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Optimal input states and feedback for interferometric phase estimation
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We derive optimaN-photon two-mode input states for interferometric phase measurements. Under canoni-
cal measurements the phase variance scalés asor these states, as compared\o® or N~ Y2 for states
considered by previous authors. We prove that it is not possible to realize the canonical measurement by
counting photons in the outputs of the interferometer, even if an adjustable auxiliary phase shift is allowed in
the interferometer. However, we introduce a feedback algorithm based on Bayesian inference to control this
auxiliary phase shift. This makes the measurement close to a canonical one, with a phase variance scaling
slightly aboveN 2. With no feedback, the best resutiiven that the phase to be measured is completely
unknown is a scaling ofN~1. For optimal input states having up to four photons, our feedback scheme is the
best possible one, but for higher photon numbers more complicated schemes perform marginally better.
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[. INTRODUCTION optimal. Finally we show, in Sec. VII, that the feedback
scheme outlined in Ref6] is optimal for optimal states of

Interferometry is the basis of many high-precision mea-up to four photons, and we numerically determine the opti-
surements, for example gravitational wave detection. Phasmal feedback for optimal states up to 12 photons. Even with
measurement sensitivity is limited by the complementarityoptimal feedback and phase estimates, the phase variance is
between photon number and phase. This is most easily irebove the intrinsic phase variance for three or more photons,
vestigated for a Mach-Zehnder interferometsee Fig. 1 demonstrating that it is not possible to perform canonical
The outputs of the interferometer are measured to give aimterferometric measurements by photodetections, despite
estimate¢ of the phase difference between the armsFor  the added flexibility of the auxiliary phase.
simplicity we can take the phase shiftto be in one arm. We
can then introduce a known phase skifin the other arm in II. INITIAL STATE
order to obtain a more accurate measurement.

The Mach-Zehnder interferometer achieves a phase sensi- We consider a Mach-Zehnder interferometer with two in-
tivity of Ad)ocj_/\/_ N whenN photons are fed into one arm. put beams with annihilation operatwsandb as in Fig. 1.
Several author§l—5] have proposed ways of reducing the We use the Schwinger representatj@nh
phase uncertainty to the Heisenberg limit ol LExcept for

that of Cave$1], these proposals involved input states where Je=(a'b+ab"/2, J,=(a'b-abh/2i, (2.1
the total number of photons input to the interferometer is L o

fixed, and has no noise. We will be considering this case for J,=(a'a-b"b)/2, I?=3;+35+32. (2.2)
simplicity.

Most of these proposald—3] require that the input phase Following the notation of Sanders and co-workptsb],

be zero or very small in order to obtain theNlscaling.  we use the notatiohju), for the common eigenstate df
Sanders and co-workel4,5] considered canonical measure- and 32 with eigenvaluesu andj(j+1), respectively. This
ments, for which the N scaling is independent of the input ' '

phase. Unfortunately it is not generally possible to realize
these canonical measurements with photodetections at the
output of the interferometersee beloyw. Recently we
showed 6] that it is possible to obtain measurements that are
very close to canonical using feedback. In Héfl we also D
derived input states that minimize the Holevo phase vari-
ance. In this paper we expand our presentation of these re-
sults, and derive a number of additional results.

In general there are three areas available for optimization:
the initial state, the feedback phase, and the final phase esti-
mate. In Sec. Il we rederive the optimal input states dis-
cussed in Ref.6], and in addition show that these states have
uncertainties scaling asN/for all common measures of un-
certainty. In Sec. Ill we explain in detail the feedback FIG. 1. The Mach-Zehnder interferometer, with the addition of a
scheme outlined in Ref6]. We also derive the optimal final controllable phase in one arm. The unknown phase to be esti-
phase estimates, demonstrating that those used iflefle  mated ise. Both beam splitter$BS) are 50:50.
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state corresponds to Fock states withu andj — u photons  the Holevo phase variance approaches infinity in the limit of
entering portsa and b, respectively. Similarly we use the a flat distribution, which is not the case for the usual defini-
subscripty for an eigenstate oi We can represent a gen- tion.
eral pure input state th j2 photons as |y) The optimal state in the single-mode case for this measure
=3I ,%“M)z of the phase variance has been considered bé&& and

= . . . ) : L

The Mach-Zehnder interferometer acts to transform thé;hhere is a simple, analytic solution. The minimum Holevo
input field via the unitary operatoi(p)=exp(—igJd,) [5], phase vanance 1s
and we wish to estimate the phasdoy performing measure-
ments on the transformed output state. The probability dis- V,= tarf
tribution for the phase estimaig is, in general, given by
P(p)dp=(y|E(d)|4)dd, where E(¢) is the probability » _
operator measur@OM), and| ) is the interferometer input gnd the minimum uncertainty state for a mean phase of zero
state. 1S

From Ref.[5], the optimal measurement strategy corre- 2j

sponds to projections onto the phase stétés, given by | on) = 1 E i (w'+1)m
) op /j+1,u,’=0 2]+2

The effect of the interferometéin the Schrdinger picture
is to change the input state to

The optimal POM is therefore the projection operator

E(¢)d¢=/\/]j¢)<j?|d¢, where V' is a normalization fac- 1) ton) = § (' +1)m
tor. In terms of thel, eigenstates the POM is given by ®J1¥op \/_ 0 2j+2

j (2.12)

. 1 .
E(¢)do=5— E:_, ) (ivldd. (24 which is the minimum uncertainty state for a mean phase of
o= —¢. Because we have chosen the input phase to be zero,
If we make the substitutiongs’=u+j, v'=v+j, and measuring the phase of the output state directly gives the
lw"y=lin)y, the POM is interferometer phase shift. i
To obtain the input state in terms of the eigenstate, of
from Ref.[4], we have

2

oG, (29

T +
21+2 (2j+2)2

lw'). (210

]
ljg)y=(2j+1)"*? Ej e )y . (2.3

e e |u),

2j
. 1 o, o
E(prdp=5— > et u)(v']dg. (29 | |
woret Wipljv),=eTA0=0, (a12), (212
Written in this form the POM is identical to the POM for
canonical measurements on a single mode, with an Uppé{yherelw(w/Z) are the interferometer matrix elements given
b

limit of 2 on the photon number.
In order to determine the optimal input state, we wish to

minimize some measure of the phase uncertainty. The mea- | (77/2)=2‘/{(J =)l (j+u)! ]2 (M_V,M+V)(O)
sure that we will be using is the Holevo phase variance, * (j—=»)! (j+v)! I=#
which is defined a$7]

for u—v>—-1, u+v>-1, (2.13

V4=S,°-1, (2.6
where P{*#(x) are the Jacobi polynomials, and the other

whereS, e[0,1] is the sharpnesof the phase distribution,  atix elements are obtained using the symmetry relations

defined as
| . | (@) =(=D " (p)=11, _(4). (214
S¢E|<e'¢>|=U P(4)e?dg|. @n , _ o

o Using this, the state in terms of the eigenstated,af
The Holevo variance is the natural quantifier for dispersion i ,
in a cyclic variable. If the variance is small, then it is easy to [ op) = z sin (utj+D)m
show that o \/ +1 wv=-j 2j+2

¢— <¢> x e (TR (w12)]jv),. (2.15

V= f,,f" sir?

)P(¢)d¢ (2.9
An example of this state for 40 photons is plotted in Fig.

From this it is apparent that, provided there is no significan®. This state contains contributions from all tfe eigen-
contribution to the variance from largg, this definition of  states; however, the only significant contributions are from
the variance is equivalent to the usual definition. In additionnine or ten states near=0. The distribution near the center
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FIG. 2. The coefficients,(ju|¢om for states optimized for 10' N 10° 10°

minimum phase variance under canonical measurements. All coef-

ficients for a photon number ofj2-40 are shown by the continuous  F|G. 3. Variances in the phase estimate vs the input photon

line, and those near=0 for a photon number of 2=1200 by  number 3. The lines are exact results for canonical measurements

crosses. on optimal state$y,,) (continuous ling on states with all photons

incident on one input potjj ), (dashed ling on states with equal

is fairly independent of the photon number. To demonstratghoton numbers incident on both input pdj8), (dotted ling, and

this, the distribution near the center for 1200 photons is alsen the state|{0),+|j1),)/\2 (dash-dotted line The crosses are

shown in Fig. 2. numerical results for the adaptive phase measurement scheme on
In Ref. [2] it was shown that it is possible to generate a|qp. the circles are those dij ),, the pluses are those ¢j0),,

combination of two states near=0. Since the optimal and the asterisks are those on|gf,+|j1),)/v2 input state. All

states described here have significant contributions from ®ariances for th¢j0), state are for phase modute.

small number of states neau=0, it seems likely that it

should b_e possi_ble to prod_u_ce a reasonable approximatiqn o Refs.[3-5] are all based on the width of the central peak
Fhem using a suitable modification of the apparatus descnbeﬂ the distribution, but the main contribution to the variance
in Ref. [2]. . s is from thetails of the distribution. To demonstrate this, the
In order to compare this state wiffj0),, where equal o opaniity distribution forlj0), multiplied by sifi, is plot-
photon numbers are fed into both input poi@s considered .4 i Fig. 4.[Note that Egs.(2.8) and (2.16) imply that

in Refs.[3-5]), the exact phase variance for this case was, _ 12 -
. V4= [Si¢P(4)d¢.] In this figure we can clearly see that
calculated for a range of photon numbers. Since the phase {ie main contribution to the variance is from the tails. In

measured_ modular for this state, rather than the Holevo practice this means that the error in the phase will be small
phase variance the measure used for the variance was  nt of the time, but there will be a significant number of

1 a2idn -2 results with large errors.

V¢—(|<e TE=1)ia, (2.1 These results should not be taken to mean that the state

. ) ) . |j0), is unusable, as this state has an uncertainty scaling as
where the expectation value is determined using the POI\d—l for other measures of the phase uncertainty, for ex-
above. The phase variances for this state and the optimaimple the confidence interval and the Fisher lefi§thwhat
state are shown in Fig. 3. We also show the Holevo phasgese results mean is that care must be taken in analyzing
variance for the state|j0),+|j1),)/2 considered in Ref. phase data obtained using this state, as many simple data
[2]. This state is designed so that it can be considere@nalysis technique€or example the mearwill result in a
modulo 2, and it has been claimed that this state has aarge error.
phase uncertainty scaling & . The exact Holevo phase
variance of the state where all the photons are incident on
one port,|jj),, is also shown for comparison.

As can be seen, the phase variance|fo), scales down
with the photon number much more slowly than the phase
variance for optimal states, and even more slowly than the
variance folljj),, which scales asl ™. In fact, for the range
of photon numbers considered, the phase variancéj @y,
scales asN~ 2 This seems to imply that the phase uncer-
tainty scales a?\~ ' a radically different result from the
N~! scaling found in Refs.[3-5. The state [jO), ol , , ,
+]j1),)/V2, considered in Ref2], is even worse than the -5 -1 05 g 05 1 1.5
state|j0),. For this state, which is considered modula,2
the phase variance does not scale down with the photon FIG. 4. The canonical phase probability distribution fp@),
number, and is always of order unity. multiplied by sirf¢ for 2j =80 photons.

The reason for these discrepancies is that the results found
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___________________________________________ TABLE I. The scaling constants for each of the measures of
12r e - phase uncertainty that scale adlXfbr both the optimum state and
w10_ ,// 1
_g l'/_.f ' Measure | 'r//opt> | j0),
> 8 e
£V T NL, 7.752 6.875
5 6 1 NLs 10.711 12.305
§ / NLy 12.415 35.79
84 1 NLys 2.948 3.071
o ok NLg 2.766 1.414
0 — = — — cept the entropic length can be determined. Because this
10 10 10 10 state can only yield information aboutmodulo 7, we have

N S e
calculated all of these measures for the probability distribu-

FIG. 5. The phase uncertainty of states optimized for minimumtion of ¢ mod 7. For all of these measures except the vari-
Holevo phase variance under several measures multipliédl Bpe  ance, we have found that the st&i@), also yields arN !
square root of the Holevo phase variance is shown by the continiscaling. Specifically, the asymptotic results compare to those
ous line, the square root of the standard variance is shown bfor the optimal Statéwopg, as shown in Table I. In addition
circles, the inverse of the maximal value is shown by the dashedve determined the scaling constants based on the Bessel
line, the Sesman measure is shown by the dotted line, the entropifunction approximation given in Ref§4,5], and the results
length is shown by the dash-dotted line, the Fisher length is showagreed with those found using the exact calculations to the
by the crosses, and the 67% confidence interval is shown by pluseprecision given in Table I.

From this we see that the optimal state is actually worse

In contrast, the optimal states we consider will give datathan the|j0), state under the reciprocal pedk, or the
that is easily analyzed, because the variance scales as thgher length_, but it is better under all the other measures
Heisenberg limit. The phase variance is a very stringent meaf phase uncertainty. Although there is no clear distinction

sure of the uncertainty, with inequalities such[26,11] between the states on this basis, when one remembers that
|j0), can only be used to measure phase modtland that
V2meAX=Ly=2melg, (2.17  ityields a non-Heisenberg limited variance, the optimal state
|¢opt) is clearly better overall.
1 It is interesting to note that the coefficients we have found
1_CAX>LC1 (2.18  for the confidence interva(3.071) and the Fisher length

(1.414 for the statdj0), differ from those found in Ref5],
where AX is the square root of the variande,, is the en- of 3.36 and 2, respectively. The slightly different scaling for
W the confidence interval appears to be due to the asymptotic

tropic length[10], L is the Fisher length, antl: is aC ) . . . .
X 100% confidence interval. These inequalities will also beBesseI function expansion used in Réf]. The difference in

true for the Holevo phase variance for sufficiently narrowlythe Fisher length is because the Bessel function approxima-

peaked distributions. The optimal states we consider have %\82 '2 Rreof%[ism]::i(;]rstacorrrgzm/art]gg?ﬁgZ:felxc-[hdeis?riebsjt?(lar]c]ucr)]\?ér
Holevo phase variance scaling Bs 2, so the phase uncer- PP bp

tainty scales adl ™! for all these measures of uncertainty. In ;[2: dmcfxe/cre\:atlﬁe_ f;/ér?/;?— but t]h'“;ri;(?gt gggerisog{:l: r]rohr:al-
addition, we have found numerically that the phase uncer: ™ P '

tainty scales ad\~!, as estimated using the reciprocal-of- means that the approximate EXpression 1n RBY.is too
: small by a factor of 2. In our calculations we ensured that the
peak valuel ,, and the Sesman measureg (see Ref[12]

for a description of theseTo demonstrate this, in Fig. 5 we distribution is correctly normalized over the interval
plot all the common measures of uncertainty tifedn this (- 7/2’77/2]' . . .
figure only the Holevo phase variance and reciprocal-of-peak L|k_e the statelj0),, the state [(0),+|j 1>Z)/\/§ qons_|d-
value were determined analytically. All other measures wer@.red. in Ref[2] also suffers f“’m the problem of yielding a
determined using numerical integrals of the phase probabilit |gn|f|can_t number of r_eS“"? with large error. Howe\_/er, th'?
distribution. (The sum for the phase probability distribution roblem is far worse in this case, so that the variance is

can be evaluated analytically, and is therefore easily calcu@m’v‘?lyS of order unity, as seen in Fig. 3. Although the central

lated peak becomes narrower with the photon number, there are
It is clear from this plot that the asymptotic values for also peaks neat m, which although smaller than the main

these measures are good approximations for photon numbel?gak’ do not become s_ma_ller_wnh the phofcon _number. An
of order 100 or greater. For comparison, we have also calcuﬁxample of the phase distribution is shown in Fig. 6.

lated the corresponding measures for the sfdg, . For this
state the sum for the phase probability distribution cannot be
evaluated analytically, but when the probability distribution  The second problem is how to make these canonical mea-
is expressed as a sum, the integrals for all the measures esurements in practice. As we will show in Sec. VII, it is not

Ill. FEEDBACK TECHNIQUE
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140 ie'(¢*®)2(3 sin6+b cosh),
120t
1000 ] ie!(**/2(3 cosg—bsin ), (3.3
= 80 1 where = (¢— ®)/2. Ignoring the unimportant initial phase
& ol ] factors, we can represent these as the operatpend c;,
where
40t
20} ] c,=asin(6+um/2)+bcog 6+umnl2). (3.9
0, ) %% 1 > 3 The input state is then determined by the initial condition
¢
No, =\¢), 3.
FIG. 6. The canonical phase probability distribution foy0(), WI( 0:#)) |¢> @5
+1i1),)/+/2 for 2j =80 photons. wheren, is the empty string, and the recurrence relation
possible to make canonical measurements using photodetec- |¢(Nm_1,0))
tions at the output of the interferometer. It was shown (U @) =Cy (@) ———=". (3.6
p |'7[f mflm—-1,¥ > U m

[9,13,14 that in the single-mode case it is possible to make
very good phase measurements by using feedback to an a
iliary phase shift. In order to apply the same principle here
we consider adaptive measurements where the phase
wish to measuregp, is in one arm of the interferometer, and 1S,
we introduce a known phase shiftinto the other arm of the
interferometer as in Fig. 1. After each photodetection we
adjust this introduced phase shift in order to maximize thewe can express an arbitrary input state with2j photons
sharpness of the phase estimate after the next photodetectlon i

For this adaptive scheme to work, the feedback that adds @ sum OU eigenstatesy) == :—J‘ﬂ#“mz The state
justs® must act much faster than the average time betweeﬁfter m Qetectlons will befor m=1) a function ofp. We
photon arrivals. For simplicity we make the assumption thaf'€Note it as follows:

Llf‘hese states are not normalized, and their norm represents
VU%e probability for the measurement recard given ¢. That

P(Nml@)=(¢(Nm, @) (N, 0)). (3.7

the feedback is arbitrarily fast, which simply means that the i—mp2

phase®d is assumed to have always been changed before the n _ (N i—m/2:

next detection occurs. It is the ability to chan§eduring the [, ) M:;+m/2 Vuim(m 0)]] )z
passage of a singléwo-mode pulse that makes photon- (3.8

counting measurements more general than a measurement of
the output],, considered in Refq2,3]. Using the recurrence relatigieqg. (3.6)], we find that the

To describe this scheme, it is convenient to denote théunctlonal form of,;m(Nm. ¢) is always
resultu from the mth detection asi,,, (which is 0 or 1 de- m/2
pending on which output the photon is detecteq and the _ ik
measurement record up to and including tthié detection as Vs 2, Vi€ 39
the binary stringn,=u,, ...uU,u;. The input state aftem
detections will be a function of the measurement record andhe recurrence relation for the coefficientg. . is
¢, and we denote it alss(ny,, ¢)). In our calculations we do

not normalize these statéexcept for the initial stape in e (Pm=Umm)/2

order to express the state as a power serie=sn ¥ ;mk(Nym) = —2 > —mrl [S- .- (w2)m-1k- (w2 (Nm-1)
After the first beam splitter the operators for the two J
beams ardin the Heisenberg pictuye —isy ¥t (2ym-1:k— (12 Nm-1)]
A iB)/Z, (184D el (Pm—upym)/2
(a+ib)/\2, (ia+b)/y2. (3.1 +
2y2j—m+1
The two beams are then subjected to phase shifts ahd X[S_ - 12)m-1:k+ (12) Nm—1)
®, so the operators become . o
+iss ¥t (2ym-1:k+ w2)(NMm-1) 1, (3.10
ee(a+ib)/\2, e®(ia+b)/y2. (3.2  where
Finally, the effect of the second beam splitter is the same as _f_m.
the first, giving the two operators Sz 173 Futl (311
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We determine the feedback phase beforerttib detec- (on averagefrom the measurement, which gives the result
tion, ®,,, based on the measurement recogd ;. To deter- u,. One way to quantify this is to maximize the average
mine this phase, we need to determine the probability distrisharpness of the posterior distribution gfafter the result
bution for the unknown phasep. To determine this u,, weighted by the probability of that result occurring.
distribution we use Bayes’ theorem That is, we can take our maximand to be

P(‘P|nm71)P(Um|(P1nmfl)

P(e|um Nim-1)= M(@m)= 2 P(UnlNm-1)S(UnlNm-1),
P(um|nm—1) un=0,1
(3.12 ,
Here P(¢|n,,_,) is the prior distribution fore before the = > U P(¢Inm-1)P(Uple,np_1)e'¢de|.
mth detection. A similar Bayesian approach to interferom- Um=01]70
etry has been considered before, and used in analyzing ex- (3.17

perimental result$15]. However, this was done only with .
nonadaptive measurements, and with all particles incident ohow, using

one port.

Now the divisorP(ug,|nm_4) is independent of the phase, P(U o )= (P(UpNm-1,@) [ P(UpNm—1,0))
and therefore only provides a normalizing factor to the phase mi @ Hlm-1 (N1, @) p(Np-1,9))
distribution. Ignoring this normalization factor, the phase (3.18

distribution changes with each step as
and Eq.(3.14), we find that

P(‘P|nm)°cP(‘P|nm71)P(um|‘Panmfl)

< P( |n )<(/f(umnm71a(P)|¢(umnm—1r¢)> M(q)m):/\/m(nm—l)_luz N
T N 1 ) [ (- 1,9)) 2 m
(3.13 X fo <'/’(umnm—1r‘P)|w(umnm—l:@»ewd@ )

This means that we must have

oC
P(eltm) (YN ) [N £))- 319 where N, (n,,_1) is a normalization factor.
To show this, note first that this relation is trivial before any In order to use this expression we require
counts are made, because the distribution is flat, and the in{/(UnNm-1,®)| ¥ (UnNm-1,¢)) explicitly in terms ofu,,. It
tial state is normalized, so there is padependence. Now, if is straightforward to show from E¢3.10 that
Eq. (3.19) is true form=Kk,

(3.19

<¢(Umnm—1a‘P)|¢(umnm—1:¢)>
= %[<w(nmflv§0)|¢(nmflu¢)>

+Am-1(p)e've ! (ntmm)

<¢'(nk+l!¢)|¢(nk+li@)>
<¢/(nk!¢)|¢(nki¢)>

(YN, @)| (N, @))

P(¢|nks1)=P(e|ny)

(s 1,0) 9N 1.,9)) R
(p(n, @)|p(ne,9)) where\ _1(¢) is defined by
(P(Nis1,0)| (N1, 90)), (3.19 m-1 .
so Eq.(3.149 is true form=k+1. Therefore, Eq(3.19 is Am*l((P):n:,ZnH Am-1:n€"%, (329

true for allm by induction.
To minimize the Holevo phase variance, we wish to maxi-where
mize the sharpnesS, . The closerSis to unity, the sharper
the distribution. After the resuli,,, the sharpness of the pos- Am—1n=—(Em—1ntidlm-1.0)/2, (3.22
terior distribution is

» and where
S(um|nm—1):P(um|nm—1)
(m-1)/2 i—[(m-1)/2]
8 fP(‘P|nmfl)P(um|¢’anmfl)elwd¢' gm*l;”_k,kefz(:mfl)/z p=-j+m-1)12]
(3.16 M

ok — _ lﬂu;m—l;k‘ﬁ*; —1;k'5n,k—k’ ,
We wish to know, giverj¢), ny,_;, andP(¢|ny,_1), what j=[(m=1)72] o
value to choose fofb,, so as to gain the most information (3.23
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(m=1)/2

gm—l;n: E

kk'=—(m—1)/2 #=—]+[(m=1)/2]

. m—3 m—1
e
X

=

j—[(m+1)/2]

2
2
X('ﬂ,u;m—l;klﬂ:-#l;m—l;k’
+ wz;m—l;—k‘ﬂ,wl;mfl;—k')5n|kfk’ . (3-24)
Using this result it is possible to show that
M(P)=
( m) Nm(nm—l) um§=:0,l

2

1
x fo S 1.0) [ 1,0)

+Am-1(p)e fe!(Pm=tinm
N1 (@)e ee(PmmUmMeled |, (3.25

This can be expressed in the form

M(®P,)=|a+be '®m+ce®n+|a—be ' Pm—ce®Pn|,

(3.26
where
- j—[(m=1)/2] (m=3)/2
a:—
Nin(Nm=1) w=—j+Tm-1)12) k=—{m-1)12
Xl/’y,;m—l;kl/fz;m—l;k-%—l' (327)
b= ———\ 3.2
NNy p) "2 (329
7 N(Np_y) 210" '

PHYSICAL REVIEW A 63 053804

Cp,=—2i Im(ab*c*).

(3.33

Note thatM (®)=M (P + 1), so that, in addition to the
solution found by the above method, there will be another
differing by 7. It does not matter which of these we choose;
it simply reverses the significance of the next results 0 and 1.

Since the original prior distributio®(¢|ny) is flat, there
is no optimal phas@ ,, and we select this phase at random.
At each following step, we determine the optimal feedback
phase by the method described above, then determine the
evolution of the state for that feedback phase. This process
continues until all photons have been counted. The measure-
ment record is then the binary strimg; =u,; . . .u,u, and

the result is a posterior distributidﬁ(<p|n2]-) that is propor-
tional to ((ny;,¢)|¥(ny;,¢)), and is characterized by the
2j+1 numbersyy. .k (Ny;) -

IV. FINAL PHASE ESTIMATE

The third and final optimization problem is to determine
what is the best final phase estimate to use. We define the
best estimate to be that which minimizes the Holevo variance
in the final phase estimate. This can be determined by sum-
ming over the 3/ combinations of results, then averaging
over the initial feedback phase. First, summing over the com-
binations of results gives us the probability distribution for
the error in the phase estimate,

221

P(¢|<p>=[ E] . P(ngl@)8{d—[e(ny)—¢l}, (4.1
nojl=

where the square brackets my;] denote the numerical
value of this binary string interpreted as a binary number,

and?p(nzj) is the final phase estimate.

Next we want to average over the initial feedback phase.
Since it is only the differences between the feedback phases
and the system phase that are significant, we can do this by
averaging over the system phase. Performing this average
gives

There is an analytical solution for th®,, that maximizes
M(®,,). This solution gives three phasebg and® .., and

the phase that is optimal must be found by substituting into 1 241 R
Eq. (3.26. These phases are given by P(¢)=j de5— [nEH) P(nyile)8{d—[e(ng)— ]},
2il =
d,=argba*—c*a) (3.30 (4.2
and .
1 221-1
SN =5 WE]:O PNy ¢(nzy) — ¢]. 43
b .=arg\| ————, (3.3 ‘
C1
where From this probability distribution we can determine the
exact phase variance for the measurement scheme. Evaluat-
ci=(a*c)?—(ab*)?+4(|b|?>—|c|?>)b*c, (3.32  ing|(e'?)| we obtain
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1 22i-1 100~
|<ei¢>|:|fd¢ei¢2— > P(”zj|90(nzj)—¢)|
T [nzj1=0 8ot
1 2211
— — ele(nz) I
2 [n3T=0 3 60
o
&
i) — A @ 40r
de¢e '[e(n2;) ¢]P[n2j|¢(n2j)_¢]‘
1 221 20t
=7z ei‘P(”Zi)jdxe*iXP(nzﬂx)
[ng]=0
21. R -0.5 0 0.5 1 1.5
1 26l-1 o
= | E ew(nzj)fdx o . .
2 [ny]=0 FIG. 7. The phase distribution that results from using adaptive

phase measurements on an input statg¢@f, for 800 photons. The
vertical axis is cut off at 10Qthe peak count is almost 50t show
. (4.4  the tails more clearly.

X e XNy X)| (g X))

final phase estimates, the Holevo phase variance can be es-

From this it is clear that the phase estimate that maXimizeﬁmated by

|(e'#)|, and therefore minimizes the phase variance, is

M -2
R ) _ -1 idnl
<p(n2j)=argf e *(y(ny,@)|¥(Ng) ,¢))de Ve=|MTT 2 e L 6.0
=argf e'*P(¢[ny)de VI. RESULTS
i—1 The results of using this adaptive phase measurement
—arg > . (4.5  scheme on the four alternative input states are shown in Fig.
gk=fj Voizioiziea 3. The phase variances for states uNte 20 (or N=30 for

lij),) were determined exactly using E@.6), whereas
This has two important consequences. First, the exaghose for larger photon numbers were determined using the
phase variance for the feedback technique can be determingebchastic method described in Sec. V. The phase variances
using are very close to the phase variances for canonical measure-
ments for all of these input states.

, 1 2t , For the optimal input states described in Sec. Il, the scal-
[(e')]= pym [HE] . f e'?((nyj,@)|Yh(nyy,@))de|. ing is close to IN?, but the phase variances differ relatively
2j1=

more from the canonical values for larger photon numbers.
This indicates that the scaling is slightly worse thah?/

Second, from Eq(3.19, it is clear that the last feedback POSSIPlY log\/N?, as is the case for optimal single-mode
phase is always optimal. Unfortunately it is not possible toPhase measuremerits4,13.

prove in a similar way that the other feedback phases are TOf [10)z, the variances are very close to those for ca-
optimal, as we will discuss in Sec. VIL. nonical measurements, scaling adl7. If we look at the

distribution of the phases resulting from these measurements,
we find that there is a sharp peak, but a significant number of
results with large error that produce the large variafsse

Because of the large number of measurement records thid- 7)- For the|j0), state we actually used a different feed-
need to be evaluated, the exact phase variance can only B&ck algorithm, one based on estimating the phase modulo
determined for small photon numbefsp to 20 or 30. For 7 The necessary changes in the relevant formulas are not
larger photon numbers it is necessary to determine the phasgtfficult to derive.
distribution stochastically. We choose the system phase For comparison, we have also considered the variance
be zero, and select the initial feedback phdserandomly.  from two other measurement _schemes. '_I'he first is a non-
This introduces no bias, as only the differences between thaddaptive phase measurement introduced in f&df.and de-
system and feedback phases are significant. fined by

The measurement results are chosen with probabilities de-
termined usingp=0, and the final phase estimates are de-
termined using Eq(4.5. For an ensemblég, M , of M

(4.6

V. STOCHASTIC METHOD

mmr
q)m:q)0+ W (61)
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FIG. 8. The Holevo phase variance for optimal input states un- FIG. 10. The phase variance for the three-photon case as a func-
der various measurement schemes. The canonical phase variancdi@ of the second feedback phase. The phase given here is relative
shown by the continuous line, the results for the adaptive measurd0 the second feedback phase given by the feedback scheme of Sec.
ment scheme of Sec. Ill by crosses, the nonadaptive measureméht The other feedback phases are given by this feedback scheme.
scheme of Eq(6.1) by circles, and the feedback scheme of Eq.

(6.2 by pluses.

schemes, as well as the adaptive measurement scheme of

Sec. lll, on the optimal input states, are shown in Fig. 8.
This is analogous to heterodyne detectjd4] on a single We find that the nonadaptive measurement scheme is far
mode, in that the phask equally weights all relevant values inferior to the adaptive measurement scheme of Sec. lll, and
over the course of the measurement. The second scheme i¢he variance scales a¢™ 1. The simple adaptive feedback
simple adaptive feedback scheme using a running estimate sEheme also gives poor results. Although most of the phase
the phase: results for this feedback scheme have small errors, there are
a small number of results with very large errors. This also
means that the results shown in Fig. 8 are fairly erratic, as for
many of the results there were no phase samples with large

= i¢
On=arge’?) errors, resulting in an underestimated phase variance.
j=[(m-1)/2] (m-3)/2 We also considered a nonadaptive measurement scheme
=arg >, > Dum—1kWm— 1ok 1- on a state with all photons in one port. The exact results for
p==i+l(m=1)2] k=—=(m-1)12 this case forN up to 30 are shown in Fig. 9. The phase

(6.2  variance is not much more than the canonical phase variance,
about 20% more foN=30 and still decreasing. This dem-
onstrates that for this state there is relatively little improve-

simple feedback schemd4] for phase measurement of a thent in using a more advanced feedback scheme for larger

. ! hoton numbers. The largest improvement is about a 24%
single mode. The results of using these two measuremelﬁéduction in the variance fad=3

This is motivated by the relative success of the analogou

-
(5]

VIl. OPTIMAL FEEDBACK

pry
H

The next question is whether the adaptive measurement
technique we have described is optimal. Note, first, that the
initial feedback phase has no effect, because it is effectively
averaged over by averaging over the system phase. Second,
the last feedback phase is always optimal, as noted above.
This means that for states with one or two photons the mea-
surement technique must be optimal. In fact, for states con-
/. . ‘ . . sidered in this paper the phase variance was equal to the
0 5 10 15 20 25 30 canonical phase variance for one or two photons.

N We will now restrict the discussion to optimal input states

FIG. 9. The exact phase variance fiir), input states under two  for simplicity. For three or four photons it was found that it
different measurement schemes as a ratio of the canonical phaknot possible to decrease the variance by altering the inter-
variance. The results for the adaptive measurement scheme of S¢pediate feedback slightly, showing that the feedback tech-
1l are shown by the continuous line, and the nonadaptive measurdlique is locally optimal for the phase variance. For more
ment scheme of Eq6.1) by the dotted line. than four photons it was possible to reduce the phase vari-

pry -
n w

Ratio to intrinsic phase variance
it
=
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ance by varying the intermediate feedback phases, and so the 1.3} ' ' ' ' I
feedback is not optimal. L=
In order to show that the feedback is globally optimal for
three or four photons, it is necessary to test the entire phase
range. There are three factors that reduce the number of
phases that need be varied. The first two are as noted above:
the first feedback phase has no efféahd so may be ig-
nored, and the last feedback phase is always optifaall so
need not be varied The third is that the contribution to the
phase variance for a sequence of detections is independent of
the first detection result. This is because changing the first
feedback phase byr reverses the significance of the first
detection results, and the first feedback phase is arbitrary. ' 2 4 6 8 10 12
The consequences of these three factors are that for three N
photons the variation of only one feedback phase needs to be i 11, The phase variance for the feedback scheme of Sec. IlI
considered, and for four photons the variation of three feedang a numerically optimized feedback scheme as a ratio to the
back phases needs to be considered. The phase variance fgfinsic phase variance. The case for the feedback scheme of Sec.
the three-photon case, as the second feedback phase is varigds shown by crosses, and the numerically optimized case by
from its value for our feedback technique is shown in Fig.circles.
10. This figure shows that our feedback technique is globally
optimal for three photons. Since the phase variance is above
the canonical phase variance in this case, this demonstratdsese states using an apparatus similar to that described in
that it is not possible to perform canonical measurementfef. [2].
using photodetection and feedback alone. The variance of the optimal states under canonical mea-
For four photons we need to vary the second feedbackurements scales as\f/ in contrast to M2, which is the
phase and the two third feedback phases. This case wasaling for the|j0), states. This anomalously high phase
tested with 100 steps in each of the three variables, and itariance is due to the high tails in the phase distribution for
was found that the feedback technique is globally optimal irthe |j0), states. Other measures of spread give the same
this case also. Note that these results are only for the case @fleisenberg-limited scaling for both states. However, our
optimal input states. It would be a far more difficult problem optimal states also have the advantage that they can be used
to demonstrate that the feedback is optimal for general inpulo measure phase modular2 not merely modulor.
states. Since optimal input states have the smallest phase We have also shown that it is possible to approximate
variance, however, showing that the feedback is optimal ocanonical measurements very closely using feedback and fi-
close to optimal in this case means that the feedback shoultal phase estimates based on Bayesian inference. For one or
be close to optimal for more arbitrary input states. two photons the measurements are optimal, and identical to
In order to see how far the phase variance could be imeanonical phase measurements for the input states considered
proved for photon numbers above four, we optimized thedn this paper. For larger photon numbers the measurements
feedback phases using function minimization techniques, andre extremely close to canonical phase measurements, with a
the results are shown in Fig. 11. Unfortunately the number ophase variance scaling very close td3for optimal input
feedback phases increases exponentially with the photostates. By contrast, nai@on-Bayesianfeedback schemes,
number, making this technique infeasible very rapidly, andand nonadaptive schemes, give far worse results.
therefore only results up t=12 are shown in Fig. 11. As For three- or four-photon optimal states, the feedback al-
can be seen, this optimization only gives minor improve-gorithm is the best possible, but the phase variance is above
ments in the phase variance, with the maximum reduction inhe canonical phase variance. This demonstrates that it is not
the phase variance being about 3.5%. possible to perform canonical measurements using photode-
tection of the interferometer outputs even with feedback. For
small photon numbers above four it is possible to determine
VIIl. CONCLUSION the optimal feedback by numerical function minimization

) ) o techniques. However, the improvement over our original
The state considered most in the past for attaining thgsayesian algorithm is not great.

Heisenberg limit in interferometry is thg0), state(equal For relatively small photon numbers, all of the adaptive
photon numbers in each input poVe have shown that this  and nonadaptive algorithms considered should not be diffi-
state cannot give a phase variance that is close to the Heisegylt to implement experimentally. Because the optimal input
berg limit. However, we have easily derived the optimalstate, and th¢j0), state, are difficult to create experimen-
states that do give a Heisenberg-limited variance. Thes%”y, initial experiments would probably be done with all
states only require significant contributions from about teMhotons incident on one input pofa ljij), state. For this
joint-number states nedj0),. Since significant contribu-  state all measurement schemes give a phase variance scaling
tions are required from only a small number &f eigen-  of N~ 1. However, the adaptive scheme does give a variance
states, it should be possible to generate approximations afp to 24% lower than the obvious nonadaptive scheme. In

- —
- N - o
- (4] n 0
T T T
o
[¢]

Ratio to intrinsic phase variance

-

=)

[51]
]
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this context, it is worth noting that for this input state the surement schemes which are almost as good as the canonical
guantum statistics of the particles are irrelevant, so the exmeasurements for such interferometei§].
periment could be done with fermioks.g., neutron§l5)) as
well as bosons.
Finally, we mention that it should be possible to general- ACKNOWLEDGMENT
ize our feedback approach for multichannel interferometry,
involving more than two channels and more than one phase We thank Michael Hall for enlightening discussions re-
shift. This would hopefully yield physically realizable mea- garding measures of uncertainty.
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