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Abstract. Let g be the genus of the Hermitian function field H/Fq2 and let CL(D,mQ∞)
be a typical Hermitian code of length n. In [Des. Codes Cryptogr., to appear], we determined the
dimension/length profile (DLP) lower bound on the state complexity of CL(D,mQ∞). Here we
determine when this lower bound is tight and when it is not.

For m ≤ n−2
2

or m ≥ n−2
2

+ 2g, the DLP lower bounds reach Wolf’s upper bound on state
complexity and thus are trivially tight. We begin by showing that for about half of the remaining
values of m the DLP bounds cannot be tight. In these cases, we give a lower bound on the absolute
state complexity of CL(D,mQ∞), which improves the DLP lower bound.

Next we give a “good” coordinate order for CL(D,mQ∞). With this good order, the state
complexity of CL(D,mQ∞) achieves its DLP bound (whenever this is possible). This coordinate
order also provides an upper bound on the absolute state complexity of CL(D,mQ∞) (for those
values of m for which the DLP bounds cannot be tight). Our bounds on absolute state complexity
do not meet for some of these values of m, and this leaves open the question whether our coordinate
order is best possible in these cases.

A straightforward application of these results is that if CL(D,mQ∞) is self-dual, then its state

complexity (with respect to the lexicographic coordinate order) achieves its DLP bound of n
2
− q2

4
,

and, in particular, so does its absolute state complexity.
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1. Introduction. Let C be a linear code of length n. Many soft-decision decod-
ing algorithms for C (such as the Viterbi algorithm and lower complexity derivatives
of it) take place along a minimal trellis for C. The complexity of trellis decoding
algorithms can be measured by various trellis complexities. The most common one is
the state complexity s(C) of C, which varies with the coordinate order of C. Since
the number of operations required for Viterbi decoding of C is proportional to s(C),
it is desirable that s(C) be small. A classical upper bound for s(C) is the Wolf bound
W(C) = min{dim(C), n− dim(C)} [9]. It is well known that if C is a Reed–Solomon
code, then s(C) = W(C).

Let [C] denote the set of codes equivalent to C by a change of coordinate order.
We write s[C] for the minimum of s(C) over all coordinate orders of C and call it
the absolute state complexity of C. (We note that state-complexity notation and
terminology varies in the literature. For example, state complexity is called minimal
trellis size in [2]; absolute state complexity is called absolute minimal trellis size in [2]
and minimal state complexity in [13].) Finding a coordinate order of C that achieves
s[C] is called the “art of trellis decoding” in [10] since exhaustive computation of s(C)
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ABSOLUTE STATE COMPLEXITY OF A HERMITIAN CODE 15

over all possible coordinate orders of C is infeasible, even for quite short codes. An
important step towards attaining this goal is determining good lower bounds on s[C].

The dimension/length profile (DLP) of C is a deep property which is equivalent to
the generalized weight hierarchy (GWH) of C. (For a survey of GWH, see [15].) The
DLP of C is independent of the coordinate order of C and provides a natural lower
bound ∇(C) for s[C]. For example, if C is a Reed–Solomon code, then ∇(C) = W(C)
[9], so that s[C] is as bad as possible and uninteresting. However, determining when
∇(C) = s[C] is still important. An obvious and useful way of doing this is to find a
coordinate order of C for which s(C) = ∇(C). In particular, this provides one route
to the art of trellis decoding. It is also important to develop methods for determining
when ∇(C) < s(C) and, in these cases, to improve on ∇(C).

Geometric Goppa codes generalize Reed–Solomon codes. Hermitian codes are
widely studied geometric Goppa codes which are longer than Reed–Solomon codes
and have very good parameters for their lengths. Let q be a fixed prime power, n = q3,
and g =

(
q
2

)
. For m ∈ [0, n + 2g − 2], we write CL(D,mQ∞) for a typical Hermitian

code of length n defined over Fq2 . In [5], we determined ∇(CL(D,mQ∞)) using some
of the GWH of Hermitian codes obtained in [11, 16]. (The complete GWH of Hermi-
tian codes has subsequently appeared in [1].) From [5], we have s(CL(D,mQ∞)) =
W(CL(D,mQ∞)) for m < n−1

2 or m > n−3
2 + 2g, so we restrict ourselves to the

interesting Hermitian codes, i.e., to CL(D,mQ∞) with m ∈ I(n, g) = [n−1
2 , n−3

2 +2g].

Here we determine precisely when ∇(CL(D,mQ∞)) = s(CL(D,mQ∞)). In the
process, we exhibit a good coordinate order which often gives s(CL(D,mQ∞)) <
W(CL(D,mQ∞)). We also improve on the DLP bound (when it is strictly less than
the state complexity).

“Points of gain and fall” were introduced in [3, 4, 6, 7] to help determine the
state complexity of certain generalizations of Reed–Muller codes. For these codes,
the points of gain and fall had particularly nice characterizations. For Hermitian
codes, however, their characterization is not quite as nice, and so our approach is
slightly different. We describe a coordinate order giving Cm ∈ [CL(D,mQ∞)] and
characterize the points of gain and fall of Cm. We also characterize these points of
gain and fall in terms of runs. This has the advantage of greatly reducing (from n to
q + 1) the number of trellis depths needed to find s(Cm).

The paper is arranged as follows. Section 2 contains terminology, notation, and
some previous results that will be used throughout the paper. The paper proper begins
with section 3. Here we show that, for m ∈ I(n, g), just under half of the Hermitian
codes cannot attain their DLP bound. In these cases we give an improvement of the
DLP bound, written ∇ı(CL(D,mQ∞)).

The main goal of section 4 is to characterize the points of gain and fall of Cm in
runs. In section 5 we determine s(Cm) using section 4. We show that s(Cm) = ∇(Cm)
for just over half the m ∈ I(n, g). Thus we have determined precisely when the DLP
bound for Hermitian codes is tight. Furthermore, s(Cm) = ∇ı(Cm) for around a
further quarter (respectively, 1/q) of m ∈ I(n, g) when q is odd (respectively, even).

In conclusion, we have found s[Cm] for three quarters (respectively, one half) of
the m ∈ I(n, g) when q is odd (respectively, even). For the remaining m ∈ I(n, g),
we do not know a better coordinate order (than that described in section 4) nor a
better bound (than that given in section 3). Thus, although we have reduced the
possible range of s[Cm], some of its actual values remain open. Finally, our method
of characterizing points of gain and fall is essentially the same as the one used to
determine ∇(CL(D,mQ∞)) in [5] and may be able to be used quite generally in
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16 T. BLACKMORE AND G. H. NORTON

determining DLP bounds and state complexity.
The state complexity of Hermitian codes has also been studied in [13]. For a

stronger version of [13, Proposition 1] (an application of Clifford’s theorem), see [5,
Proposition 3.4]. Also, Example 5.11 below generalizes the main result of [13] to arbi-
trary self-dual Hermitian codes. An initial account of some of these results appeared
in [8].

2. Terminology, notation, and background.
State complexity. Let C be a linear code of length n and 0 ≤ i ≤ n. The state

space dimension of C at depth i is

si(C) = dim(C) − dim(Ci,−) − dim(Ci,+),(1)

where Ci,− = {c ∈ C : ci+1 = · · · = cn = 0} and Ci,+ = {c ∈ C : c1 = · · · = ci = 0}.
The state complexity of C is s(C) = max{si(C) : 0 ≤ i ≤ n}. It is well known that
s(C⊥) = s(C). A simple upper bound on s(C) (and hence on s[C]) is the Wolf bound
W(C) = min{dim(C), n− dim(C)}. We write [C] for the set of codes equivalent to C
by a change of coordinate order; i.e., C ′ ∈ [C] if and only if there exists a permutation
(l1, . . . , ln) of (1, . . . , n) such that C ′ = {(cl1 , . . . , cln) : (c1, . . . , cn) ∈ C}. Then we
define the absolute state complexity of C to be

s[C] = min{s(C ′) : C ′ ∈ [C]}.

The DLP of C is (k0(C), . . . , kn(C)), where ki(C) = max{dim(CJ) : |J | = i}.
Clearly, dim(Ci,−) ≤ ki(C) and dim(Ci,+) ≤ kn−i(C), so that si(C) ≥ dim(C) −
ki(C) − kn−i(C). The DLP bound on si(C) is

∇i(C) = dim(C) − ki(C) − kn−i(C),

and the DLP bound on s(C) is ∇(C) = max{∇i(C) : 0 ≤ i ≤ n}. We will use DLP
bound to mean ∇(C) for some C. It is well known that ∇(C⊥) = ∇(C). Since ∇(C)
is independent of the coordinate order of C, ∇(C) ≤ s[C]. If s[C] = ∇(C), we say
that C is DLP-tight; e.g., if ∇(C) = W(C), then C is DLP-tight.

Hermitian codes. Our terminology and notation for Hermitian codes for the
most part follow [14]. We write H/Fq2 for the Hermitian function field. Thus
H = Fq2 [x, y], where x is transcendental over Fq2 and yq + y = xq+1 is the mini-
mal polynomial of y over Fq2 [x]. The genus of H/Fq2 is g =

(
q
2

)
> 0. We write PH for

the set of places of H/Fq2 and DH for the divisor group of H/Fq2 . For Q ∈ PH and
z ∈ H/Fq2 , we write vQ(z) for the valuation of z at Q. Thus vQ(z) < 0 if and only if
Q is a pole of z and vQ(z) > 0 if and only if Q is a zero of z. Also, (z) ∈ DH is given
by (z) =

∑
Q∈PH

vQ(z)Q and for A ∈ DF , L(A) = {z ∈ H/Fq2 : (z) ≥ −A} ∪ {0}.
There are q3 + 1 places of degree one in PH . One of these is the place at infinity,

which we denote Q∞. We denote the others as Q1, . . . , Qq3 . For the rest of the
paper, unless otherwise stated, n = q3. We put D =

∑n
j=1Qj . For an integer m,

L(mQ∞) = {z ∈ H/Fq2 : (z) ≥ −mQ∞} ∪ {0}. The Hermitian codes over Fq2 are
CL(D,mQ∞) = {z(Ql1), . . . , z(Qln) : z ∈ L(mQ∞)} for some permutation (l1, . . . , ln)
of (1, . . . , n). Strictly speaking, the code C(D,mQ∞) depends on the permutation
(l1, . . . , ln) of (1, . . . , n) and may be better denoted CL(Ql1 , . . . , Qln ;mQ∞). However,
this notation is cumbersome and CL(D,mQ∞) is standard. Unless otherwise stated,
when we write CL(D,mQ∞) we have some fixed but arbitrary coordinate order in
mind.

D
ow

nl
oa

de
d 

12
/1

5/
15

 to
 1

30
.1

02
.8

2.
11

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



ABSOLUTE STATE COMPLEXITY OF A HERMITIAN CODE 17

From the usual expression for the dimension of geometric Goppa codes,

dim(CL(D,mQ∞)) = dim(mQ∞) − dim(mQ∞ −D).

When m is understood, k = dim(CL(D,mQ∞)) unless stated otherwise. The
abundance of CL(D,mQ∞) is dim(mQ∞ −D). For m < n, the abundance is 0 and
the code is nonabundant. For m < 0, CL(D,mQ∞) = {0} and for m > n + 2g − 2,
CL(D,mQ∞) = F

n
q2 , so we restrict our attention to m ∈ [0, n + 2g − 2]. With

m⊥ = n+ 2g − 2 −m, the dual of CL(D,mQ∞) is CL(D,m⊥Q∞).
Let Π : N −→ N ∪ {0} be the pole number sequence of Q∞. Also, for i, j ∈ Z

we put [i, j] = {k ∈ Z : i ≤ k ≤ j} and [i,∞) = {k ∈ Z : k ≥ i}. Thus Π[1,∞)
is the set of pole numbers of Q∞, Π(r) is the rth pole number, and Π−1[R1, R2] =
{r : R1 ≤ Π(r) ≤ R2}. We note that Π−1[0, R] = {r : Π(r) ≤ R} and Π−1[R1, R2] =
Π−1[0, R2] \ Π−1[0, R1 − 1]. From [14, Proposition VI.4.1] we deduce that

Π[1,∞) = {iq + j : 0 ≤ i ≤ q − 2, 0 ≤ j ≤ i} ∪ [2g,∞).(2)

We note that, for m < n, dim(mQ∞−D) = 0 and k = dim(mQ∞) = |Π−1[0,m]|.
State complexity of Hermitian codes. For 0 ≤ i ≤ n we put Di,− =∑i

j=1Qlj and Di,+ =
∑n

l=i+1Qlj (where (l1, . . . , ln) is a fixed but arbitrary per-
mutation of (1, . . . , n)). We deduce that si(CL(D,mQ∞)) = k−dim(mQ∞−Di,−)−
dim(mQ∞ −Di,+) + 2 dim(mQ∞ −D). In particular, for m < n,

si(CL(D,mQ∞)) = k − dim(mQ∞ −Di,−) − dim(mQ∞ −Di,+).(3)

These identities yield s(CL(D,mQ∞) = W(CL(D,mQ∞)) for m ∈ [0, n−2
2 ] ∪

[n−2
2 + 2g, n+ 2g− 2]. Thus we will almost exclusively be interested in m ∈ I(n, g) =

[n−1
2 , n−3

2 +2g]. In fact, sincem ∈ [n−1
2 +g, n−3

2 +2g] if and only ifm⊥ ∈ [n−1
2 , n−3

2 +g],
we will often restrict our attention to m ∈ [n−1

2 , n−3
2 + g], deducing results for m ∈

[n−1
2 + g, n−3

2 + 2g] from s(C⊥) = s(C) and ∇(C⊥) = ∇(C).
It is convenient to put J(n, g) = [n−1

2 , n−2
2 + g]. Using results of [11, 16], [5,

Proposition 5.1] shows that for m ∈ I(n, g),

∇i(CL(D,mQ∞)) = k − |Π−1[0,m− i]| − |Π−1[0,m+ i− n]|,(4)

which is used to prove the following theorem.
Theorem 2.1 (see [5, Theorem 5.5]). For m ∈ J(n, g), write n−2m+4g+q−2 =

uq+ v, where 0 ≤ v ≤ q− 1. Then ∇(CL(D,mQ∞)) is attained at m− 2g+ 1 + �u
2 �q

and equals

k −
(
q − �u

2 �
2

)
−
(
q − �u

2 �
2

)
− min

{
q −

⌈u
2

⌉
, q − v

}
.

If CL(D,mQ∞) is DLP-tight, then we just say m is DLP-tight.

3. When the DLP bound is not tight. Let m ∈ [0, n−2
2 ] ∪ [n−2

2 + 2g, n +
2g − 2]. Then by [5, Proposition 4.3, Example 4.9], we have ∇(CL(D,mQ∞)) =
W(CL(D,mQ∞)) and so

∇(CL(D,mQ∞)) = s[CL(D,mQ∞)] = s(CL(D,mQ∞)),

where CL(D,mQ∞) can have any coordinate order. Such m are therefore DLP-tight,
and we are reduced to determining which m ∈ I(n, g) are DLP-tight. We note that
n−3

3 + 2g < n, so that the codes that we are interested in are nonabundant.
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18 T. BLACKMORE AND G. H. NORTON

Table 1
Table of new notation.

m integer
q fixed prime power
m⊥ n+ 2g − 2−m
q2 q mod 2

I(n, g) [n−1
2

, n−3
2

+ 2g]

J(n, g) [n−1
2

, n−2
2

+ g]

M m− q2−q2
2

q if m ∈ J(n, g)
M•,M◦ M = M•(q + 1) +M◦ where 0 ≤ M◦ ≤ q
∇ı(CL(D,mQ∞)) Improved DLP bound for m ∈ I(n, g) Definition 3.11
∆(m) ∇ı(CL(D,mQ∞))−∇(CL(D,mQ∞)) (Theorem 3.9 and Corollary 3.10)
P
1
H Finite places of degree one in PH

αab Elements of Fq2 such that αq+1
ab

= a ∈ Fq

βac Elements of Fq2 such that βq
ac + βac = a ∈ Fq

Qa,b,c = Qαab,βac Element of P
1
H such that x(Qa,b,c) = αab and y(Qa,b,c) = βac

Cm Element of [CL(D,mQ∞)] with coordinate order given in section 4
Pgain(m), Pfall(m) Sets of points of gain and fall of Cm

P i,−
gain(m), P i,−

fall
(m) |Pgain(m) ∩ [1, i]| and |Pfall(m) ∩ [1, i]|

Λ Λ : [0,∞)× [0, q − 1] −→ [0,∞) given by Λ(j, l) = jq + l(q + 1)

ζgain 0, q−q2
2

, q depending on M◦ (defined before Proposition 4.8)

ζfall 0, q+q2
2

, q depending on M◦ (defined before Proposition 4.8)
θgain, θfall M• +M◦ − ζgain and M• +M◦ − ζfall
ζnorm (ζgain + ζfall)/2
η 2q − 2M• + q2 − ζnorm − 3

In this section we determine the m ∈ I(n, g) which are not DLP-tight, i.e, with
s[CL(D,mQ∞)] > ∇(CL(D,mQ∞)). The coordinate order of CL(D,mQ∞) is arbi-
trary, so it suffices to show that s(CL(D,mQ∞)) > ∇(CL(D,mQ∞)).

Our approach has three steps.
(i) We prove the key lemma, Lemma 3.2, and indicate how this can be used to

show that m is not DLP-tight (Example 3.3).
(ii) We prove a generalization of the key lemma (Lemma 3.4) and an application

of Proposition 3.5. We indicate how this can be used to improve on the DLP bound
by more than one (Example 3.6).

(iii) We prove an application of Proposition 3.5 to improve the DLP bound for
m ∈ I(n, g), Theorem 3.9, and Corollary 3.10.

We conclude section 3 with a table of the improved DLP bound for small values
of q (2) and an analysis of the proportion of those m ∈ I(n, g) for which our bound is
strictly better than the DLP bound (Proposition 3.12).

The key lemma. We begin with a clarification of (3) and (4).
Lemma 3.1. For 0 ≤ i ≤ n and m ∈ I(n, g),

(5)

dim(mQ∞ −Di,−) ≤ |Π−1[0,m− i]| and dim(mQ∞ −Di,+) ≤ |Π−1[0,m+ i− n]|

and si(CL(D,mQ∞)) = ∇i(CL(D,mQ∞)) if and only if there is equality in both.
Proof. The first part follows from [5, Lemma 4.1] and the fact that the gonality

sequence of H/Fq2 equals the pole number sequence of Q∞ by [12, Corollary 2.4].
The second part then follows from (3) and (4).

We note that Lemma 3.1 implies that a coordinate order is inefficient, in the
sense of [9], if and only if there exists an i, 0 ≤ i ≤ n, such that |Π−1[0,m − i]| >
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ABSOLUTE STATE COMPLEXITY OF A HERMITIAN CODE 19

dim(mQ∞ −Di,−) or |Π−1[0,m+ i− n]| > dim(mQ∞ −Di,+). To show the stronger
result that s(CL(D,mQ∞)) > ∇(CL(D,mQ∞)), we require a stronger condition on
i, namely, that it satisfies

|Π−1[0,m− i]| − dim(mQ∞ −Di,−) + |Π−1[0,m+ i− n]| − dim(mQ∞ −Di,+)

> ∇(CL(D,mQ∞)) −∇i(CL(D,mQ∞)),

so that si(CL(D,mQ∞)) > ∇(CL(D,mQ∞)).
This stronger condition is clearly more likely to hold if ∇i(CL(D,mQ∞)) attains

or is close to attaining ∇(CL(D,mQ∞)). For now, we concentrate on determining
when the equalities in (5) cannot hold. For these equalities to hold, dim(mQ∞−Di,−)
and dim(mQ∞ − Di,+) must change with |Π−1[0,m − i]| and |Π−1[0,m + i − n]|,
respectively. We shall see that it is possible that both |Π−1[0,m− i]| = |Π−1[0,m−
(i− 1)]| − 1 and |Π−1[0,m+ i− n]| = |Π−1[0,m+ (i− 1) − n]| + 1 (i.e., it is possible
that both m− i+ 1 and m+ i− n are pole numbers of Q∞).

Lemma 3.2. For m ≤ n−2
2 + g, it is not possible that dim(mQ∞ − Di,−) =

dim(mQ∞ −Di−1,−) − 1 and dim(mQ∞ −Di,+) = dim(mQ∞ −Di−1,+) + 1.
Proof. We assume that dim(mQ∞ − Di,−) = dim(mQ∞ − Di−1,−) − 1 and

dim(mQ∞ − Di,+) = dim(mQ∞ − Di−1,+) + 1 and derive a contradiction. Sup-
pose we have z1, z2 ∈ H/Fq2 such that (i) (z1) ≥ −mQ∞ + Di−1,−, vQli

(z1) = 0
and (ii) (z2) ≥ −mQ∞ + Di,+, vQli

(z2) = 0. Thus (z1z2) ≥ −2mQ∞ + D −Qli and
vQli

(z1z2) = 0. Now nQ∞ −D is a principal divisor of H/Fq2 (e.g., as in the proof of
[14, Proposition VII.4.2]), say nQ∞ −D = (z3). Thus (z1z2z3) ≥ (n− 2m)Q∞ −Qli

and vQli
(z1z2z3) = −1. Hence z1z2z3 ∈ L((2m − n)Q∞ + Qli) \ L((2m − n)Q∞) so

that by [14, Lemma I.4.8]

dim((2m− n)Q∞ +Qli) = dim((2m− n)Q∞) + 1.(6)

Now (2g − 2)Q∞ is a canonical divisor of H/Fq2 (e.g., by [14, Lemma VI.4.4]
or because 2g − 2 is the gth pole number of Q∞ and [14, Proposition I.6.2]). Thus
dim((2m − n)Q∞ + Qli) = 2m − n + 2 − g + dim((2g − 2 − 2m + n)Q∞ − Qli)
by the Riemann–Roch theorem, so from (6), dim((2g − 2 − 2m + n)Q∞ − Qli) =
dim((2m−n)Q∞)−2m+n+g−1. Again, by the Riemann–Roch theorem, dim((2g−
2 − 2m+ n)Q∞) = g − 1 − 2m+ n+ dim((2m− n)Q∞), so that

dim((2g − 2 − 2m+ n)Q∞ −Qli) = dim((2g − 2 − 2m+ n)Q∞),

and hence L((2g − 2 − 2m+ n)Q∞ −Qli) = L((2g − 2 − 2m+ n)Q∞). However, for
2g− 2− 2m+ n ≥ 0, i.e., for m ≤ n−2

2 + g, Fq2 ⊆ L((2g− 2− 2m+ n)Q∞) \ L((2g−
2 − 2m+ n)Q∞ −Qli), giving the required contradiction.

Example 3.3. Let q = 3. We show m = 13 is not DLP-tight. From (2), we
have Π[1, 11] = {0, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13}, so that k = 11. From Theorem 2.1,
∇(CL(D,mQ∞)) = 10. Now, from (4),

∇13(CL(D,mQ∞)) = k − |Π−1[0, 0]| − |Π−1[0,−1]| = 10 = ∇(CL(D,mQ∞))

and, similarly, ∇14(CL(D,mQ∞)) = ∇(CL(D,mQ∞)). Thus, s(CL(D,mQ∞)) =
∇(CL(D,mQ∞)) implies that si(CL(D,mQ∞)) = ∇i(CL(D,mQ∞)) for i = 13, 14.
Lemma 3.1 then implies that dim(mQ∞ − D13,−) = |Π−1[0, 0]| = 1, dim(mQ∞ −
D13,+) = 0, dim(mQ∞ −D14,−) = 0, and dim(mQ∞ −D14,+) = 1, which contradicts
Lemma 3.2. Therefore s(CL(D,mQ∞)) > ∇(CL(D,mQ∞)) and since the coordinate
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20 T. BLACKMORE AND G. H. NORTON

order of CL(D,mQ∞) is arbitrary, m is not DLP-tight. We will see in section 5 that
14 and 15 are DLP-tight.

Generalization of the key lemma. Since dim(mQ∞−Di−1,−) ≤ dim(mQ∞−
Di,−) + 1 and dim(mQ∞ −Di,+) ≤ dim(mQ∞ −Di−1,+) + 1 by [14, Lemma I.4.8],
Lemma 3.2 can be restated as follows: for m ≤ n−2

2 +g, either dim(mQ∞−Di−1,−) ≤
dim(mQ∞ −Di,−) or dim(mQ∞ −Di,+) ≤ dim(mQ∞ −Di−1,+). This generalizes as
the following lemma.

Lemma 3.4. For m ≤ n−2
2 + g and 0 < t ≤ i ≤ n, (i) dim(mQ∞ − Di−t,−) ≤

dim(mQ∞ −Di,−) + � t
2� or (ii) dim(mQ∞ −Di,+) ≤ dim(mQ∞ −Di−t,+) + � t

2�.
Proof. Suppose that dim(mQ∞ − Di,−) < dim(mQ∞ − Di−t,−) − � t

2� and
dim(mQ∞ − Di,+) > dim(mQ∞ − Di−t,+) + � t

2�. Therefore there are r, s > � t
2�

and {i1, . . . , ir}, {j1, . . . , js} ⊆ {i − t + 1, . . . , i} such that dim(mQ∞ − Dik,−) =
dim(mQ∞ − Dik−1,−) − 1 for 1 ≤ k ≤ r and dim(mQ∞ − Djk,+) = dim(mQ∞ −
Djk−1,+) + 1 for 1 ≤ k ≤ s. However, r + s > t so that, since |{i− t+ 1, . . . , i}| = t,
{i1, . . . , ir} ∩ {j1, . . . , js} �= ∅, contradicting Lemma 3.2.

The following application of Lemmas 3.1 and 3.4 is a straightforward consequence
of (3), (4).

Proposition 3.5. For m ∈ J(n, g) and 0 < t ≤ i ≤ n,

s[CL(D,mQ∞)] ≥ ∇i(CL(D,mQ∞)) + |Π−1[m+ i− n− t+ 1,m+ i− n]| −
⌊
t

2

⌋
.

Example 3.6. Let q = 7 andm = 186. Then s[CL(D,mQ∞)] ≥ ∇(CL(D,mQ∞))
+ 2 = 159.We have k = 166 (e.g., by the Riemann–Roch theorem). From (2), the first
few pole numbers of Q∞ are Π[1, 6] = {0, 7, 8, 14, 15, 16}. From Theorem 2.1, we have
∇(CL(D,mQ∞)) = 157. For i = 173, Π−1[0,m−i] = {0, 7, 8} and Π−1[0,m+i−n] =
{0, 7, 8, 14, 15, 16}, so that, from (4), ∇i(CL(D,mQ∞)) = 157 = ∇(CL(D,mQ∞)).
Also, with t = 3, we have Π−1(m+ i− n− t) = {0, 7, 8}. Thus Proposition 3.5 gives

s[CL(D,mQ∞)] ≥ ∇i(CL(D,mQ∞)) + 2 = ∇(CL(D,mQ∞)) + 2 = 159.

We shall see in section 5 that s[CL(D,mQ∞)] = 159.
Improvement on the DLP bound. We show how Proposition 3.5 can be used

to improve on the DLP bound generally. First, we introduce some useful notation:
q2 = 0 if q is even and q2 = 1 if q is odd. For a fixed m ∈ J(n, g), we put M =

m − q2−q2
2 q and write M = M•(q + 1) + M◦, where 0 ≤ M◦ ≤ q. We easily deduce

the following lemma.
Lemma 3.7. (i) For q odd, 0 ≤ M• ≤ q−3

2 and if M• = 0, then M◦ ≥ q−1
2 ; (ii)

for q even, 0 ≤M• ≤ q−2
2 and if M• = q−2

2 , then M◦ = 0.
We begin by reinterpreting Theorem 2.1 in terms of M• and M◦.
Lemma 3.8. For m ∈ J(n, g), the DLP bound is attained at

m+ 1 −M•q if 0 ≤M◦ ≤ q−2
2 −M•,

m+ 1 − (M• + 1 − q2)q if q−1
2 −M• ≤M◦ ≤ q −M• − 1,

m+ 1 − (M• + 1)q if q −M• ≤M◦ ≤ q.

Proof. If u, v are defined as in Theorem 2.1, then

(u, v) =




(2q − 2 − 2M• + q2, q − 2M• − 2M◦ − 2) if 0 ≤ M◦ ≤ q−2
2

−M•,
(2q − 3 − 2M• + q2, 2q − 2M• − 2M◦ − 2) if q−1

2
−M• ≤ M◦ ≤ q −M• − 1,

(2q − 4 − 2M• + q2, 3q − 2M• − 2M◦ − 2) if q −M• ≤ M◦ ≤ q.
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ABSOLUTE STATE COMPLEXITY OF A HERMITIAN CODE 21

The result now follows from the fact that the DLP bound is attained at m− 2g+
1 + �u

2 �q.
Next we give our improvement on the DLP bounds for m ∈ J(n, g). The size of

the improvement is given by

∆(m) =




1 +M• +M◦ − q−q2
2 if q−q2

2 −M• ≤M◦ ≤ q−M•−1
2 ,

q+q2
2 −M◦ if q−M•

2 ≤M◦ ≤ q−2+q2
2 ,

1 +M• +M◦ − q if q −M• ≤M◦ ≤ q − M•+1
2 ,

1 + q − q2 −M◦ if q − M•
2 ≤M◦ ≤ q − q2,

0 otherwise.

We note that ∆(m) > 0 if and only if q−q2
2 −M• ≤ M◦ ≤ q−2+q2

2 or q −M• ≤
M◦ ≤ q − q2.

Theorem 3.9. For m ∈ J(n, g), s[CL(D,mQ∞)] ≥ ∇(CL(D,mQ∞)) + ∆(m).
Proof. First assume that q−q2

2 − M• ≤ M◦ ≤ q−2+q2
2 . From Lemma 3.8,

∇(CL(D,mQ∞)) is attained at i = m + 1 − (M• + 1 − q2)q. We take i = m +
1 − (M• + 1 − q2)q and t = 2M• + 2M◦ + 1 − q + q2 in Proposition 3.5. Now
m+ i− t− n = M•q − q2. We have two subcases.

(a) For q−q2
2 −M• ≤ M◦ ≤ q−M•−1

2 we have 0 < t ≤ M• + q2. Now, from (2),
M•q, . . . ,M•q + M• ∈ Π[1,∞), so that |Π−1[m + i− n− t + 1,m + i− n]| = t, and
Proposition 3.5 gives

s[CL(D,mQ∞)] −∇(CL(D,mQ∞)) ≥
⌈
t

2

⌉
= 1 +M• +M◦ − q − q2

2
.

(b) For q−M•

2 ≤ M◦ ≤ q−2+q2
2 we have M• + q2 + 1 ≤ t ≤ 2M• + 2q2 − 1 ≤

q − 1. From (2), M•q + M• + 1, . . . ,M•q + q − 1 /∈ Π(N) since M• ≤ q − 2, so that
|Π−1[m+ i− n− t+ 1,m+ i− n]| = M• + q2, and Proposition 3.5 gives

s[CL(D,mQ∞)]−∇(CL(D,mQ∞)) ≥M•+q2−
(
M• +M◦ − q − q2

2

)
=
q + q2

2
−M◦.

Now suppose that q −M• ≤ M◦ ≤ q − q2. From Lemma 3.8, ∇(CL(D,mQ∞))
is attained at m + 1 − (M• + 1)q. We take i = m + 1 − (M• + 1)q and t = 2M• +
2M◦ − 2q+ 2− q2 in Proposition 3.5. Now m+ i− t− n = (M• + 1− q2)q− (1− q2)
and again we have two subcases.

(a) For q −M• ≤ M◦ ≤ q − M•+1
2 we have 0 < t ≤ M• + 1 − q2. From (2),

(M• +1−q2)q, . . . , (M• +1−q2)q+(M• +1−q2) ∈ Π[1,∞), so that |Π−1[m+ i−n−
t+ 1,m+ i−n]| = t, and Proposition 3.5 gives s[CL(D,mQ∞)]−∇(CL(D,mQ∞)) ≥⌈
t
2

⌉
= 1 +M• +M◦ − q.

(b) For q− M•
2 ≤M◦ ≤ q− q2 we have M• + 2− q2 ≤ t ≤ 2M• + 2−3q2 ≤ q− q2.

From (2), (M• + 1− q2)q+ (M• + 2− q2), . . . , (M• + 1− q2) + (q−1) /∈ Π[1,∞), since
M• + 1 − q2 ≤ q − 2, so that |Π−1[m+ i− n− t+ 1,m+ i− n]| = M• + 2 − 2q2, so
that from Proposition 3.5,

s[CL(D,mQ∞)] −∇(CL(D,mQ∞)) ≥M• + 2 − 2q2 − (M• +M◦ − q + 1 − q2)

= 1 + q − q2 −M◦.

For m ∈ [n−1
2 + g, n−3

2 + 2g] we put ∆(m) = ∆(m⊥) ≥ 0.
Corollary 3.10. For m ∈ I(n, g), s[CL(D,mQ∞)] ≥ ∇(CL(D,mQ∞)) +

∆(m).
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22 T. BLACKMORE AND G. H. NORTON

Proof. The proof is an easy consequence of Theorem 3.9, ∇(C) = ∇(C⊥), and
the definition of ∆(m).

Definition 3.11. Form ∈ I(n, g), we put ∇ı(CL(D,mQ∞)) = ∇(CL(D,mQ∞))+
∆(m).

We note that for m ∈ I(n, g),

∇ı(CL(D,mQ∞)) = ∇ı(CL(D,m⊥Q∞)).(7)

In Table 2 we have written ∇ı(m) for ∇ı(CL(D,mQ∞)), and the DLP bound is
calculated using Theorem 2.1. The bold face entries are those for which ∇ı(CL(D,mQ∞))
> ∇(CL(D,mQ∞)). (The values of ∇ı(CL(D,mQ∞)) for m ∈ [n−1

2 + g, n−3
2 + 2g]

can of course be deduced from (7).)

Table 2
∇ı(CL(D,mQ∞)) for q ∈ {2, 3, 4, 5, 7, 8} and m ∈ J(n, g).

q
2 m 4

∇ı(m) 3
3 m 13 14 15

∇ı(m) 11 11 11
4 m 32 33 34 35 36 37

∇ı(m) 26 27 27 28 28 28
5 m 62 63 64 65 66 67 68 69 70 71

∇ı(m) 53 53 54 54 55 56 56 56 56 56
7 m 171 172 173 174 175 176 177 178 179 180

∇ı(m) 151 151 152 153 153 154 155 156 156 156
m 181 182 183 184 185 186 187 188 189 190 191

∇ı(m) 157 157 157 158 159 159 159 159 159 159 159
8 m 256 257 258 259 260 261 262 263 264 265 266 267 268 269

∇ı(m) 228 229 230 231 231 232 233 234 234 234 235 236 236 236
m 270 271 272 273 274 275 276 277 278 279 280 281 282 283

∇ı(m) 237 238 238 238 238 239 239 239 239 240 240 240 240 240

We conclude this section by calculating the proportion of m ∈ I(n, g) for which
∆(m) > 0.

Proposition 3.12.

|∆−1(0,∞)|/|I(n, g)| =

{
1
2 − 1

2q if q is odd,
1
2 − 3q−5

2(q2−q−1) if q is even.

Proof. We note first that |I(n, g)| = 2g + q2 − 1. Recall from the definition of
∆(m) that

∆−1(0,∞) ∩
{
n− 1

2
, . . . ,

n− 2

2
+ g

}
=

{
m :

q − q2
2

−M• ≤M◦ ≤ q − 2 + q2
2

or

q −M• ≤M◦ ≤ q − q2

}
.

Next we note that |∆−1(0,∞)| = 2
∣∣∆−1(0,∞) ∩ J(n, g)

∣∣ . This follows from the
definition of ∆(m) for n−1

2 + g ≤ m ≤ n−3
2 + 2g when q is odd and from n−2

2 + g /∈
∆−1(0,∞) when q is even. Now, fixing 0 ≤M• ≤ q−3

2 , we have∣∣∣∣
{
M◦ :

q − q2
2

−M• ≤M◦ ≤ q − 2 + q2
2

or q −M• ≤M◦ ≤ q − q2

}∣∣∣∣ = 2M• + 1.
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ABSOLUTE STATE COMPLEXITY OF A HERMITIAN CODE 23

We note that the restriction M◦ ≥ q−1
2 for q odd and M• = 0 from Lemma 3.7 does

not affect this. We also note that for q even and M• = q−2
2 , the restriction of M◦ = 0

in Lemma 3.7 gives |{M◦ : 1 ≤M◦ ≤ q−2
2 or q − q−2

2 ≤M◦ ≤ q}| = 0.
Thus the result follows from

|∆−1(0,∞)| =




2
∑ q−3

2

M•=0(2M• + 1) = (q − 1) + 4
( q−1

2
2

)
= (q−1)2

2

if q is odd,

2
∑ q−4

2

M•=0(2M• + 1) = (q − 2) + 4
( q−2

2
2

)
= (q−2)2

2

if q is even.

Thus, for large q at least, ∇ı(CL(D,mQ∞)) improves on ∇(CL(D,mQ∞)) for
just under half the m ∈ I(n, g). We shall see in section 5 that m is DLP-tight when
∇ı(CL(D,mQ∞)) fails to improve on ∇(CL(D,mQ∞)).

4. A good coordinate order. We describe a “good” coordinate order for Her-
mitian codes, denoting the code in [CL(D,mQ∞)] with this coordinate order by Cm.
After recalling the notions of points of gain and fall for a linear code, we give the most
natural description of the points of gain and fall of Cm in Propositions 4.2 and 4.4.
We conclude by characterizing the points of gain and fall of Cm as “runs” in Theorem
4.10 (which we will use in section 5 to derive a formula for s(Cm)).

The good coordinate order. As noted at the beginning of section 3, for
m ≤ n−2

2 or m ≥ n−2
2 + 2g, all coordinate orders of CL(D,mQ∞) are equally bad

with regard to state complexity. Thus we are interested in m ∈ I(n, g).
Recall that H/Fq2 has n + 1 places of degree one, namely Q∞, and the finite

places of degree one, Q1, . . . , Qn. We put P
1
H = {Q1, . . . , Qn}. Now

CL(D,mQ∞) = {(z(Ql1), . . . , z(Qln)) : z ∈ L(mQ∞)}
for some fixed but arbitrary ordering (Ql1 , . . . , Qln) of P

1
H . Thus the order of P

1
H

determines the coordinate order of CL(D,mQ∞). As in [14], for each (α, β) ∈ Fq2×Fq2

such that βq + β = αq+1, there exists a unique Qαβ ∈ P
1
H such that x(Qαβ) = α and

y(Qαβ) = β.
We now describe an order of P

1
H giving Cm ∈ [CL(D,mQ∞)]. First we relabel

the elements of P
1
H as Qa,b,c for certain integers a, b, c. We write {0, 1, . . . , q − 1} for

Fq, where 0 = 0Fq
. Now for each a ∈ Fq \ {0} there exist βa0, . . . , βa,q−1 ∈ Fq2 and

αa0, . . . , αaq ∈ Fq2 such that βq
ac + βac = αq+1

ab = a for 0 ≤ c ≤ q − 1 and 0 ≤ b ≤ q.
Thus for each a ∈ Fq \ {0}, 0 ≤ c ≤ q− 1 and 0 ≤ b ≤ q, there exists Qa,b,c ∈ P

1
H such

that x(Qa,b,c) = αa,b and y(Qa,b,c) = βa,c, giving q3 − q elements of P
1
H .

For a = 0 there exist β00, . . . , β0q and α00 = 0 such that βq
0c + β0c = αq+1

00 =
0 for 0 ≤ c ≤ q − 1. Thus the remaining q elements of P

1
H , which we write as Q0,0,c

for 0 ≤ c ≤ q − 1, are such that x(Q0,0,c) = 0 and y(Q0,0,c) = β0,c. We note that
Qa,b,c = Qαab,βac

.
When a, b, or c takes any of its possible values we write Q∗,b,c, Qa,∗,c, or Qa,b,∗.

Note that for a = 0 we have b = 0 and for 1 ≤ a ≤ q − 1 we have 0 ≤ b ≤ q. Thus
there are q places of the form Q0,∗,∗ and for 1 ≤ a ≤ q − 1 there are q2 − 1 places of
the form Qa,∗,∗.

We first describe the ordering of P
1
H giving Cm ∈ [CL(D,mQ∞)] for m ∈ J(n, g).

This uses lexicographic order of t-tuples of integers: (i1, . . . , it) < (j1, . . . , jt) if and
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24 T. BLACKMORE AND G. H. NORTON

only if there exists u such that i1 = j1, . . . , iu−1 = ju−1 and iu < ju. For 0 ≤ M◦ ≤
q−M•−2

2 or q − M•
2 ≤M◦ ≤ q, Cm is defined by simply using the order

O1: Qa,b,c < Qa′,b′,c′ if (a, b, c) < (a′, b′, c′)

of P
1
H . For q−M•−1

2 ≤ M◦ ≤ q − M•+1
2 , Cm is defined by the “Order O2” of P

1
H :

partition P
1
H into the following three sets:

P
1
1 = {Q1,∗,c : 0 ≤ c ≤ q−q2

2 − 1},
P

1
2 = {Qa,∗,∗ : a �= 1},

P
1
3 = {Q1,∗,c : q−q2

2 ≤ c ≤ q − 1}.
(8)

Then Order O2 of P
1
H is given by putting P 1

1 < P 1
2 < P 1

3 , ordering P
1
1 and P

1
3 by

Q1,b,c < Q1,b′,c′ if (c, b) < (c′, b′), and ordering P
1
2 by Qa,b,c < Qa′,b′,c′ if (a, b, c) <

(a′, b′, c′).
For m ∈ [n−1

2 + g, n−3
2 + 2g], the coordinate order of Cm is defined to be that of

Cm⊥ .
From now on, Qi denotes the ith element of P

1
H ordered as above. Thus

Cm = {(z(Q1), . . . , z(Qn)) : z ∈ L(mQ∞)}.

The points of gain and fall of Cm. Points of gain and fall were introduced in
[3, 6]. For this paragraph, C is a length n linear code with dimension k. We note that
dim(Ci,−) (as defined in section 2) increases in unit steps from 0 to k and dim(Ci,+)
decreases in unit steps from k to 0 as i increases from 0 to n. If 0 ≤ i ≤ n, then

• i is a point of gain of C if dim(Ci,+) = dim(Ci,+) − 1 and
• i is a point if fall of C if dim(Ci,−) = dim(Ci,−) + 1.

These definitions are motivated by (1). We note that there are k points of gain and k
points of fall. Points of gain and fall describe the local behavior of a minimal trellis
[6], and being able to give a succinct characterization of them for particular families
of codes has been useful in calculating formulae for their state complexity; see, e.g.,
[3, 6]. The same proves to be the case here. We note that, as in [6], i is a point of
gain of Cm if and only if i is the “initial point” of a codeword of Cm, i.e., if and only
if there exists z ∈ L(mQ∞) such that

z(Q1) = · · · = z(Qi−1) = 0 and z(Qi) �= 0.

Similarly, i is a point of fall of Cm if and only if i is the “final point” of a codeword
of Cm, i.e., if and only if there exists z ∈ L(mQ∞) such that

z(Qi) �= 0 and z(Qi+1) = · · · = z(Qn) = 0.

We write Pgain(C) and Pfall(C) for the sets of points of gain and fall of C. With

P i,−
gain(C) = |Pgain(C) ∩ [1, i]| and P i,−

fall (C) = |Pfall(C) ∩ [1, i]| we have

si(C) = P i,−
gain(C) − P i,−

fall (C).(9)

We also write Pgain(m) := Pgain(Cm) and Pfall(m) := Pfall(Cm). We will need a
function Λ closely related to Π. Define Λ : [0,∞) × [0, q − 1] −→ [0,∞) by

Λ(j, l) = jq + l(q + 1).
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ABSOLUTE STATE COMPLEXITY OF A HERMITIAN CODE 25

We have Π[1,∞) = Im(Λ) from [14]. We note that

Λ−1[0,m] = {(j, l) ∈ Z × Z : j ≥ 0, 0 ≤ l ≤ q − 1, jq + l(q + 1) ≤ m}
and for m < n, k = dim(Cm) = |Λ−1[0,m]| [14, Proposition VII.4.3]. For 0 ≤ a ≤
q − 1, we put

A(a) =

{ {α00} for a = 0,
{αab : 0 ≤ b ≤ q} for 1 ≤ a ≤ q − 1

and B(a) = {βac : 0 ≤ c ≤ q − 1}. Thus P
1
H = {Qαβ : 0 ≤ a ≤ q − 1, α ∈ A(a), β ∈

B(a)}. We also put A =
⋃q−1

a=0A(a) and B =
⋃q−1

a=0B(a). We will determine the initial
and final points of certain z ∈ H/Fq2 of the form

z = (x− α0) · · · (x− αl−1)(y − β0) · · · (y − βj−1),

where α0, . . . , αl−1 ∈ A and β0, . . . , βj−1 ∈ B. Note that (x − αab)(Qa′,b′,∗) =
0 if and only if a = a′, b = b′ and (y − βac)(Qa′,∗,c′) = 0 if and only if a = a′, c =
c′. Of course, we are interested in when (z(Q1), . . . , z(Qn)) ∈ Cm, i.e., when z ∈
L(mQ∞).

Lemma 4.1. If (j, l) ∈ Λ−1[0,m], α0, . . . , αj−1 ∈ A and β0, . . . , βl−1 ∈ B, then

(x− α0) · · · (x− αj−1)(y − β0) · · · (y − βl−1) ∈ L(mQ∞).

Proof. We put zjl = (x − α0) · · · (x − αj−1)(y − β0) · · · (y − βl−1) ∈ L(mQ∞).
Using the facts that (i) vQ∞(x) = −q and vQ∞(y) = −(q+1), (ii) for Q ∈ PH \{Q∞},
vQ(x) ≥ 0 and vQ(y) ≥ 0, and (iii) for α ∈ Fq2 and Q ∈ PH , vQ(α) = 0, we get
vQ∞(zjl) = −Λ(j, l) and vQ(zjl) ≥ 0 for all Q ∈ PH \ {Q∞}. Hence (j, l) ∈ Λ−1[0,m]
implies that zjl ∈ L(mQ∞).

Proposition 4.2 (O1 ordering of P
1
H). For m ∈ J(n, g) with 0 ≤M◦ ≤ q−M•−2

2

or q − M•
2 ≤M◦ ≤ q,

1. Pgain(m) = {jq + l + 1 : (j, l) ∈ Λ−1[0,m]} and
2. Pfall(m) = {n− jq − l : (j, l) ∈ Λ−1[0,m]} = n− Pgain(m) + 1.
Proof. We order the set A by αab < αa′b′ if and only if (a, b) < (a′, b′). Thus

αab < αa′b′ if and only if Qa,b,∗ < Qa′,b′,∗. For 0 ≤ d ≤ q2 − 1, we write αd for the
(d+1)st element of A. Thus α0 = α00, α1 = α10, . . . , αq+1 = α1q, . . . , αq2−1 = αq−1,q.
For 0 ≤ d ≤ q2 − 1, we define a(d) by αa(d)b = αd for some b. Thus a(0) = 0, a(1) =
· · · = a(q + 1) = 1, . . . , a(q2 − q − 1) = · · · = a(q2 − 1) = q − 1. Then for 1 ≤ i ≤ q3,
writing i− 1 = dq + c, where 0 ≤ d ≤ q2 − 1 and 0 ≤ c ≤ q − 1, we have

Qi = Qαd,βa(d)c
.

Thus

(x− αd)(Qi) = 0 if and only if dq + 1 ≤ i ≤ (d+ 1)q

and

(y − βac)(Qi) = 0 if and only if i = dq + c+ 1, where a(d) = a.

We begin with Pgain(m). For (j, l) ∈ Λ−1[0,m] we put

ugain
j = (x−α0) · · · (x−αj−1), vgain

jl = (y−βa(j),0) · · · (y−βa(j),l−1), zgain
jl = ugain

j vgain
jl .
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26 T. BLACKMORE AND G. H. NORTON

We note that jq ≤ Λ(j, l) ≤ m ≤ n−2
2 + g = q3+q2−q−2

2 , which implies that j <
q2+q−1

2 ≤ q2, so that ugain
j , vgain

jl , and zgain
jl are well-defined for all (j, l) ∈ Λ−1[0,m].

Now ugain
j (Qi) = 0 if and only if 1 ≤ i ≤ jq, vgain

jl (Qi) = 0 for jq+ 1 ≤ i ≤ jq+ l, and

vgain
jl (Qjq+l+1) �= 0. Hence the initial point of zgain

jl is jq + l + 1 so that jq + l + 1 ∈
Pgain(m). Also, by Lemma 4.1, zgain

jl ∈ L(mQ∞). Finally, each (j, l) ∈ Λ−1[0,m] gives

a different point of gain of Cm and, since |Λ−1[0,m]| = k, these are all the points of
gain, and similarly for points of fall.

We use Proposition 4.2 to determine s(Cm) for q = 2 and m ∈ [n−1
2 , n−3

2 + g]. To
do this we use (9) and so we put

P i,−
gain(m) := P i,−

gain(Cm) and P i,−
fall (m) := P i,−

fall (Cm).

Example 4.3. If q = 2, then Pgain(4) = [1, 3] ∪ {5} and Pfall(4) = {4} ∪ [6, 8],
giving s(C4) = 3. (Thus C4 is our first example of a geometric Goppa code with
s(C4) < W(C4). Also, s(C4) = ∇(C4), where the latter is given by Theorem 2.1.)

Proof. The coordinate order of C4 is Q0,0,0 < Q0,0,1 < Q1,0,0 < Q1,0,1 < Q1,1,0 <
Q1,1,1 < Q1,2,0 < Q1,2,1. In the notation of Proposition 4.2, we have α0 = α0,0, α1 =
α1,0, α2 = α1,1, α3 = α1,2. Thus a(0) = 0 and a(1) = a(2) = a(3) = 1. Also
Λ−1[0, 4] = {(0, 0), (1, 0), (0, 1), (2, 0)}, and k = 4.

Now Pgain(4) is the set of initial points of zgain
jl , where (j, l) ∈ Λ−1[0, 4]. These

are given in the table below. The third column in the table gives the “initial place,”
i.e., the Qa,b,c, such that Qa,b,c = Qi, where i is the initial point.

(j, l) zgain
jl Initial place Initial point

(0, 0) 1 Q0,0,0 1
(1, 0) (x− α0) Q1,0,0 3
(0, 1) (y − β0,0) Q0,0,1 2
(2, 0) (x− α0)(x− α1) Q1,1,0 5

Thus Pgain(4) = [1, 3]∪{5}. Also Pfall(4) is given by the final points of zfall
jl such that

(j, l) ∈ Λ−1[0, 4], as follows.

(j, l) zfall
jl Final place Final point

(0, 0) 1 Q1,2,1 8
(1, 0) (x− α3) Q1,1,1 6
(0, 1) (y − β1,1) Q1,2,0 7
(2, 0) (x− α2)(x− α3) Q1,0,1 4

Thus Pfall(4) = {4} ∪ [6, 8]. Hence, using (9) we have

i 0 1 2 3 4 5 6 7 8

P i,−
gain(4) 0 1 2 3 3 4 4 4 4

P i,−
fall (4) 0 0 0 0 1 1 2 3 4

si(C4) 0 1 2 3 2 3 2 1 0

giving s(C4) = 3.

For m ∈ J(n, g) such that q−M•−1
2 ≤M◦ ≤ q − M•+1

2 we put

ζgain =
q − q2

2
and ζfall =

q + q2
2

.
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ABSOLUTE STATE COMPLEXITY OF A HERMITIAN CODE 27

Proposition 4.4 (O2 ordering of P
1
H). For m ∈ J(n, g) with q−M•−1

2 ≤ M◦ ≤
q − M•+1

2 , Pgain(m) = P 1
gain(m) ∪ P 2

gain(m) and Pfall(m) = P 1
fall(m) ∪ P 2

fall(m), where

P 1
gain(m) = {l(q + 1) + j + 1 : (j, l) ∈ Λ−1[0,m], 0 ≤ j ≤ q, 0 ≤ l ≤ ζgain − 1},
P 2

gain(m) = {ζgain(q + 1) + jq + l + 1 : (j, l) ∈ Λ−1[0,m− ζgain(q + 1)]},
P 1

fall(m) = {n− l(q + 1) − j : (j, l) ∈ Λ−1[0,m], 0 ≤ j ≤ q, 0 ≤ l ≤ ζfall − 1},
P 2

fall(m) = {n− ζfall(q + 1) − jq − l : (j, l) ∈ Λ−1[0,m− ζfall(q + 1)]}.
Proof. We recall that P 1

1 , P 1
2 , and P 1

3 were defined in (8). We note that
• for 1 ≤ i ≤ ζgain(q + 1), Qi ∈ P

1
1, so that writing i− 1 = c(q + 1) + b, where

0 ≤ c ≤ ζgain − 1 and 0 ≤ b ≤ q, Qi = Q1,b,c;
• for ζgain(q + 1) + 1 ≤ i ≤ ζgain(q + 1) + q3 − q2 − q, Qi ∈ P

1
2; and

• for ζgain(q + 1) + q3 − q2 − q ≤ i ≤ q3, Qi ∈ P
1
3.

We begin by showing that P 1
gain(m) ⊆ Pgain(m). For (j, l) ∈ Λ−1[0,m] such that

0 ≤ j ≤ q and 0 ≤ l ≤ ζgain − 1 we exhibit an element of L(mQ∞) with initial point
l(q + 1) + j + 1. Put

ugain
j = (x−α1,0) · · · (x−α1,j−1), vgain

l = (y−β1,0) · · · (y−β1,l−1), zgain
jl = ugain

j vgain
l .

Thus vgain
l (Qa,∗,c) = 0 if and only if a = 1, and 0 ≤ c ≤ l − 1 and ugain(Qa,b,∗) = 0

if and only if a = 1, and 0 ≤ b ≤ j − 1. Therefore vgain
l (Qi) = 0 if and only

if 1 ≤ i ≤ l(q + 1), ugain
j (Qi) = 0 for l(q + 1) + 1 ≤ i ≤ l(q + 1) + j (taking

c = l ≤ ζgain), and ugain
j (Ql(q+1)+j+1) �= 0 (taking c = l and b = j ≤ q). Hence the

initial point of zgain
jl is l(q + 1) + j + 1. Also, from Lemma 4.1, zgain

jl ∈ L(mQ∞), so

that P 1
gain(m) ⊆ Pgain(m).

Next we show that P 2
gain(m) ⊆ Pgain(m). We order A \ A(1) by αab < αa′b′ if

and only if (a, b) < (a′, b′) and write αd for the (d + 1)st element of A \ A(1), where
0 ≤ d ≤ q2 − q − 2. (This is different from the labelling in the proof of Proposition
4.2 since we do not include A(1) in the relabelling.) We define a(d) by αa(d)b = αd

for some b. Then, for ζgain(q + 1) + 1 ≤ i ≤ ζgain(q + 1) + q3 − q2 − q, writing i− 1 =
ζgain(q+1)+dq+c, where 0 ≤ d ≤ q2−q−2 and 0 ≤ c ≤ q−1, we have Qi = Qαd,βa(d)c

.

We put wgain = (y − β1,0) · · · (y − β1,ζgain−1). For (j, l) ∈ Λ−1[0,m− ζgain(q + 1)], set

(ugain)′j = (x− α0) · · · (x− αj−1), (vgain)′jl = (y − βa(j),0) · · · (y − βa(j),l−1),

zgain
j,l+ζgain

= wgain(ugain)′j(v
gain)′jl.

We note that jq ≤ Λ(j, l) ≤ m − ζgain(q + 1) ≤ q3−q−1
2 , which implies that

j ≤ q2 − q − 2. Thus (ugain)′j , (vgain)′jl, and zgain
j,l+ζgain

are well-defined for all (j, l) ∈
Λ−1[0,m − ζgain(q + 1)]. Now wgain(Qi) = 0 if and only if 1 ≤ i ≤ ζgain(q + 1).
Also (ugain)′j(Qαdβa(d)c

) = 0 if and only if 0 ≤ d ≤ j − 1 and 0 ≤ c ≤ q − 1,

and (vgain)′jl(Qαdβa(d)c
) = 0 if and only if a(d) = a(j) and 0 ≤ c ≤ l − 1. Thus

(ugain)′j(Qi) = 0 if and only if ζgain(q+ 1) + 1 ≤ i ≤ ζgain(q+ 1) + jq, (vgain)′jl(Qi) = 0

for ζgain(q+1)+jq+1 ≤ i ≤ ζgain(q+1)+jq+ l and (vgain)′jl(Qζgain(q+1)+jq+l+1) �= 0.

Therefore the initial point of zgain
j,l+ζgain

is ζgain(q + 1) + jq + l + 1. Also, by Lemma

4.1, wgain ∈ L(ζgain(q + 1)Q∞) and (zgain
j,l+ζgain

/w) ∈ L((m− ζgain(q + 1))Q∞). Hence

zgain
j,l+ζgain

∈ L(mQ∞), P 2
gain ⊆ Pgain(m), and P 1

gain(m) ∪ P 2
gain(m) ⊆ Pgain(m).
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28 T. BLACKMORE AND G. H. NORTON

Therefore it remains to show that |P 1
gain(m)∪P 2

gain(m)| = k. To do this we exhibit

a bijection Λ−1[0,m] → P 1
gain(m)∪P 2

gain(m). First, for (j, l) ∈ Λ−1[0,m] we map (j, l)

to l(q+ 1) + j + 1 ∈ P 1
gain(m) if 0 ≤ j ≤ q and 0 ≤ l ≤ ζgain − 1. Now we are left with

defining a bijection F

{(j, l) ∈ Λ−1[0,m] : 0 ≤ j ≤ q, ζgain ≤ l ≤ q − 1 or j ≥ q + 1} → P 2
gain(m) by

F (j, l) =

{
ζgain(q + 1) + jq + (l − ζgain) + 1 if ζgain ≤ l ≤ q − 1,
ζgain(q + 1) + (j − q − 1)q + (l + q+q2

2 ) + 1 if 0 ≤ l ≤ ζgain − 1.

It is easy to check that F maps into P 2
gain(m) and F is one-to-one since for ζgain ≤

l ≤ q − 1 and 0 ≤ l′ ≤ ζgain − 1, 0 ≤ l − ζgain ≤ q+q2
2 − 1 < q+q2

2 ≤ l′ + q+q2
2 ≤ q − 1.

Finally we prove F is onto. For i ∈ P 2
gain(m), such that i = ζgain(q + 1) + jq + l + 1

for (j, l) ∈ Λ−1[0,m− ζgain(q + 1)], we put

(j′, l′) =

{
(j, l + ζgain) if 0 ≤ l ≤ q+q2

2 − 1,
(j + q + 1, l − q+q2

2 ) if q+q2
2 ≤ l ≤ q − 1.

It is straightforward to see that (i) (j′, l′) ∈ Λ−1[0,m]; (ii) if j′ ≤ q, then ζgain ≤ l′ ≤
q − 1; and (iii) F ((j′, l′)) = i. This completes the proof for Pgain(m), and similarly
for the points of fall.

Example 4.5. If q = 3, then Pgain(13) = [1, 9] ∪ {11, 14} and Pfall(13) = {16} ∪
[18, 27], giving s(C13) = W(C13) = ∇ı(CL(D, 13Q∞)) = 11 using Theorem 3.9, but
s(C13) = ∇(C13) + 1.

Proof. The coordinate order of C13 is

Q1,0,0 < Q1,1,0 < Q1,2,0 < Q1,3,0 < Q0,0,0 < Q0,0,1 < Q0,0,2 < Q2,0,0 < Q2,0,1

< Q2,0,2 < Q2,1,0 < Q2,1,1 < Q2,1,2 < Q2,2,0 < Q2,2,1 < Q2,2,2 < Q2,3,0 < Q2,3,1

< Q2,3,2 < Q1,0,1 < Q1,1,1 < Q1,2,1 < Q1,3,1 < Q1,0,2 < Q1,1,2 < Q1,2,2 < Q1,3,2.

We use the notation of the proof of Proposition 4.4. We note that ζgain = 1. Thus
for 0 ≤ j ≤ q and 0 ≤ l ≤ ζgain − 1, jq + l(q + 1) ≤ 9 ≤ 13, so that (j, l) ∈ Λ−1[0, 13].

Thus P 1
gain(13) is the set of initial points of zgain

j,0 for 0 ≤ j ≤ 3, which are as follows.

(j, l) zgain
jl Initial place Initial point

(0, 0) 1 Q1,0,0 1
(1, 0) (x− α1,0) Q1,1,0 2
(2, 0) (x− α1,0)(x− α1,1) Q1,2,0 3
(3, 0) (x− α1,0)(x− α1,1)(x− α1,2) Q1,3,0 4

Thus P 1
gain(13) = [1, 4]. Next we consider P 2

gain(13). Now we have

α0 = α0,0, α1 = α2,0, α2 = α2,1, α3 = α2,2, α4 = α2,3

so that a(0) = 0, a(1) = a(2) = a(3) = a(4) = 2. Then P 2
gain(13) is the set of initial

points of zgain
j,l+ζgain

such that (j, l) ∈ Λ−1[0, 13 − ζgain(q + 1)] = Λ−1[0, 9] and

Λ−1[0, 9] = {(0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2), (3, 0)},

D
ow

nl
oa

de
d 

12
/1

5/
15

 to
 1

30
.1

02
.8

2.
11

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



ABSOLUTE STATE COMPLEXITY OF A HERMITIAN CODE 29

giving the following.

(j, l + 1) zgain
j,l+1 Initial place Initial point

(0, 1) (y − β1,0) Q0,0,0 5
(1, 1) (y − β1,0)(x− α0) Q2,0,0 8
(0, 2) (y − β1,0)(y − β0,0) Q0,0,1 6
(2, 1) (y − β1,0)(x− α0)(x− α1) Q2,1,0 11
(1, 2) (y − β1,0)(x− α0)(y − β2,0) Q2,0,1 9
(0, 3) (y − β1,0)(y − β0,0)(y − β0,1) Q0,0,2 7
(3, 1) (y − β1,0)(x− α0)(x− α1)(x− α2) Q2,2,0 14

Thus P 2
gain(13) = {5, 8, 6, 11, 9, 7, 14} = [5, 9]∪{11, 14} and Pgain(13) = [1, 9]∪{11, 14},

and similarly for Pfall(13). We have Pgain(13) < Pfall(13) and so s(C13) = 11.

From Propositions 4.2 and 4.4 we have that, if (i) 0 ≤ M◦ ≤ q−M•−2
2 or (ii)

q − M•
2 ≤ M◦ ≤ q or (iii) ζgain = ζfall and q−M•−1

2 ≤ M◦ ≤ q − M•+1
2 , then

Pfall(m) = n− Pgain(m) + 1. In these cases the following useful property holds.
Remark 4.6. For a length n code C, if Pfall(C) = n − Pgain(C) + 1, then

sn−i(C) = si(C) for 0 ≤ i ≤ n. In particular, for m ∈ J(n, g), if (i) q is odd and

0 ≤ M◦ ≤ q−M•−2
2 or q − M•

2 ≤ M◦ ≤ q or (ii) q is even and 0 ≤ M◦ ≤ q, then
si(Cm) = sn−i(Cm) for 0 ≤ i ≤ n. The same holds for m ∈ [n−1

2 + g, n−3
2 + 2g] if m⊥

satisfies (i) or (ii).
Proof. The proof is similar to that of [6, Proposition 2.5] and in fact can be

modified to hold for branch complexity as in [6, Proposition 2.5]. We put P i,+
gain(C) =

|Pgain(C)∩ [i+1, n]| and P i,+
fall (C) = |Pfall(C)∩ [i+1, n]|. Of course, with k = dim(C),

P i,+
gain(C) = k − P i,−

gain(C) and P i,+
fall (C) = k − P i,−

fall (C)

for any linear code C. The condition Pfall(C) = n− Pgain(C) + 1 also implies that

P i,−
gain(C) = Pn−i,+

fall (C) and P i,−
fall (C) = P i,+

gain(C).

Thus, from (9), we have

si(C) = Pn−i,+
fall (C) − P i,+

gain(C)

= (k − Pn−i,−
fall (C)) − (k − Pn−i,−

gain (C)) = sn−i(C).

Remark 4.7. If C ∈ [CL(D, 14Q∞)] is ordered by O1, then as in the proof
of Proposition 4.2 Pgain(C) = [1, 11] ∪ {13} and Pfall(C) = {15} ∪ [17, 27], so that
s(C) = 12. However, if C is ordered by O2, Pgain(14) = [1, 9] ∪ [11, 12] ∪ {14} and
Pfall(14) = {13, 16} ∪ [18, 27], giving s(C14) = W(C14) − 1 = ∇(C14) = 11. Thus O2
is strictly better than O1 for m=14.

If C ∈ [CL(D, 15Q∞)] is ordered by O1, then as in the proof of Proposition
4.2, Pgain(15) = [1, 11] ∪ {13, 16} and Pfall(15) = {12, 15} ∪ [17, 27], giving s(C15) =
∇(C15) = W(C15) − 2 = 11. However, if C is ordered by O2, we get Pgain(15) =
[1, 12] ∪ {14} and Pfall(15) = {13} ∪ [18, 27], giving s(C15) = 12. Thus O1 is strictly
better than O2 for m = 15.

To summarize, for q = 2, 3 andm ∈ J(n, g) ⊆ I(n, g), s(Cm) = ∇ı(CL(D,mQ∞)).
Thus, in these cases s(Cm) = s[CL(D,mQ∞)], and the coordinate order for Cm is
optimal with regard to s(Cm). In fact, except for q = 3 and m ∈ {11, 18}, s(Cm) =
∇(Cm) < W(Cm).
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30 T. BLACKMORE AND G. H. NORTON

Another characterization of the points of gain and fall of Cm. We now
characterize Pgain(m) and Pfall(m) as runs, i.e., as sequences of noncontiguous intervals
of integers. This is useful since s(Cm) must be attained at the end of a run of points
of gain. Thus to determine s(Cm), we need only to find the maximum of si(Cm) over
those i that end a run of points of gain, i.e. over those i such that i ∈ Pgain(m) and
i+ 1 /∈ Pgain(m).

We begin by combining Propositions 4.2 and 4.4 for a common development of the
cases (i) 0 ≤M◦ ≤ q−M•−2

2 or q− M•
2 ≤M◦ ≤ q and (ii) q−M•−1

2 ≤M◦ ≤ q− M•+1
2 .

First, we extend the definitions of ζgain and ζfall as follows:

ζgain =




0 for 0 ≤M◦ ≤ q−M•−2
2 ,

q−q2
2 for q−M•−1

2 ≤M◦ ≤ q − M•+1
2 ,

q for q − M•
2 ≤M◦ ≤ q

and

ζfall =




0 for 0 ≤M◦ ≤ q−M•−2
2 ,

q+q2
2 for q−M•−1

2 ≤M◦ ≤ q − M•+1
2 ,

q for q − M•
2 ≤M◦ ≤ q.

Proposition 4.8. For m ∈ J(n, g), Pgain(m) = P 1
gain(m) ∪ P 2

gain(m) and

Pfall(m) = P 1
fall(m) ∪ P 2

fall(m), where

P 1
gain(m) = {l(q + 1) + j + 1 : (j, l) ∈ Λ−1[0,m], 0 ≤ j ≤ q, 0 ≤ l ≤ ζgain − 1},
P 2

gain(m) = {ζgain(q + 1) + jq + l + 1 : (j, l) ∈ Λ−1[0,m− ζgain(q + 1)]},
P 1

fall(m) = {n− l(q + 1) − j : (j, l) ∈ Λ−1[0,m], 0 ≤ j ≤ q, 0 ≤ l ≤ ζfall − 1},
P 2

fall(m) = {n− ζfall(q + 1) − jq − l : (j, l) ∈ Λ−1[0,m− ζfall(q + 1)]}.
Proof. From the examples above and Remark 4.7, we can assume that q ≥ 4.

For q−M•−2
2 ≤ M◦ ≤ q − M•+1

2 , the result is just a restatement of Proposition

4.4. Also, for 0 ≤ M◦ ≤ q−M•−1
2 , the result states that Pgain(m) = P 2

gain(m) =

{jq + l + 1 : (j, l) ∈ Λ−1[0,m]} and Pfall(m) = P 2
fall(m) = {n − jq − l : (j, l) ∈

Λ−1[0,m]}, in agreement with Proposition 4.2. Therefore we are reduced to m such
that q − M•

2 ≤ M◦ ≤ q for which ζgain = ζfall = q. Rewriting j′q + l′ + 1 as
q(q+ 1) + (j′ − q− 1)q+ l′ + 1 and q(q+ 1) + jq+ l+ 1 as (j + q+ 1)q+ l+ 1, we see
that P 1

gain(m) = {j′q + l′ + 1 : (j′, l′) ∈ Λ−1[0,m], 0 ≤ j′ ≤ q}.

We claim that P 2
gain(m) = {j′q + l′ + 1 : (j′, l′) ∈ Λ−1[0,m], j′ ≥ q + 1}. First, if

0 ≤ j ≤ q and 0 ≤ l ≤ q − 1, then (j, l) ∈ Λ−1[0,m] since q ≥ 4. Thus we need to
show that

{j′q+ l′ + 1 : 0 ≤ j′ ≤ q, 0 ≤ l′ ≤ q− 1} = {l(q+ 1) + j+ 1 : 0 ≤ j ≤ q, 0 ≤ l ≤ q− 1}.
If k is in the left-hand side, k = j′q + l′ + 1 for some 0 ≤ j′ ≤ q and 0 ≤ l′ ≤ q − 1.
Put

(j, l) =

{
(l′ − j′ + q + 1, j′ − 1) if 0 ≤ l′ < j′,
(l′ − j′, j′) if j′ ≤ l′ ≤ q − 1.

In either case, 0 ≤ j ≤ q, 0 ≤ l ≤ q− 1 and l(q+ 1) + j + 1 = j′q+ l′ + 1 = k, so that
k is in the right-hand side. The reverse inclusion is similar. The result now follows
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ABSOLUTE STATE COMPLEXITY OF A HERMITIAN CODE 31

from Proposition 4.2 since for q − M•
2 ≤ M◦ ≤ q, P 1

fall(m) = n − P 1
gain(m) + 1 and

P 2
fall(m) = n− P 2

fall(m) + 1.
Lemma 4.9. If θgain = M• + M◦ − ζgain and θfall = M• + M◦ − ζfall, then

0 ≤ θgain ≤ q − 2 and −1 ≤ θfall ≤ q − 2.
Proof. The proof is straightforward using Lemma 3.7.
Theorem 4.10. For m ∈ J(n, g),
1. Pgain(m) is the union of

(a) [1,m− 2g − θgain];
(b) {m− 2g − θgain + eq + f + 1 : 0 ≤ e ≤ q − 2 − θgain, 0 ≤ f ≤ q − 2 − e};

and
(c) {m−2g−θgain +eq+f +1 : q−1−θgain ≤ e ≤ q−1, 0 ≤ f ≤ q−1−e};
and

2. Pfall(m) is the union of
(a) [n−m+ 2g + θfall + 1, n];
(b) {n−m+ 2g+ θfall − eq−f : 0 ≤ e ≤ q−2− θfall, 0 ≤ f ≤ q−2− e}; and
(c) {n−m+ 2g+ θfall − eq− f : q− 1− θfall ≤ e ≤ q− 1, 0 ≤ f ≤ q− 1− e}.

Proof. As in the proof of Proposition 4.8, we assume that q ≥ 4. We will use the
fact that

m− 2g − θgain = ζgain(q + 1) +

(
q2 − q2

2
+M• − q + 1 − ζgain

)
q.(10)

For convenience we put R1
gain(m) = [1,m− 2g− θgain], R2

gain(m) = {m− 2g− θgain +

eq + f + 1 : 0 ≤ e ≤ q − 2 − θgain, 0 ≤ f ≤ q − 2 − e}, and R3
gain(m) = {m − 2g −

θgain + eq + f + 1 : q − 1 − θgain ≤ e ≤ q − 1, 0 ≤ f ≤ q − 1 − e}.
We show that R1

gain(m) ⊆ Pgain(m) in two steps. First we note that P 1
gain(m) =

[1, ζgain(q + 1)], since for q ≥ 4, 0 ≤ j ≤ q and 0 ≤ l ≤ ζgain − 1 ≤ q − 1, Λ(j, l) ≤
2q2 − 1 < n−1

2 ≤ m. Next we show that [ζgain(q + 1) + 1,m− 2g − θgain] ⊆ P 2
gain(m).

Now from (10) we have that for ζgain(q + 1) + 1 ≤ k ≤ m− 2g − θgain,

k = ζgain(q + 1) + jq + l + 1 for some 0 ≤ j ≤
(
q2 − q2

2
+M• − q − ζgain

)
and 0 ≤ l ≤ q − 1.

Also, if 0 ≤ j ≤
(

q2−q2
2 +M• − q − ζgain

)
and 0 ≤ l ≤ q − 1, then, again using (10),

Λ(j, l) ≤
(
q2 − q2

2
+M• − q − ζgain

)
q+ (q− 1)(q+ 1) = m− θgain − ζgain(q+ 1)− 1,

so that (j, l) ∈ Λ−1[0,m − ζgain(q + 1)]. Thus k ∈ P 2
gain(m). Next we show that

R2
gain(m) ∪ R3

gain(m) ⊆ P 2
gain(m). Take k = m− 2g − θgain + eq + f + 1. Then, from

(10), k = ζgain(q+1)+ jq+ l+1, where j = ( q2−q2
2 +M•−q+1−ζgain +e) and l = f.

Also, again using (10), Λ(j, l) = m − 2g − θgain − ζgain(q + 1) + (e + f)q + f. Thus
k ∈ P 2

gain(m) if (e+f)q+f ≤ 2g+θgain. If 0 ≤ e ≤ q−2−θgain and 0 ≤ f ≤ q−2−e,
then (e + f)q ≤ (q − 2)q = 2g − q and f ≤ q − 2, so that R2

gain(m) ⊆ P 2
gain(m). If

q − 1 − θgain ≤ e ≤ q − 1 and 0 ≤ f ≤ q − 1 − e, then (e+ f)q ≤ 2g and f ≤ θgain, so
that R3

gain(m) ⊆ P 2
gain(m).

Thus
⋃3

i=1R
i
gain(m) ⊆ Pgain(m), and it suffices to show that |⋃3

i=1R
i
gain(m)| =

|Pgain|. We recall that |Pgain| = dim(Cm) and since 2g − 2 < m < n, dim(Cm) =
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32 T. BLACKMORE AND G. H. NORTON

m− g + 1. Also,∣∣∣∣∣
3⋃

i=1

Ri
gain(m)

∣∣∣∣∣ = (m−2g−θgain)+

q−1∑
e=0

(q−1−e)+(θgain+1) = m−2g+1+

q−1∑
e=0

e = m−g+1.

The proof for Pfall(m) is similar and we omit the details.

5. When the DLP bound is tight. Here we use Theorem 4.10 to determine
s(Cm). We know (from Corollary 3.10 and Proposition 3.12) that s[CL(D,mQ∞)] >
∇(Cm) for just under half of the m in the range I(n, g). We show that for the
remaining m in this range, s(Cm) = ∇(Cm). As a consequence, we have determined
s[CL(D,mQ∞)] and a coordinate order that achieves s[CL(D,mQ∞)] for such m.
For those m with s(Cm) > ∇(CL(D,mQ∞)) we compare the upper bound, s(Cm),
on s[CL(D,m∞)] with the lower bound ∇ı[(CL(D,mQ∞)] given in Corollary 3.10.
When q is odd, these bounds meet for over three quarters of those m in I(n, g), but
when q is even, the bounds meet for only a little over one half of those m in I(n, g).

Determining s(Cm). As discussed in section 4, it suffices to find the maximum
of si(Cm) over those i such that i ∈ Pgain(m) and i + 1 /∈ Pgain(m). From Theorem
4.10, there are only q + 1 such i. Thus concentrating on these i is significantly
simpler. Therefore we calculate si(Cm) for these q+ 1 values of i (in Proposition 5.5)
by determining P i,−

gain(m) and P i,−
fall (m) (in Lemmas 5.1 and 5.4). We determine which

of these i gives the largest si(Cm) (in Lemma 5.6). This enables us to write down
s(Cm) (in Theorem 5.7).

Early on we introduce a variable η = η(m) which plays a crucial role in the
proofs and statements of many of the results, and we end with a table of s(Cm) for
m ∈ [n−1

2 , n−3
2 + g] when q ∈ {2, 3, 4, 5, 7, 8}.

We begin by determining s(Cm) for m ∈ J(n, g). We note first that θgain =
M• +M◦ − ζgain and θfall = M• +M◦ − ζfall, where ζgain and ζfall were defined just
before Proposition 4.8.

As noted above, si(Cm) = s(Cm) for some i such that i ∈ Pgain(m) and i + 1 /∈
Pgain(m). From Theorem 4.10 such i are either (i) of the form m− 2g − θgain + eq +
(q−1−e) for some −1 ≤ e ≤ q−2−θgain or (ii) of the form m−2g+θgain +eq+(q−e)
for some q − 1 − θgain ≤ e ≤ q − 1. Thus putting

ie =

{
m− 2g − θgain + eq + (q − 1 − e) for −1 ≤ e ≤ q − 2 − θgain,
m− 2g − θgain + eq + (q − e) for q − 1 − θgain ≤ e ≤ q − 1,

we have

s(Cm) = max{sie(Cm) : −1 ≤ e ≤ q − 1}.(11)

From (9), sie(Cm) = P ie,−
gain (m) − P ie,+

gain (m), so we wish to determine P ie,−
gain (m) and

P ie,−
fall (m) for −1 ≤ e ≤ q − 1. The first of these is straightforward.
Lemma 5.1. For m ∈ J(n, g),

P ie,−
gain (m) =

{
k − (

q−e
2

)
+ (q − 2 − θgain − e) for −1 ≤ e ≤ q − 2 − θgain,

k − (
q−e
2

)
for q − 1 − θgain ≤ e ≤ q − 1.

Proof. Since 2g − 2 < m < n we have k = m− g + 1. For −1 ≤ e ≤ q − 2 − θgain,
Theorem 4.10 gives

P ie,−
gain (m) = m− 2g − θgain +

e∑
ν=0

(q − 1 − ν) = k − g − (θgain + 1) +

q−1∑
ν=q−1−e

ν.
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ABSOLUTE STATE COMPLEXITY OF A HERMITIAN CODE 33

The first case follows since
∑q−1

ν=q−1−e ν = g−(
q−1−e

2

)
and

(
q−1−e

2

)
=
(
q−e
2

)−(q−1−e).
In the second case,

P ie,−
gain (m) = m− g + 1 −

(
q − e

2

)
− (q − 2 − θgain − e) − (e− (q − 2 − θgain)).

For P ie,−
fall (m) it is convenient to introduce some more notation. For fixed m we put

ζnorm =
ζgain + ζfall

q
.

Thus ζnorm is 0, 1, or 2, depending on whether 0 ≤M◦ ≤ q−M•−2
2 , q−M•−1

2 ≤M◦ ≤
q − M•+1

2 , or q − M•
2 ≤M◦ ≤ q. Also, we put

η = 2q − 2M• + q2 − ζnorm − 3.

In Lemma 5.4 and Proposition 5.5 we will see a symmetry between the roles of e in
P ie,−

gain (m) and η−e in P ie,−
fall (m). We will see in Lemma 5.6 that sie(Cm) is maximized

near η
2 , and hence η appears naturally in our formula for s(Cm).
Lemma 5.2. q − 1 ≤ η ≤ 2q − 3.
Proof. First, it follows from Lemma 3.7 that

η ≥



2q − (q − 3) + 1 − 2 − 3 = q − 1 if q is odd,
2q − (q − 4) − 2 − 3 = q − 1 if q is even and M◦ > 0,
2q − (q − 2) − 3 = q − 1 if q is even and M◦ = 0


 = q − 1.(12)

Next, clearly η ≤ 2q − 2, with equality only if M• = ζnorm = 0 and q2 = 1. However,
from Lemma 3.7, if M• = 0 and q is odd, then M◦ ≥ q−1

2 so that ζnorm ≥ 1.

Now, in order to use Theorem 4.10 to calculate P ie,−
fall (m), we need to write ie as

n−m+2g+θfall−e′q−f for some, preferably nonnegative, integer e′ and 0 ≤ f ≤ q−1.
We could then determine an expression for P ie,−

fall (m) in terms of e′ and f in a similar
way to the proof of Lemma 5.1, except that f would add complications. This would
give us an expression for sie(Cm) in terms of e, e′, and f . To maximize this over
−1 ≤ e ≤ q−1 we would need to relate e′ and f to e. Fortunately, these relationships
are reasonably simple.

Lemma 5.3. Let m ∈ I(n, g) and −1 ≤ e ≤ q − 1. If we write

ie = n−m+ 2g + θfall − e′q − f for some 0 ≤ f ≤ q − 1,

then e′ = η − e and

f =

{
e+ 1 for −1 ≤ e ≤ q − 2 − θgain,
e for q − 1 − θgain ≤ e ≤ q − 1.

In particular, e′ ≥ 0. Also, if e ≤ η − q + 1 + θfall, then q − η + e− f ≤ 0.
Proof. For −1 ≤ e ≤ q−2−θgain, we have (e+e′)q+(q−1−e+f) = n−2m+4g+

θgain + θfall. Now 2m = n− q2q+ 2M•(q+ 1) + 2M◦, 4g = 2q2 − 2q, and θgain + θfall =
2M• + 2M◦ − ζnormq, giving (e + e′)q + (q − 1 − e + f) = (2q − 2M• + q2 − ζnorm)q
which implies that f = e + 1 (since q − 1 − e > 0 from Lemma 4.9) and e′ = η − e.
Similarly, for q− 1− θgain ≤ e ≤ q− 1 we get (e+ e′)q+ (q− e+ f) = (η+ 1)q, giving
f = e and e′ = η − e.
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34 T. BLACKMORE AND G. H. NORTON

For the second part we have η ≥ q − 1 (from Lemma 5.2) and f ≥ e (from the
first part). Thus q − η + e − f ≤ 1 with equality only if η = q − 1 and f = e. We
show that, for e ≤ η − q + 1 + θfall, it is not possible that η = q − 1 and f = e. First,
f = e implies that e ≥ q − 1 − θgain. Also, η = q − 1 and e ≤ η − q + 1 + θfall imply
that e ≤ θfall. Thus q − 1 − θgain ≤ e ≤ θfall so that, adding θgain to both sides,

2M• + 2M◦ − qζnorm ≥ q − 1.(13)

Now, as in (12), η = q − 1 implies that either (i) ζnorm = 2 and M• ≤ q−3
2 or (ii)

M• = q−2
2 and M◦ = 0. Each of these clearly contradicts (13).

Lemma 5.4. For m ∈ J(n, g),

P ie,−
fall (m) =

{ (
q−η+e

2

)
for −1 ≤ e ≤ η − q + 1 + θfall,(

q−η+e
2

)− (q − 2 − θfall − η + e) for η − q + 2 + θfall ≤ e ≤ q − 1.

Proof. We write ie = n−m+2g+θfall−e′q−f if 0 ≤ f ≤ q−1, as in Lemma 5.3,
and work from Theorem 4.10. First, if e′ ≥ q, i.e., if e ≤ η − q, then P ie,−

fall (m) = 0.
We note also that, for e ≤ η − q,

(
q−η+e

2

)
= 0. Next, if q − 1 − θfall ≤ e′ ≤ q − 1, i.e.,

if η − q + 1 ≤ e ≤ η − q + 1 + θfall, then

P ie,−
fall (m) =

q−1−e′∑
ν=1

ν + max{0, q − e′ − f}

=

(
q − η + e

2

)
+ max{0, q − η + e− f} =

(
q − η + e

2

)
,

the last equality following from the second part of Lemma 5.3. Finally (since e′ ≥ 0
by Lemma 5.3), if 0 ≤ e′ ≤ q − 2 − θfall, i.e., if η − q + 2 + θfall ≤ e ≤ q − 1 (since
η ≥ q − 1), then

P ie,−
fall (m) =

q−1−e′∑
ν=1

ν − (q − 2 − θfall − e′) + max{0, q − e′ − 1 − f}

=

(
q − η + e

2

)
− (q − 2 − θfall − η + e) + max{0, q − η + e− f − 1}

and q − η + e− f − 1 ≤ 0 since η ≥ q − 1 and f ≥ e, by Lemma 5.3.
We use the convention that, for b ≥ 0,

(
a
b

)
= 0 if a < b. In particular,(

a

1

)
=

{
a for a ≥ 0,
0 for a ≤ 0,

(
a

0

)
=

{
1 for a ≥ 0,
0 for a < 0,

(
a

b

)
−
(
a− 1

b

)
=

(
a− 1

b− 1

)
,

where b ≥ 1. Lemmas 5.1 and 5.4, together with (9), give the following proposition.
Proposition 5.5. For m ∈ J(n, g),

sie(Cm) = k−
(
q − e

2

)
−
(
q − η + e

2

)
+

(
q − 2 − θgain − e

1

)
+

(
q − 2 − θfall − η + e

1

)
.

Now we determine for which e, −1 ≤ e ≤ q − 1, sie(Cm) is maximized.
Lemma 5.6. For m ∈ J(n, g), sie(Cm) is maximized
1. at e = �η

2 � if η ≤ 2q − 6 − 2θfall or
2. at e = �η

2 � if η ≥ 2q − 5 − 2θfall.
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ABSOLUTE STATE COMPLEXITY OF A HERMITIAN CODE 35

Proof. From Proposition 5.5, with

σ(e) =

(
q − e

2

)
+

(
q − η + e

2

)
−
(
q − 2 − θgain − e

1

)
−
(
q − 2 − θfall − η + e

1

)
,

we have sie(Cm) = k−σ(e) and maximizing sie(Cm) is equivalent to minimizing σ(e)
over −1 ≤ e ≤ q − 1. Now, for 0 ≤ e ≤ q − 1,

σ(e) − σ(e− 1) = −
(
q − e

1

)
+

(
q − η + e− 1

1

)
+

(
q − 2 − θgain − e

0

)

−
(
q − 3 − θfall − η + e

0

)
.

Thus, since 0 ≤ (
q−2−θgain−e

0

) ≤ 1, we have

e− q ≤ σ(e) − σ(e− 1) ≤ e− q + 1 for 0 ≤ e ≤ η − q + 1,
2e− η − 1 ≤ σ(e) − σ(e− 1) ≤ 2e− η for η − q + 2 ≤ e ≤ η − q + 2 + θfall,
2e− η − 2 ≤ σ(e) − σ(e− 1) ≤ 2e− η − 1 for η − q + 3 + θfall ≤ e ≤ q − 1.

(14)

First, for 0 ≤ e ≤ η − q + 1, (14) implies that σ(e) − σ(e − 1) ≤ η − 2q + 2 ≤ 0, so
that σ(e) is minimized over −1 ≤ e ≤ η − q + 1 at e = η − q + 1. Thus it is sufficient
to determine where σ(e) is minimized over η− q+ 1 ≤ e ≤ q− 1. We note that, since
η ≤ 2q − 3 (Lemma 5.2),

η − q + 1 ≤
⌊η

2

⌋
≤
⌈η

2

⌉
≤ q − 1.

Now, for η − q + 2 ≤ e ≤ η − q + 2 + θfall, (14) implies that if e ≤ �η
2 �, then

σ(e)− σ(e− 1) ≤ 0 and if e ≥ �η
2 �+ 1 ≥ η+1

2 , then σ(e)− σ(e− 1) ≥ 0. Similarly, for

η−q+3+θfall ≤ e ≤ q−1, (14) implies that if e ≤ �η+1
2 � = �η

2 �, then σ(e) ≤ σ(e−1)
and if e ≥ �η

2 � + 1, then σ(e) ≥ σ(e− 1). Thus
1. if �η

2 � ≤ η − q + 2 + θfall, then σ(e) is minimized over η − q + 1 ≤ e ≤ q − 1
at e = �η

2 � and
2. if �η

2 � ≥ η − q + 3 + θfall, then σ(e) is minimized over η − q + 1 ≤ e ≤ q − 1
at e = �η

2 �.
This leaves the case �η

2 � = �η
2 �−1 = η−q+2+θfall, i.e., η = 2q−5−2θfall. In this case,

the above analysis implies that σ(e) is minimized at either �η
2 � = η − q + 2 + θfall =

q − 3 − θfall or �η
2 � = η − q + 3 + θfall = q − 2 − θfall. Also, we have

σ(q − 2 − θfall) − σ(q − 3 − θfall) = −(θfall + 2) + (θfall + 2) +

(
θfall − θgain

0

)
− 1 ≤ 0,

so that σ(e) is minimized at �η
2 �.

Finally, we note that if η ≥ 2q − 3 − 2θfall, then −η ≤ −2q + 3 + 2θfall, so that
adding 2η + 1 to both sides and dividing by 2 implies⌈η

2

⌉
≤ η + 1

2
≤ η − q + 2 + θfall,

and we are in case 1 above. Also, if η = 2q − 4 − 2θfall we have �η
2 � = η − q + 2 +

θfall, and again we are in case 1. Similarly for η ≤ 2q − 6 − 2θfall we are in case 2
above.
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36 T. BLACKMORE AND G. H. NORTON

Proposition 5.5 and Lemma 5.6 give us the following theorem.
Theorem 5.7. For m ∈ J(n, g),

s(Cm) =




k − (
q−� η

2 

2

)− (
q−� η

2 �
2

)
+ (2q − 4 − θfall − θgain − η) for η ≤ 2q − 6 − 2θfall,

k − (
q−� η

2 

2

)− (
q−� η

2 �
2

)
+ 1 for η = 2q − 5 − 2θfall,

k − (
q−� η

2 

2

)− (
q−� η

2 �
2

)
for η ≥ 2q − 4 − 2θfall.

Proof. The result follows since
1. for η ≤ 2q − 6 − 2θfall, q − 2 − θgain − �η

2 � ≥ 0 and q − 2 − θfall − �η
2 � ≥ 1;

2. for η = 2q− 5− 2θfall, q− 2− θgain −�η
2 � ≤ 0 and q− 2− θfall −�η

2 � = 1; and
3. for η ≥ 2q − 4 − 2θgain, q − 2 − θgain − �η

2 � ≤ 0 and q − 2 − θfall − �η
2 � ≤ 0.

For example, η ≤ 2q − 6 − 2θfall implies that �η
2 � ≤ q − 3 − θfall, so that

q − 2 − θgain −
⌊η

2

⌋
≥ 1 + θfall − θgain = 1 + ζgain − ζfall ≥ 0.

The other equalities and inequalities follow similarly.
Of course, Theorem 5.7 essentially gives the values of s(Cm) for I(n, g) since

m ∈ [n−1
2 + g, n−3

2 + 2g] implies m⊥ ∈ J(n, g) and s(Cm) = s(Cm⊥).
Table 3 gives s(Cm) for q ∈ {2, 3, 4, 5, 7, 8} and m ∈ J(n, g). Comparing these

values of s(Cm) with the values of ∇ı(CL(D,mQ∞)) given in Table 2 we have s(Cm) =
∇ı(CL(D,mQ∞)) except for q = 5 and m = 70, q = 7 and m ∈ {182, 189, 190}, and
q = 8 and m ∈ {268, 272, 276, 277, 280, 281}. In particular, s(Cm) achieves the DLP
bound for Cm for q ∈ {2, 3, 4, 5, 7, 8} and m ∈ I(n, g) when this is not excluded by
Corollary 3.10, i.e., whenever the entry for m or m⊥ in Table 2 is not in boldface.

Table 3
s(Cm) for q ∈ {2, 3, 4, 5, 7, 8} and m ∈ J(n, g).

q
2 m 4

s(Cm) 3
3 m 13 14 15

s(Cm) 11 11 11
4 m 32 33 34 35 36 37

s(Cm) 26 27 27 28 28 28
5 m 62 63 64 65 66 67 68 69 70 71

s(Cm) 53 53 54 54 55 56 56 56 57 56
7 m 171 172 173 174 175 176 177 178 179 180

s(Cm) 151 151 152 153 153 154 155 156 156 156
m 181 182 183 184 185 186 187 188 189 190 191

s(Cm) 157 158 157 158 159 159 159 159 160 160 159
8 m 256 257 258 259 260 261 262 263 264 265 266 267 268 269

s(Cm) 228 229 230 231 231 232 233 234 234 234 235 236 237 236
m 270 271 272 273 274 275 276 277 278 279 280 281 282 283

s(Cm) 237 238 239 238 238 239 240 240 239 240 241 241 240 240

Comparing s(Cm) with ∇ı(CL(D, mQ∞)). We start by reinterpreting
∇(CL(D,mQ∞)) in terms of η in Theorem 5.8. We use this to calculate (in Proposi-
tion 5.9) and hence to show (in Corollary 5.10) that s(Cm) = ∇(CL(D,mQ∞)) when-
ever this is not excluded by Corollary 3.10 . This means that s(Cm) achieves the DLP
bound for Cm for just over half of those m in the range [n−1

2 , n−3
3 +2g]. We then com-

pare s(Cm) with ∇ı(CL(D,mQ∞)) in Table 4 and see that s(Cm) achieves the bound
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ABSOLUTE STATE COMPLEXITY OF A HERMITIAN CODE 37

∇ı(CL(D,mQ∞)) for approximately a further quarter of those m in [n−1
2 , n−3

3 + 2g]
if q is odd but only for about a further 1/q of those m in [n−1

2 , n−3
3 + 2g] if q is even.

Previously, we partitioned J(n, g) into three subintervals, according to whether

0 ≤ M◦ ≤ q−M•−2
2 , q−M•−1

2 ≤ M◦ ≤ q − M•+1
2 , or q − M•

2 ≤ M◦ ≤ q. Now we
consider a finer partition and say that m ∈ J(n, g) satisfies (A), (B), (C), (D), or (E)

according to whether (A) 0 ≤M◦ ≤ q−2
2 −M•, (B) q−1

2 −M• ≤M◦ ≤ q−M•−2
2 , (C)

q−M•−1
2 ≤M◦ ≤ q−M•−1, (D) q−M• ≤M◦ ≤ q−M•+1

2 , or (E) q−M•
2 ≤M◦ ≤ q.

We compare s(Cm) with ∇ı(CL(D,mQ∞)) by reinterpreting Theorems 3.9 and
5.7 using (A)–(E).

Theorem 5.8. If m ∈ J(n, g), then

∇(CL(D,mQ∞)) =

{
k − (

q−� η
2 


2

)− (
q−� η

2 �
2

)
if m satisfies (A),(C),(E),

k − (
q−� η

2 

2

)− (
q−� η

2 �
2

)− (θfall + θgain − q + 2) otherwise.

Proof. Take u and v as in the statement of Theorem 2.1. It is straightforward to
show, using the characterization of (u, v) given in the proof of Lemma 3.8, that if m
satisfies (A), (C), or (E), then η = u− 1 and v = q− θgain − θfall − 2 and if m satisfies
(B) or (D), then η = u and v = 2q− θgain − θfall − 2. Thus Theorem 2.1 implies that,
for m satisfying (A), (C), or (E),

∇(CL(D,mQ∞)) = k −
(
q − �η+1

2 �
2

)
−
(
q − �η+1

2 �
2

)

− min

{
q −

⌈
η + 1

2

⌉
, θgain + θfall + 2

}

and for m satisfying (B) or (D),

∇(CL(D,mQ∞)) = k−
(
q − �η

2 �
2

)
−
(
q − �η

2 �
2

)
−min

{
q −

⌈η
2

⌉
, θgain + θfall + 2 − q

}
.

First, for m satisfying (A), (C), or (E) we have (i) �η+1
2 � ≥ q−M•−1 if ζnorm ∈ {0, 1}

or (ii) �η+1
2 � ≥ q − M• − 2 if ζnorm = 2. Also, θgain + θfall + 2 = 2M• + 2M◦ −

ζgain − ζfall + 2 and (i) for ζnorm = 0, 2M◦ − ζgain − ζfall ≥ 0, (ii) for ζnorm = 1,
2M◦−ζgain−ζfall ≥ (q−M•−1)−q = −M•−1 or (iii) for ζnorm = 2, 2M◦−ζgain−ζfall ≥
(2q −M•) − 2q = M•. Thus, for m satisfying (A), (C), or (E), ∇(CL(D,mQ∞)) is
equal to

k−
(
q − �η+1

2 �
2

)
−
(
q − �η+1

2 �
2

)
−q−

⌈
η + 1

2

⌉
= k−

(
q − �η+1

2 �
2

)
−
(
q − �η+1

2 � + 1

2

)

as required. Similarly, for m satisfying (B) or (D) (so that ζnorm ≤ 1) it is easy to see
that q − �η

2 � ≥ M• + 1 and (by considering the cases that ζnorm = 0 and ζnorm = 1
separately) θgain + θfall + 2 − q ≤M• + 1. Thus, for m satisfying (B) or (D),

∇(CL(D,mQ∞)) = k −
(
q − �η

2 �
2

)
−
(
q − �η

2 �
2

)
− (θgain + θfall + 2 − q)

as required.
Before comparing s(Cm) with ∇ı(CL(D,mQ∞)), we compare it with

∇(CL(D,mQ∞)). To do this we refine (A)–(E) as follows: if m satisfies (C), then we
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38 T. BLACKMORE AND G. H. NORTON

say that m satisfies (C1), (C2), or (C3) if (C1) q−M•−1
2 ≤M◦ ≤ q−2

2 , (C2) M◦ = q−1
2 ,

or (C3) q
2 ≤M◦ ≤ q −M• − 1.

Proposition 5.9. For m ∈ J(n, g),

s(Cm) −∇(CL(D,mQ∞)) =




0 if m satisfies (A),
2M• + 2M◦ − q + 2 if m satisfies (B),
q − 2M◦ − q2 if m satisfies (C 1),
1 if m satisfies (C 2),
0 if m satisfies (C 3),
2M• + 2M◦ − 2q + 2 if m satisfies (D),
2q − 2M◦ + 1 − q2 if m satisfies (E).

Proof. Using η = 2q − 2θfall + 2M◦ − 2ζfall + q2 − ζnorm − 3, it is straightforward
to see that if M◦ ≤ q − 1 and

1. if m satisfies (A), (B), (D), or (C3), then η ≥ 2q − 2θfall − 4;
2. if m satisfies (C1) or (E), then η ≤ 2q − 6 − θfall; or
3. if m satisfies (C2), then η = 2q − 5 − θfall.

Also, if m = q is odd, then η = 2q − 2θfall − 4. Likewise, if m = q is even, then
η = 2q − 2θfall − 5. The result then follows from Theorems 5.7 and 5.8 noting that,
for cases (B) and (D), θgain + θfall − q + 2 = 2M• + 2M◦ − (ζnorm + 1)q + 2 and for
cases (C1) and (E) with M◦ ≤ q− 1, 2q− 4− θfall − θgain − η = ζnormq− 2M◦ − q2 +
(ζnorm − 1).

It follows from Proposition 5.9 that s(Cm) achieves the DLP bound for Cm as
often as this is possible. We state this as the following corollary.

Corollary 5.10. For m ∈ I(n, g), s(Cm) = ∇(CL(D,mQ∞)) if and only if
∆(m) = 0.

Proof. Since for m ∈ [n−1
2 + g, n−3

2 + 2g], ∆(m) = ∆(m⊥), ∇(CL(D,mQ∞)) =
∇(CL(D,m⊥Q∞)), and s(Cm) = s(Cm⊥), it suffices to show the result form ∈ J(n, g).
It follows from the definition of ∆(m) for such m that ∆(m) = 0 if and only if (i) m
satisfies (A) or (ii) m satisfies (C3) or (iii) q2 = 1 and M◦ = q. These are exactly the
values of M◦ for which Proposition 5.9 gives s(Cm) = ∇(CL(D,mQ∞)).

Example 5.11. If Cm is self-dual, then ∇(Cm) = s(Cm) = n
2 − q2

4 , where Cm

has the lexicographic coordinate order. In particular, s[Cm] = n
2 − q2

4 .
Proof. We know that q is a power of 2, k = n

2 , and m = n
2 + g − 1 ∈ J(n, g) ⊆

I(n, g). From the definitions, M• = q−2
2 and M◦ = ζnorm = 0. Also, ∇(Cm) = n

2 − q2

4
by Theorem 5.8. The result now follows since ∆(m) = 0.

We remark that the main result of [13] is Example 5.11 with q ≥ 4. Corollary 5.10
and Proposition 3.12 imply that ∇(Cm) is attained for just over half the m ∈ I(n, g).
Explicitly, the proportion of these m for which the DLP bound is attained is 1

2 + 1
2q

for q odd and 1
2 + 3q−5

2(q2−q−1) for q even. Of course Corollary 5.10 implies that if m

satisfies (A), (C3) or M◦ = q is odd, then

s[CL(D,mQ∞)] = ∇(CL(D,mQ∞)) = s(Cm).

The increments on s[CL(D,mQ∞)] given by Theorem 3.9 and Proposition 5.9 for
all m in J(n, g) (and hence implicitly also for m ∈ [n−1

2 + g, n−3
2 + 2g]) are given in

Table 4. The first entry is ∆(m) and the second is s(Cm) −∇(CL(D,mQ∞)). Thus
our lower bound for s[CL(D,mQ∞)] is ∇ı(CL(D,mQ∞)) = ∇(CL(D,mQ∞))+∆(m)
and our upper bound for s[CL(D,mQ∞)] is ∇(CL(D,mQ∞)) plus the second entry,
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Table 4
Table of bounds on s[CL(D,mQ∞)] for m ∈ J(n, g).

m satisfies ∆(m) s(Cm)−∇ Range
(A) 0 0 0

(B) M• +M◦ + 1− q−q2
2

2M• + 2M◦ + 2− q M• +M◦ + 1− q+q2
2

(C1) q+q2
2

−M◦ q − q2 − 2M◦ q−q2
2

−M◦
(C2) 1 1 0
(C3) 0 0 0
(D) M• +M◦ + 1− q 2M• + 2M◦ + 2− 2q M• +M◦ + 1− q
(E) q −M◦ + 1− q2 2q − 2M◦ + 1− q2 q −M◦

i.e., s(Cm). The third entry in the table (the range of s[CL(D,mQ∞)]) is s(Cm) −
∇ı(CL(D,mQ∞)).

As well as those m for which s(Cm) = ∇(CL(D,mQ∞)), Table 4 also gives

s(Cm) = ∇ı(CL(D,mQ∞)) = s[CL(D,mQ∞)](15)

for those m ∈ J(n, g) such that

q−1
2 −M• ≤M◦ ≤ q−1

2 if q is odd,
M◦ = q if q is even.

(16)

Hence (15) also holds for those m ∈ [n−1
2 + g, n−3

2 + 2g] such that m⊥ satisfies (16).

In all these cases except M• ≥ 2 and M◦ = q−3
3 we have

s[CL(D,mQ∞)] = s(Cm) = ∇(CL(D,mQ∞)) + 1.

For M• ≥ 2 and M◦ = q−3
3 we have

s[CL(D,mQ∞)] = s(Cm) = ∇(CL(D,mQ∞)) + 2.

For q odd, this gives q2−1
4 values of m ∈ I(n, g) for which s[CL(D,mQ∞)] is de-

termined but is strictly greater than ∇(CL(D,mQ∞)). Thus, for q odd, the total
proportion of those m in I(n, g) for which we have determined s[CL(D,mQ∞)] is

1

2
+

1

2q
+

q2 − 1

4(q2 − q)
=

3(q + 1)

4q
.

For q even, it gives q−2 values of m ∈ I(n, g) for which s[CL(D,mQ∞)] is determined
but is strictly greater than ∇(CL(D,mQ∞)). Thus, for q even, the total proportion
of those m ∈ I(n, g) for which we have determined s[CL(D,mQ∞)] is

1

2
+

3q − 5

2(q2 − q − 1)
+

q − 2

q2 − q − 1
=

1

2
+

5q − 9

2(q2 − q − 1)
.

Thus we have determined s[CL(D,mQ∞)] for over three quarters of those m in I(n, g)
when q is odd but only for something over one half of those m in I(n, g) when q is even.
For q odd, the first m for which s[CL(D,mQ∞)] is not determined is q = 5 and m = 70
(when it is either 56 or 57), and for q even, the first m for which s[CL(D,mQ∞)] is
not determined is q = 8 and m = 268 (when it is either 236 or 237).
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