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Optimal input states and feedback for interferometric phase estimation
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We derive optimalN-photon two-mode input states for interferometric phase measurements. Under canoni-
cal measurements the phase variance scales asN22 for these states, as compared toN21 or N21/2 for states
considered by previous authors. We prove that it is not possible to realize the canonical measurement by
counting photons in the outputs of the interferometer, even if an adjustable auxiliary phase shift is allowed in
the interferometer. However, we introduce a feedback algorithm based on Bayesian inference to control this
auxiliary phase shift. This makes the measurement close to a canonical one, with a phase variance scaling
slightly aboveN22. With no feedback, the best result~given that the phase to be measured is completely
unknown! is a scaling ofN21. For optimal input states having up to four photons, our feedback scheme is the
best possible one, but for higher photon numbers more complicated schemes perform marginally better.
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I. INTRODUCTION

Interferometry is the basis of many high-precision me
surements, for example gravitational wave detection. Ph
measurement sensitivity is limited by the complementa
between photon number and phase. This is most easily
vestigated for a Mach-Zehnder interferometer~see Fig. 1!.
The outputs of the interferometer are measured to give
estimatef of the phase difference between the arms,w. For
simplicity we can take the phase shiftw to be in one arm. We
can then introduce a known phase shiftF in the other arm in
order to obtain a more accurate measurement.

The Mach-Zehnder interferometer achieves a phase se
tivity of Df}1/AN when N photons are fed into one arm
Several authors@1–5# have proposed ways of reducing th
phase uncertainty to the Heisenberg limit of 1/N. Except for
that of Caves@1#, these proposals involved input states whe
the total number of photons input to the interferometer
fixed, and has no noise. We will be considering this case
simplicity.

Most of these proposals@1–3# require that the input phas
be zero or very small in order to obtain the 1/N scaling.
Sanders and co-workers@4,5# considered canonical measur
ments, for which the 1/N scaling is independent of the inpu
phase. Unfortunately it is not generally possible to real
these canonical measurements with photodetections a
output of the interferometer~see below!. Recently we
showed@6# that it is possible to obtain measurements that
very close to canonical using feedback. In Ref.@6# we also
derived input states that minimize the Holevo phase v
ance. In this paper we expand our presentation of these
sults, and derive a number of additional results.

In general there are three areas available for optimizat
the initial state, the feedback phase, and the final phase
mate. In Sec. II we rederive the optimal input states d
cussed in Ref.@6#, and in addition show that these states ha
uncertainties scaling as 1/N for all common measures of un
certainty. In Sec. III we explain in detail the feedba
scheme outlined in Ref.@6#. We also derive the optimal fina
phase estimates, demonstrating that those used in Ref.@6# are
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optimal. Finally we show, in Sec. VII, that the feedba
scheme outlined in Ref.@6# is optimal for optimal states o
up to four photons, and we numerically determine the op
mal feedback for optimal states up to 12 photons. Even w
optimal feedback and phase estimates, the phase varian
above the intrinsic phase variance for three or more photo
demonstrating that it is not possible to perform canoni
interferometric measurements by photodetections, des
the added flexibility of the auxiliary phaseF.

II. INITIAL STATE

We consider a Mach-Zehnder interferometer with two
put beams with annihilation operatorsâ and b̂ as in Fig. 1.
We use the Schwinger representation@2#

Ĵx5~ â†b̂1âb̂†!/2, Ĵy5~ â†b̂2âb̂†!/2i , ~2.1!

Ĵz5~ â†â2b̂†b̂!/2, Ĵ25 Ĵx
21 Ĵy

21 Ĵz
2 . ~2.2!

Following the notation of Sanders and co-workers@4,5#,
we use the notationu j m&z for the common eigenstate ofĴz

and Ĵ2 with eigenvaluesm and j ( j 11), respectively. This

FIG. 1. The Mach-Zehnder interferometer, with the addition o
controllable phaseF in one arm. The unknown phase to be es
mated isw. Both beam splitters~BS! are 50:50.
©2001 The American Physical Society04-1
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state corresponds to Fock states withj 1m and j 2m photons
entering portsa and b, respectively. Similarly we use th
subscripty for an eigenstate ofĴy . We can represent a gen
eral pure input state with 2j photons as uc&
5(m52 j

j cmu j m&z .
The Mach-Zehnder interferometer acts to transform

input field via the unitary operatorÎ (w)5exp(2iwĴy) @5#,
and we wish to estimate the phasew by performing measure
ments on the transformed output state. The probability
tribution for the phase estimatef is, in general, given by
P(f)df5^cuÊ(f)uc&df, where Ê(f) is the probability
operator measure~POM!, anduc& is the interferometer inpu
state.

From Ref. @5#, the optimal measurement strategy cor
sponds to projections onto the phase statesu j f&, given by

u j f&5~2 j 11!21/2 (
m52 j

j

eimfu j m&y . ~2.3!

The optimal POM is therefore the projection opera
Ê(f)df5Nu j f&^ j fudf, whereN is a normalization fac-
tor. In terms of theĴy eigenstates the POM is given by

Ê~f!df5
1

2p (
m,n52 j

j

ei (m2n)fu j m&y^ j nudf. ~2.4!

If we make the substitutionsm85m1 j , n85n1 j , and
um8&5u j m&y , the POM is

Ê~f!df5
1

2p (
m8,n850

2 j

ei (m82n8)fum8&^n8udf. ~2.5!

Written in this form the POM is identical to the POM fo
canonical measurements on a single mode, with an up
limit of 2 j on the photon number.

In order to determine the optimal input state, we wish
minimize some measure of the phase uncertainty. The m
sure that we will be using is the Holevo phase varian
which is defined as@7#

Vf[Sf
2221, ~2.6!

whereSfP@0,1# is the sharpnessof the phase distribution
defined as

Sf[u^eif&u5U E
2p

p

P~f!eifdfU. ~2.7!

The Holevo variance is the natural quantifier for dispers
in a cyclic variable. If the variance is small, then it is easy
show that

Vf.E
2p

p

4 sin2S f2^f&
2 D P~f!df. ~2.8!

From this it is apparent that, provided there is no signific
contribution to the variance from largef, this definition of
the variance is equivalent to the usual definition. In additi
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the Holevo phase variance approaches infinity in the limit
a flat distribution, which is not the case for the usual defi
tion.

The optimal state in the single-mode case for this meas
of the phase variance has been considered before@8,9#, and
there is a simple, analytic solution. The minimum Hole
phase variance is

Vf5tan2S p

2 j 12D5
p2

~2 j 12!2
1O~ j 24!, ~2.9!

and the minimum uncertainty state for a mean phase of z
is

ucopt&5
1

Aj 11
(

m850

2 j

sinF ~m811!p

2 j 12 G um8&. ~2.10!

The effect of the interferometer~in the Schro¨dinger picture!
is to change the input state to

Î ~w!ucopt&5
1

Aj 11
(

m850

2 j

sinF ~m811!p

2 j 12 Ge2 iwm8um8&,

~2.11!

which is the minimum uncertainty state for a mean phase
2w. Because we have chosen the input phase to be z
measuring the phase of the output state directly gives
interferometer phase shiftw.

To obtain the input state in terms of the eigenstates ofĴz ,
from Ref. @4#, we have

y^ j mu j n&z5ei (p/2)(n2m)I mn
j ~p/2!, ~2.12!

whereI mn
j (p/2) are the interferometer matrix elements giv

by

I mn
j ~p/2!522mF ~ j 2m!!

~ j 2n!!

~ j 1m!!

~ j 1n!! G1/2

Pj 2m
(m2n,m1n)~0!

for m2n.21, m1n.21, ~2.13!

where Pn
(a,b)(x) are the Jacobi polynomials, and the oth

matrix elements are obtained using the symmetry relatio

I mn
j ~f!5~21!m2nI nm

j ~f!5I 2n,2m
j ~f!. ~2.14!

Using this, the state in terms of the eigenstates ofĴz is

ucopt&5
1

Aj 11
(

m,n52 j

j

sinF ~m1 j 11!p

2 j 12 G
3ei (p/2)(m2n)I mn

j ~p/2!u j n&z . ~2.15!

An example of this state for 40 photons is plotted in F
2. This state contains contributions from all theĴz eigen-
states; however, the only significant contributions are fr
nine or ten states nearm50. The distribution near the cente
4-2



a
ls

a

m

n
ib

a
se
o

O
im
as

re
s
e
t o

as
th

er

to

und
ak
ce
e

t
In
all

of

tate
g as
ex-

zing
data

oe
s ton

nts

l

e on
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is fairly independent of the photon number. To demonstr
this, the distribution near the center for 1200 photons is a
shown in Fig. 2.

In Ref. @2# it was shown that it is possible to generate
combination of two states nearm50. Since the optimal
states described here have significant contributions fro
small number of states nearm50, it seems likely that it
should be possible to produce a reasonable approximatio
them using a suitable modification of the apparatus descr
in Ref. @2#.

In order to compare this state withu j 0&z , where equal
photon numbers are fed into both input ports~as considered
in Refs. @3–5#!, the exact phase variance for this case w
calculated for a range of photon numbers. Since the pha
measured modulop for this state, rather than the Holev
phase variance the measure used for the variance was

Vf5~ u^e2if&u2221!/4, ~2.16!

where the expectation value is determined using the P
above. The phase variances for this state and the opt
state are shown in Fig. 3. We also show the Holevo ph
variance for the state (u j 0&z1u j 1&z)/A2 considered in Ref.
@2#. This state is designed so that it can be conside
modulo 2p, and it has been claimed that this state ha
phase uncertainty scaling asN21. The exact Holevo phas
variance of the state where all the photons are inciden
one port,u j j &z , is also shown for comparison.

As can be seen, the phase variance foru j 0&z scales down
with the photon number much more slowly than the ph
variance for optimal states, and even more slowly than
variance foru j j &z , which scales asN21. In fact, for the range
of photon numbers considered, the phase variance foru j 0&z
scales asN21/2. This seems to imply that the phase unc
tainty scales asN21/4, a radically different result from the
N21 scaling found in Refs.@3–5#. The state (u j 0&z

1u j 1&z)/A2, considered in Ref.@2#, is even worse than the
stateu j 0&z . For this state, which is considered modulo 2p,
the phase variance does not scale down with the pho
number, and is always of order unity.

FIG. 2. The coefficientsz^ j mucopt& for states optimized for
minimum phase variance under canonical measurements. All c
ficients for a photon number of 2j 540 are shown by the continuou
line, and those nearm50 for a photon number of 2j 51200 by
crosses.
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The reason for these discrepancies is that the results fo
in Refs.@3–5# are all based on the width of the central pe
in the distribution, but the main contribution to the varian
is from thetails of the distribution. To demonstrate this, th
probability distribution foru j 0&z multiplied by sin2f, is plot-
ted in Fig. 4. @Note that Eqs.~2.8! and ~2.16! imply that
Vf.*sin2fP(f)df.# In this figure we can clearly see tha
the main contribution to the variance is from the tails.
practice this means that the error in the phase will be sm
most of the time, but there will be a significant number
results with large errors.

These results should not be taken to mean that the s
u j 0&z is unusable, as this state has an uncertainty scalin
N21 for other measures of the phase uncertainty, for
ample the confidence interval and the Fisher length@5#. What
these results mean is that care must be taken in analy
phase data obtained using this state, as many simple
analysis techniques~for example the mean! will result in a
large error.

f-

FIG. 3. Variances in the phase estimate vs the input pho
number 2j . The lines are exact results for canonical measureme
on optimal statesucopt& ~continuous line!, on states with all photons
incident on one input portu j j &z ~dashed line!, on states with equa
photon numbers incident on both input portsu j 0&z ~dotted line!, and
on the state (u j 0&z1u j 1&z)/A2 ~dash-dotted line!. The crosses are
numerical results for the adaptive phase measurement schem
ucopt&, the circles are those onu j j &z , the pluses are those onu j 0&z ,
and the asterisks are those on a (u j 0&z1u j 1&z)/A2 input state. All
variances for theu j 0&z state are for phase modulop.

FIG. 4. The canonical phase probability distribution foru j 0&z

multiplied by sin2f for 2 j 580 photons.
4-3
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D. W. BERRY, H. W. WISEMAN, AND J. K. BRESLIN PHYSICAL REVIEW A63 053804
In contrast, the optimal states we consider will give d
that is easily analyzed, because the variance scales a
Heisenberg limit. The phase variance is a very stringent m
sure of the uncertainty, with inequalities such as@10,11#

A2peDX>LH>A2peLF , ~2.17!

1

A12C
DX>LC , ~2.18!

whereDX is the square root of the variance,LH is the en-
tropic length@10#, LF is the Fisher length, andLC is a C
3100% confidence interval. These inequalities will also
true for the Holevo phase variance for sufficiently narrow
peaked distributions. The optimal states we consider ha
Holevo phase variance scaling asN22, so the phase uncer
tainty scales asN21 for all these measures of uncertainty.
addition, we have found numerically that the phase unc
tainty scales asN21, as estimated using the reciprocal-o
peak valueL rp and the Su¨ssman measureLS ~see Ref.@12#
for a description of these!. To demonstrate this, in Fig. 5 w
plot all the common measures of uncertainty timesN. In this
figure only the Holevo phase variance and reciprocal-of-p
value were determined analytically. All other measures w
determined using numerical integrals of the phase probab
distribution. ~The sum for the phase probability distributio
can be evaluated analytically, and is therefore easily ca
lated!.

It is clear from this plot that the asymptotic values f
these measures are good approximations for photon num
of order 100 or greater. For comparison, we have also ca
lated the corresponding measures for the stateu j 0&z . For this
state the sum for the phase probability distribution canno
evaluated analytically, but when the probability distributi
is expressed as a sum, the integrals for all the measure

FIG. 5. The phase uncertainty of states optimized for minim
Holevo phase variance under several measures multiplied byN. The
square root of the Holevo phase variance is shown by the con
ous line, the square root of the standard variance is shown
circles, the inverse of the maximal value is shown by the das
line, the Su¨ssman measure is shown by the dotted line, the entro
length is shown by the dash-dotted line, the Fisher length is sh
by the crosses, and the 67% confidence interval is shown by plu
05380
a
the
a-

e

a

r-

k
e
ty

u-

ers
u-

e

ex-

cept the entropic length can be determined. Because
state can only yield information aboutw modulop, we have
calculated all of these measures for the probability distri
tion of f mod p. For all of these measures except the va
ance, we have found that the stateu j 0&z also yields anN21

scaling. Specifically, the asymptotic results compare to th
for the optimal stateucopt&, as shown in Table I. In addition
we determined the scaling constants based on the Be
function approximation given in Refs.@4,5#, and the results
agreed with those found using the exact calculations to
precision given in Table I.

From this we see that the optimal state is actually wo
than the u j 0&z state under the reciprocal peakL rp or the
Fisher lengthLF , but it is better under all the other measur
of phase uncertainty. Although there is no clear distinct
between the states on this basis, when one remembers
u j 0&z can only be used to measure phase modulop, and that
it yields a non-Heisenberg limited variance, the optimal st
ucopt& is clearly better overall.

It is interesting to note that the coefficients we have fou
for the confidence interval~3.071! and the Fisher length
~1.414! for the stateu j 0&z differ from those found in Ref.@5#,
of 3.36 and 2, respectively. The slightly different scaling f
the confidence interval appears to be due to the asymp
Bessel function expansion used in Ref.@5#. The difference in
the Fisher length is because the Bessel function approxi
tion in Ref.@5# is not correctly normalized. The Bessel fun
tion approximation approximates the exact distribution o
the interval@2p/2,p/2#, but the exact expression is norma
ized over the interval@2p,p# and repeats modulop. This
means that the approximate expression in Ref.@5# is too
small by a factor of 2. In our calculations we ensured that
distribution is correctly normalized over the interv
@2p/2,p/2#.

Like the stateu j 0&z , the state (u j 0&z1u j 1&z)/A2 consid-
ered in Ref.@2# also suffers from the problem of yielding
significant number of results with large error. However, t
problem is far worse in this case, so that the variance
always of order unity, as seen in Fig. 3. Although the cen
peak becomes narrower with the photon number, there
also peaks near6p, which although smaller than the mai
peak, do not become smaller with the photon number.
example of the phase distribution is shown in Fig. 6.

III. FEEDBACK TECHNIQUE

The second problem is how to make these canonical m
surements in practice. As we will show in Sec. VII, it is n

u-
y
d
ic
n

es.

TABLE I. The scaling constants for each of the measures
phase uncertainty that scale as 1/N for both the optimum state and
u j 0&z .

Measure ucopt& u j 0&z

NLrp 7.752 6.875
NLS 10.711 12.305
NLH 12.415 35.79
NL2/3 2.948 3.071
NLF 2.766 1.414
4-4
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possible to make canonical measurements using photod
tions at the output of the interferometer. It was sho
@9,13,14# that in the single-mode case it is possible to ma
very good phase measurements by using feedback to an
iliary phase shift. In order to apply the same principle he
we consider adaptive measurements where the phase
wish to measure,w, is in one arm of the interferometer, an
we introduce a known phase shiftF into the other arm of the
interferometer as in Fig. 1. After each photodetection
adjust this introduced phase shift in order to maximize
sharpness of the phase estimate after the next photodete

For this adaptive scheme to work, the feedback that
justsF must act much faster than the average time betw
photon arrivals. For simplicity we make the assumption t
the feedback is arbitrarily fast, which simply means that
phaseF is assumed to have always been changed before
next detection occurs. It is the ability to changeF during the
passage of a single~two-mode! pulse that makes photon
counting measurements more general than a measureme
the outputĴz considered in Refs.@2,3#.

To describe this scheme, it is convenient to denote
result u from the mth detection asum ~which is 0 or 1 de-
pending on which output the photon is detected in!, and the
measurement record up to and including themth detection as
the binary stringnm[um . . . u2u1. The input state afterm
detections will be a function of the measurement record
w, and we denote it asuc(nm,w)&. In our calculations we do
not normalize these states~except for the initial state!, in
order to express the state as a power series ineiw.

After the first beam splitter the operators for the tw
beams are~in the Heisenberg picture!

~ â1 i b̂ !/A2, ~ i â1b̂!/A2. ~3.1!

The two beams are then subjected to phase shifts ofw and
F, so the operators become

eiw~ â1 i b̂ !/A2, eiF~ i â1b̂!/A2. ~3.2!

Finally, the effect of the second beam splitter is the same
the first, giving the two operators

FIG. 6. The canonical phase probability distribution for (u j 0&z

1u j 1&z)/A2 for 2j 580 photons.
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iei (w1F)/2~ â sinu1b̂ cosu!,

iei (w1F)/2~ â cosu2b̂ sinu!, ~3.3!

whereu5(w2F)/2. Ignoring the unimportant initial phas
factors, we can represent these as the operatorsĉ0 and ĉ1,
where

ĉu5â sin~u1up/2!1b̂ cos~u1up/2!. ~3.4!

The input state is then determined by the initial conditi

uc~n0 ,w!&5uc&, ~3.5!

wheren0 is the empty string, and the recurrence relation

uc~umnm21 ,w!&5 ĉum
~w!

uc~nm21 ,w!&

AN112m
. ~3.6!

These states are not normalized, and their norm repres
the probability for the measurement recordnm givenw. That
is,

P~nmuw!5^c~nm ,w!uc~nm ,w!&. ~3.7!

We can express an arbitrary input state withN52 j photons
as a sum ofĴz eigenstatesuc&5(m52 j

j cmu j m&z . The state
after m detections will be~for m>1! a function ofw. We
denote it as follows:

uc~nm ,w!&5 (
m52 j 1m/2

j 2m/2

cm;m~nm ,w!u j 2m/2;m&z .

~3.8!

Using the recurrence relation@Eq. ~3.6!#, we find that the
functional form ofcm;m(nm ,w) is always

cm;m~nm ,w!5 (
k52m/2

m/2

cm;m;k~nm!eikw. ~3.9!

The recurrence relation for the coefficientscm;m;k is

cm;m;k~nm!5
e2 i (Fm2ump)/2

2A2 j 2m11
@s2cm2(1/2);m21;k2(1/2)~nm21!

2 is1cm1(1/2);m21;k2(1/2)~nm21!#

1
ei (Fm2ump)/2

2A2 j 2m11

3@s2cm2(1/2);m21;k1(1/2)~nm21!

1 is1cm1(1/2);m21;k1(1/2)~nm21!#, ~3.10!

where

s65Aj 2
m

2
6m11. ~3.11!
4-5
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We determine the feedback phase before themth detec-
tion, Fm , based on the measurement recordnm21. To deter-
mine this phase, we need to determine the probability dis
bution for the unknown phase,w. To determine this
distribution we use Bayes’ theorem

P~wuum ,nm21!5
P~wunm21!P~umuw,nm21!

P~umunm21!
.

~3.12!

Here P(wunm21) is the prior distribution forw before the
mth detection. A similar Bayesian approach to interfero
etry has been considered before, and used in analyzing
perimental results@15#. However, this was done only with
nonadaptive measurements, and with all particles inciden
one port.

Now the divisorP(umunm21) is independent of the phase
and therefore only provides a normalizing factor to the ph
distribution. Ignoring this normalization factor, the pha
distribution changes with each step as

P~wunm!}P~wunm21!P~umuw,nm21!

}P~wunm21!
^c~umnm21 ,w!uc~umnm21 ,w!&

^c~nm21 ,w!uc~nm21 ,w!&
.

~3.13!

This means that we must have

P~wunm!}^c~nm ,w!uc~nm ,w!&. ~3.14!

To show this, note first that this relation is trivial before a
counts are made, because the distribution is flat, and the
tial state is normalized, so there is now dependence. Now, i
Eq. ~3.14! is true form5k,

P~wunk11!}P~wunk!
^c~nk11 ,w!uc~nk11 ,w!&

^c~nk ,w!uc~nk ,w!&
,

}^c~nk ,w!uc~nk ,w!&

3
^c~nk11 ,w!uc~nk11 ,w!&

^c~nk ,w!uc~nk ,w!&
,

}^c~nk11 ,w!uc~nk11 ,w!&, ~3.15!

so Eq.~3.14! is true for m5k11. Therefore, Eq.~3.14! is
true for all m by induction.

To minimize the Holevo phase variance, we wish to ma
mize the sharpnessSf . The closerS is to unity, the sharper
the distribution. After the resultum the sharpness of the pos
terior distribution is

S~umunm21!5P~umunm21!21

3U E P~wunm21!P~umuw,nm21!eiwdwU.
~3.16!

We wish to know, givenuc&, nm21, and P(wunm21), what
value to choose forFm so as to gain the most informatio
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~on average! from the measurement, which gives the res
um . One way to quantify this is to maximize the avera
sharpness of the posterior distribution ofw after the result
um , weighted by the probability of that result occurrin
That is, we can take our maximand to be

M ~Fm!5 (
um50,1

P~umunm21!S~umunm21!,

5 (
um50,1

U E
0

2p

P~wunm21!P~umuw,nm21!eiwdwU.
~3.17!

Now, using

P~umuw,nm21!5
^c~umnm21 ,w!uc~umnm21 ,w!&

^c~nm21 ,w!uc~nm21 ,w!&
,

~3.18!

and Eq.~3.14!, we find that

M ~Fm!5Nm~nm21!21 (
um50,1

3U E
0

2p

^c~umnm21 ,w!uc~umnm21 ,w!&eiwdwU,
~3.19!

whereNm(nm21) is a normalization factor.
In order to use this expression we requi

^c(umnm21 ,w)uc(umnm21 ,w)& explicitly in terms ofum . It
is straightforward to show from Eq.~3.10! that

^c~umnm21 ,w!uc~umnm21 ,w!&

5 1
2 @^c~nm21 ,w!uc~nm21 ,w!&

1lm21~w!eiwe2 i (Fm2ump)

1lm21* ~w!e2 iwei (Fm2ump)#, ~3.20!

wherelm21(w) is defined by

lm21~w!5 (
n52m11

m21

lm21;neinw, ~3.21!

where

lm21;n52~jm21;n1 i zm21;n!/2, ~3.22!

and where

jm21;n5 (
k,k852(m21)/2

(m21)/2

(
m52 j 1[(m21)/2]

j 2[ ~m21)/2]

3
m

j 2@~m21!/2#
cm;m21;kcm;m21;k8

* dn,k2k8 ,

~3.23!
4-6
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zm21;n5 (
k,k852(m21)/2

(m21)/2

(
m52 j 1[(m21)/2]

j 2[(m11)/2]

3

AS j 2
m23

2
1m D S j 2

m21

2
2m D

2S j 2
m21

2 D
3~cm;m21;kcm11;m21;k8

*

1cm;m21;2k* cm11;m21;2k8!dn,k2k8 . ~3.24!

Using this result it is possible to show that

M ~Fm!5
1

Nm~nm21! (
um50,1

3U E
0

2p1

2
@^c~nm21 ,w!uc~nm21 ,w!&

1lm21~w!eiwe2 i (Fm2ump)

1lm21* ~w!e2 iwei (Fm2ump)#eiwdwU. ~3.25!

This can be expressed in the form

M ~Fm!5ua1be2 iFm1ceiFmu1ua2be2 iFm2ceiFmu,
~3.26!

where

a5
p

Nm~nm21! (
m52 j 1[(m21)/2]

j 2[(m21)/2]

(
k52(m21)/2

(m23)/2

3cm;m21;kcm;m21;k11* , ~3.27!

b5
p

Nm~nm21!
lm21;22 , ~3.28!

c5
p

Nm~nm21!
lm21;0* . ~3.29!

There is an analytical solution for theFm that maximizes
M (Fm). This solution gives three phases,F0 andF6 , and
the phase that is optimal must be found by substituting i
Eq. ~3.26!. These phases are given by

F05arg~ba* 2c* a! ~3.30!

and

F65argAc26Ac2
21uc1u2

c1
, ~3.31!

where

c15~a* c!22~ab* !214~ ubu22ucu2!b* c, ~3.32!
05380
o

c2522i Im~a2b* c* !. ~3.33!

Note thatM (F)5M (F1p), so that, in addition to the
solution found by the above method, there will be anoth
differing by p. It does not matter which of these we choos
it simply reverses the significance of the next results 0 an

Since the original prior distributionP(wun0) is flat, there
is no optimal phaseF1, and we select this phase at rando
At each following step, we determine the optimal feedba
phase by the method described above, then determine
evolution of the state for that feedback phase. This proc
continues until all photons have been counted. The meas
ment record is then the binary stringn2 j5u2 j . . . u2u1 and
the result is a posterior distributionP(wun2 j ) that is propor-
tional to ^c(n2 j ,w)uc(n2 j ,w)&, and is characterized by th
2 j 11 numbersc0;2j ;k(n2 j ).

IV. FINAL PHASE ESTIMATE

The third and final optimization problem is to determin
what is the best final phase estimate to use. We define
best estimate to be that which minimizes the Holevo varia
in the final phase estimate. This can be determined by s
ming over the 22 j combinations of results, then averagin
over the initial feedback phase. First, summing over the co
binations of results gives us the probability distribution f
the error in the phase estimate,

P~fuw!5 (
[n2 j ] 50

22 j 21

P~n2 j uw!d$f2@ŵ~n2 j !2w#%, ~4.1!

where the square brackets in@n2 j # denote the numerica
value of this binary string interpreted as a binary numb
and ŵ(n2 j ) is the final phase estimate.

Next we want to average over the initial feedback pha
Since it is only the differences between the feedback pha
and the system phase that are significant, we can do thi
averaging over the system phase. Performing this ave
gives

P~f!5E dw
1

2p (
[n2 j ] 50

22 j 21

P~n2 j uw!d$f2@ŵ~n2 j !2w#%,

~4.2!

5
1

2p (
[n2 j ] 50

22 j 21

P@n2 j uŵ~n2 j !2f#. ~4.3!

From this probability distribution we can determine th
exact phase variance for the measurement scheme. Eva
ing u^eif&u we obtain
4-7
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u^eif&u5U E dfeif
1

2p (
[n2 j ] 50

22 j 21

P~n2 j uŵ~n2 j !2f!U
5U 1

2p (
[n2 j ] 50

22 j 21

ei ŵ(n2 j )

3E dfe2 i [ ŵ(n2 j )2f] P@n2 j uŵ~n2 j !2f#U
5 U 1

2p (
[n2 j ] 50

22 j 21

ei ŵ(n2 j )E dxe2 ixP~n2 j ux!U
5 U 1

2p (
[n2 j ] 50

22 j 21

ei ŵ(n2 j )E dx

3e2 ix^c~n2 j ,x!uc~n2 j ,x!&U . ~4.4!

From this it is clear that the phase estimate that maxim
u^eif&u, and therefore minimizes the phase variance, is

ŵ~n2 j !5argE eiw^c~n2 j ,w!uc~n2 j ,w!&dw

5argE eiwP~wun2 j !dw

5arg (
k52 j

j 21

c0;2j ;kc0;2j ;k11* . ~4.5!

This has two important consequences. First, the ex
phase variance for the feedback technique can be determ
using

u^eif&u5
1

2p (
[n2 j ] 50

22 j 21 U E eiw^c~n2 j ,w!uc~n2 j ,w!&dwU.
~4.6!

Second, from Eq.~3.19!, it is clear that the last feedbac
phase is always optimal. Unfortunately it is not possible
prove in a similar way that the other feedback phases
optimal, as we will discuss in Sec. VII.

V. STOCHASTIC METHOD

Because of the large number of measurement records
need to be evaluated, the exact phase variance can on
determined for small photon numbers~up to 20 or 30!. For
larger photon numbers it is necessary to determine the p
distribution stochastically. We choose the system phasew to
be zero, and select the initial feedback phaseF1 randomly.
This introduces no bias, as only the differences between
system and feedback phases are significant.

The measurement results are chosen with probabilities
termined usingw50, and the final phase estimates are d
termined using Eq.~4.5!. For an ensemble$fn%n50

M of M
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final phase estimates, the Holevo phase variance can b
timated by

Vf5UM 21(
n51

M

eifnU22

21. ~5.1!

VI. RESULTS

The results of using this adaptive phase measurem
scheme on the four alternative input states are shown in
3. The phase variances for states up toN520 ~or N530 for
u j j &z) were determined exactly using Eq.~4.6!, whereas
those for larger photon numbers were determined using
stochastic method described in Sec. V. The phase varia
are very close to the phase variances for canonical meas
ments for all of these input states.

For the optimal input states described in Sec. II, the sc
ing is close to 1/N2, but the phase variances differ relative
more from the canonical values for larger photon numbe
This indicates that the scaling is slightly worse than 1/N2,
possibly logN/N2, as is the case for optimal single-mod
phase measurements@14,13#.

For u j 0&z , the variances are very close to those for c
nonical measurements, scaling as 1/N1/2. If we look at the
distribution of the phases resulting from these measureme
we find that there is a sharp peak, but a significant numbe
results with large error that produce the large variance~see
Fig. 7!. For theu j 0&z state we actually used a different fee
back algorithm, one based on estimating the phase mo
p. The necessary changes in the relevant formulas are
difficult to derive.

For comparison, we have also considered the varia
from two other measurement schemes. The first is a n
adaptive phase measurement introduced in Ref.@6#, and de-
fined by

Fm5F01
mp

N
. ~6.1!

FIG. 7. The phase distribution that results from using adap
phase measurements on an input state ofu j 0&z for 800 photons. The
vertical axis is cut off at 100~the peak count is almost 500! to show
the tails more clearly.
4-8
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This is analogous to heterodyne detection@14# on a single
mode, in that the phaseF equally weights all relevant value
over the course of the measurement. The second schem
simple adaptive feedback scheme using a running estima
the phase:

Fm5arĝ eif&

5arg (
m52 j 1[(m21)/2]

j 2[(m21)/2]

(
k52(m21)/2

(m23)/2

cm;m21;kcm;m21;k11* .

~6.2!

This is motivated by the relative success of the analog
simple feedback scheme@14# for phase measurement of
single mode. The results of using these two measurem

FIG. 9. The exact phase variance foru j j &z input states under two
different measurement schemes as a ratio of the canonical p
variance. The results for the adaptive measurement scheme of
III are shown by the continuous line, and the nonadaptive meas
ment scheme of Eq.~6.1! by the dotted line.

FIG. 8. The Holevo phase variance for optimal input states
der various measurement schemes. The canonical phase varia
shown by the continuous line, the results for the adaptive meas
ment scheme of Sec. III by crosses, the nonadaptive measure
scheme of Eq.~6.1! by circles, and the feedback scheme of E
~6.2! by pluses.
05380
is a
of
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schemes, as well as the adaptive measurement schem
Sec. III, on the optimal input states, are shown in Fig. 8.

We find that the nonadaptive measurement scheme is
inferior to the adaptive measurement scheme of Sec. III,
the variance scales asN21. The simple adaptive feedbac
scheme also gives poor results. Although most of the ph
results for this feedback scheme have small errors, there
a small number of results with very large errors. This a
means that the results shown in Fig. 8 are fairly erratic, as
many of the results there were no phase samples with la
errors, resulting in an underestimated phase variance.

We also considered a nonadaptive measurement sch
on a state with all photons in one port. The exact results
this case forN up to 30 are shown in Fig. 9. The phas
variance is not much more than the canonical phase varia
about 20% more forN530 and still decreasing. This dem
onstrates that for this state there is relatively little improv
ment in using a more advanced feedback scheme for la
photon numbers. The largest improvement is about a 2
reduction in the variance forN53.

VII. OPTIMAL FEEDBACK

The next question is whether the adaptive measurem
technique we have described is optimal. Note, first, that
initial feedback phase has no effect, because it is effectiv
averaged over by averaging over the system phase. Sec
the last feedback phase is always optimal, as noted ab
This means that for states with one or two photons the m
surement technique must be optimal. In fact, for states c
sidered in this paper the phase variance was equal to
canonical phase variance for one or two photons.

We will now restrict the discussion to optimal input stat
for simplicity. For three or four photons it was found that
is not possible to decrease the variance by altering the in
mediate feedback slightly, showing that the feedback te
nique is locally optimal for the phase variance. For mo
than four photons it was possible to reduce the phase v

se
ec.
e-

FIG. 10. The phase variance for the three-photon case as a f
tion of the second feedback phase. The phase given here is rel
to the second feedback phase given by the feedback scheme o
III. The other feedback phases are given by this feedback sche

-
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ance by varying the intermediate feedback phases, and s
feedback is not optimal.

In order to show that the feedback is globally optimal f
three or four photons, it is necessary to test the entire ph
range. There are three factors that reduce the numbe
phases that need be varied. The first two are as noted ab
the first feedback phase has no effect~and so may be ig-
nored!, and the last feedback phase is always optimal~and so
need not be varied!. The third is that the contribution to th
phase variance for a sequence of detections is independe
the first detection result. This is because changing the
feedback phase byp reverses the significance of the fir
detection results, and the first feedback phase is arbitrar

The consequences of these three factors are that for t
photons the variation of only one feedback phase needs t
considered, and for four photons the variation of three fe
back phases needs to be considered. The phase varianc
the three-photon case, as the second feedback phase is v
from its value for our feedback technique is shown in F
10. This figure shows that our feedback technique is glob
optimal for three photons. Since the phase variance is ab
the canonical phase variance in this case, this demonst
that it is not possible to perform canonical measureme
using photodetection and feedback alone.

For four photons we need to vary the second feedb
phase and the two third feedback phases. This case
tested with 100 steps in each of the three variables, an
was found that the feedback technique is globally optima
this case also. Note that these results are only for the cas
optimal input states. It would be a far more difficult proble
to demonstrate that the feedback is optimal for general in
states. Since optimal input states have the smallest p
variance, however, showing that the feedback is optima
close to optimal in this case means that the feedback sh
be close to optimal for more arbitrary input states.

In order to see how far the phase variance could be
proved for photon numbers above four, we optimized
feedback phases using function minimization techniques,
the results are shown in Fig. 11. Unfortunately the numbe
feedback phases increases exponentially with the ph
number, making this technique infeasible very rapidly, a
therefore only results up toN512 are shown in Fig. 11. As
can be seen, this optimization only gives minor improv
ments in the phase variance, with the maximum reductio
the phase variance being about 3.5%.

VIII. CONCLUSION

The state considered most in the past for attaining
Heisenberg limit in interferometry is theu j 0&z state~equal
photon numbers in each input port!. We have shown that this
state cannot give a phase variance that is close to the He
berg limit. However, we have easily derived the optim
states that do give a Heisenberg-limited variance. Th
states only require significant contributions from about
joint-number states nearu j 0&z . Since significant contribu-
tions are required from only a small number ofĴz eigen-
states, it should be possible to generate approximation
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these states using an apparatus similar to that describe
Ref. @2#.

The variance of the optimal states under canonical m
surements scales as 1/N2, in contrast to 1/N1/2, which is the
scaling for theu j 0&z states. This anomalously high pha
variance is due to the high tails in the phase distribution
the u j 0&z states. Other measures of spread give the sa
~Heisenberg-limited! scaling for both states. However, ou
optimal states also have the advantage that they can be
to measure phase modulo 2p, not merely modulop.

We have also shown that it is possible to approxim
canonical measurements very closely using feedback an
nal phase estimates based on Bayesian inference. For o
two photons the measurements are optimal, and identica
canonical phase measurements for the input states consid
in this paper. For larger photon numbers the measurem
are extremely close to canonical phase measurements, w
phase variance scaling very close to 1/N2 for optimal input
states. By contrast, naive~non-Bayesian! feedback schemes
and nonadaptive schemes, give far worse results.

For three- or four-photon optimal states, the feedback
gorithm is the best possible, but the phase variance is ab
the canonical phase variance. This demonstrates that it is
possible to perform canonical measurements using phot
tection of the interferometer outputs even with feedback.
small photon numbers above four it is possible to determ
the optimal feedback by numerical function minimizatio
techniques. However, the improvement over our origi
Bayesian algorithm is not great.

For relatively small photon numbers, all of the adapti
and nonadaptive algorithms considered should not be d
cult to implement experimentally. Because the optimal inp
state, and theu j 0&z state, are difficult to create experimen
tally, initial experiments would probably be done with a
photons incident on one input port~a u j j &z state!. For this
state all measurement schemes give a phase variance sc
of N21. However, the adaptive scheme does give a varia
up to 24% lower than the obvious nonadaptive scheme

FIG. 11. The phase variance for the feedback scheme of Sec
and a numerically optimized feedback scheme as a ratio to
intrinsic phase variance. The case for the feedback scheme of
III is shown by crosses, and the numerically optimized case
circles.
4-10
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this context, it is worth noting that for this input state th
quantum statistics of the particles are irrelevant, so the
periment could be done with fermions~e.g., neutrons@15#! as
well as bosons.

Finally, we mention that it should be possible to gener
ize our feedback approach for multichannel interferome
involving more than two channels and more than one ph
shift. This would hopefully yield physically realizable me
05380
x-

l-
,

se

surement schemes which are almost as good as the cano
measurements for such interferometers@16#.
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