
ical

ob-

ur
state
f we
xperi-
thus
te

man

of
the
-
R

MILBURN, LAFLAMME, SANDERS, AND KNILL PHYSICAL REVIEW A 65 032316
where the total spin operator isSW 5(sW (1)1sW (2))/2. This is
the Hamiltonian for a rigid body with an isotropic moment
inertia with no external torques and with moment of iner
J21. The classical phase space is a cylinder with canon
coordinatesS on the axis of the cylinder andu around the
circumference. The classical equations are the same as
of a free mass with periodic boundary conditions in posit
at 6p: u̇5Js and Ṡ50. The first of these again indicates
rotational shearing of a localized distribution on the pha
space. When the shearing causes different parts of the sta
overlap on the classical phase space, we expect the c
sponding quantum system to exhibit interference fring
Thus the quantum and classical dynamics of two interac
magnetic dipoles with such an interaction must diff
~Clearly such an interaction would need a different mec
nism in classical systems as exchange interactions are q
tum mechanical.!

As we have seen, the nonlinear top can generate the
perposition state (e2 ip/4us,s&z1e2 ip/4us,2s&z). A similar
state can be generated by a sequence ofCNOT gates onN
5 log2 (2j11) qubits. A product state ofN qubits can be writ-
ten in terms of a binary stringuX&5P i

^ uxi&, wherexi is the
i th term of the stringX. Alternatively X could encode an
integerk in binary form. The maximally entangled state ofN
qubits, u000...0&1u111...1& would then take the formu0&
1uM &, whereM52N. Such as state is easily generated in
quantum computer by a single Hadamard gate on the
qubit followed by a cascaded sequence of controlled-NOT

gates. If we change the notation for angular moment
states so thatus,m2s&z5um&, wherem50, 1,...2s, then the
angular momentum superposition state generated by the
linear top is equivalent to the maximally entangled sta
This equivalence suggests that a nonlinear top may itsel
made to act as a quantum computer in the 2s11 dimensional
Hilbert space. Indeed numerical evidence exists@35# that a
time-dependent Hamiltonian of the formH(t)5BW (t)•SW

1J(t)Sz
2 can generate any state in the Hilbert space b

suitable choice of the time-dependent coefficients.
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conjecture that a sequence of pulsesU(un ,fn ,xn)
5exp(2iun nW n•SW)exp(2ixn Sz

2), wherenW 5(cosf,sinf,0) will
suffice to perform quantum algorithms in the Hilbert space
the nonlinear top. Further work remains to be done to de
mine whether there are interesting efficient algorithms
terms of the number of pulses and~say! log(s).

IV. CONCLUSION

We have investigated classical and quantum Hamiltoni
of the nonlinear top and show that they produce differ
observables even in the presence of highly mixed states.
shows that even if a state is separable, its classical and q
tum evolution can differ. Thus this fortifies the claim that th
evolution is one of the quantum elements of liquid-sta
NMR quantum information processing. However it does n
prove that bulk ensemble NMR quantum computation
uniquely quantum. We have used a particular class
model, that is one motivated by the physics of two intera
ing magnetic dipoles, to compare the quantum and class
dynamics. It may well be the case that for states that
close to the maximally mixed state there is another class
model ~in effect a hidden variable model! that correctly de-
scribes the dynamics as far as is required to model the
served results in NMR experiments@16#.

Even if the transformation of the state is not classical, o
present paper does not show that using these mixed
qubits is as powerful as a pure state quantum computer. I
use the pseudopure state as has been done in present e
ments, the signal-to-noise ratio decreases exponentially,
rendering the algorithms inefficient. In this case liquid-sta
NMR does not provide any advantage~with respect to speed!
over classical computers. In the absence of noise, Schul
and Vazirani@36# have shown how to efficiently transform
the initial mixed state into a pure state. Some simulations
quantum systems evolving under unitary transform and
algorithm suggested in@37# could also be implemented effi
ciently as long as noise is negligible. Thus liquid-state NM
nd

n

um
FIG. 1. Comparison between the classical a
quantum evolution of theQ(z) function. The ini-
tial state is given by~a!. It corresponds to the
distribution for the quantum stateuz51&. ~b! and
~c! depict the classical and quantum distributio
at time t52p/J ~for v50!. The classical evolu-
tion follows the equation of motion Eq.~2.24!
and the quantum one Eq.~2.41!. The discrepancy
between the classical evolution and the quant
one is evident.
6-8
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QUANTUM DYNAMICS OF TWO COUPLED QUBITS PHYSICAL REVIEW A65 032316
~in the absence of noise, i.e., on time scales smaller thanT2!
offers a testing ground for QIP. The dynamics are corre
Moreover it has the right error model to provide a test b
for small quantum computations~up to roughly 10 qubits!.
The difference between liquid-state NMR and other prop
als for quantum computation is that, in the former case we
not have, even in principle, a method to make the quan
evolution robust. In practice this does not distinguish NM
from other present devices as none have approached th
curacy needed for scalability.

In the present paper we have neglected the possibilit
hidden variables. The reason is that there is a trivial hid
variable model that would explain all the present expe
ments in QIP~including not only NMR but also other tech
nologies! as long as observations are not made on space
surfaces. The model can be thought of as a classical c
puter that simulates the quantum evolution and tells the
of the physical system how to behave so they mimic qu
tum mechanics. Although this model can describe all
experiments in QIP today, the amount of resources it u
compared to its quantum counterpart always seem to be
ponential in the size of the problem~the model of Schack
and Caves is such a model!. It is important that the resource
account for not only the signal-to-noise but all resources a
is usually easy to trade one resource for another. We wo
like to conjecture that what distinguishes classical and qu
tum computation is the amount of algorithmic informatio
on

o-
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required to produce the answer of some problem star
from a fiducial state. Classical devices require an exponen
amount of algorithmic information compared to a quantu
computer to answer certain problems. Simulating liquid-st
NMR experiments is one such problem compared to kno
classical algorithms.

So where did the power of quantum computation co
from? In this paper we have argued that the power com
from the dynamics of the system. A similar argument h
been made by others@10,16#. We have criticized the view
that entanglement is the source of power of quantum co
putation by giving algorithms and dynamical evolutio
which do not depend on entanglement. There may be a v
ety of elements which make these devices more power
and for another unusual method to quantum compute
@38#. However, as long as we lack a proof that we can
simulate quantum systems efficiently, it is hard to attribu
the source of the power of quantumness, and we await m
powerful arguments.
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