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Exact quantum phase model for mesoscopic Josephson junctions
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Starting from the two-mode Bose-Hubbard model, we derive an exact version of the standard Mathieu
equation governing the wave function of a Josephson junction. For a finite number of patfigkesfind an
additional cos & term in the potential. We also find that the inner product in this representation is nonlocal in
¢. Our model exhibits phenomena, suchma®scillations, which are not found in the standard phase model,
but have been predicted from Gross-Pitaevskii mean-field theory.
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Exploring the quantum classical frontier is a major unify- which the two-mode model is actually an accurate approxi-
ing theme of contemporary physics. An established checkmation, to describe condensates in double-well traps, or two-
point on this frontier is the Josephson junctidd, where in  component condensates, have recently been disc(i6ed
the limit of a very large number of particlég the quantum 15].) We assume the Hamiltonian
phase differencep becomes an effectively classical degree E E
of freedom. Recent experiments| have approached the me- N Catata A L ATATA AV I AtA 4 AtA
soscopic regime of intermedialé in which ¢» may possibly H= 7 (212181 F 328538;) — (4132 F 3231), (1)
be classical enough to manipulate, but quantal enough to o
exploit for such technologies as quantum computaf@h WhereaJ{,z,(aLz) creates(destroy$ a particle in modes 1,2,
Similar experiments have been proposed using trapped dilute@spectively,(modes 1 and 2 referring to the two effective
Bose-Einstein condensates, in whith-10°—10%; and the  “sides” of the junction. Here, N=n;+n,=ala;+aja,
manipulation of_ pha_se fluctuations in an array of Weaklycommutes with1, and so may be taken azaumber. FoN
coupled Bose-Einstein condensates has been repor{&d in o . A
The standard guantum theory of a JJ is the quantum pha nungce)rit:;Iyor'?ﬁirs %fir;?toarp;?ogcksvﬁﬁsgﬁ;?dd;aghoencilzﬁ our
model (QPM) [5], which treats¢ as a quantum-mechanical results in one limit, but it fails for largeN, which may be

coordinate with a periodic potential. As well as explaining ired f : tal ob tion. but that
basic results, this theory is tractable enough to guide work o cquired for experimental observation, but that may never-
theless be within the mesoscopic range. And, of course, a

g1hoar§ecgg:);|)ilr(]a;< i;:[rz]t;!egsj?ei.tgi.é gﬁ%nggivceodmfggtgg&[ﬁ]ﬁ numerical solution affords no conceptual picture that may be
; - : pplied beyond the idealized model itself.
this paper, we provide an exact quantum phase modét Before constructing our EQPM, we briefly describe the

(EQPM, valid for all N. We thus extend the applicability of o alternative theories for this system, which do offer gen-

a useful quantum theory into the mesoscopic regime. We als lizabl i d to which f lati il b
provide a quantum-mechanical theory for mesoscopic phegra|za € concepts, and 1o which our formulation will be
mpared. In the two-mode version of the Gross-Pitaevskii

nomena that have previously been predicted semiclassical FT that for | h | th
using the Gross-Pitaevskii mean-field theofMFT)— » We assume that for farge enouljhwe can replace the

another widely used theoi] whose ratio of tractability to  Operatorsa;— yn;e'i with ¢ numbers. Defining the relative
accuracy makes it extremely useful, and whose applicabilitphase¢= ¢1— ¢, and numbem=1/2(n;—n,), we obtain
in the mesoscopic regime needs more investigation. JosepH€ classical Hamiltonian of a nonrigid pendulyii
son oscillations aboutp= 7, which do not appear in the
QPM, have been predicted from MHKT], and compare{3]
with those recently observed ftHe [9]. Our exact and fully
guantum-mechanical EQPM may exhibit thesescillations
in a wide regime. In this classical theory, there is no difficulty whatever about
Our derivation begins with the idealization of a mesos-the fact that$ andn are canonically conjugate, and the ca-
copic JJ as a two-mode bosonic system. Generalizations faonical equations of motion derived froHy, are integrable
incorporate more modes may obviously be required for somé terms of Jacobi elliptic functions’]. It will suffice for our
realistic scenarios, but such generalizations may be madgurposes to note the motion in the vicinity of the fixed
straightforwardly (if perhaps laboriously and we will re-  points. The global minimum ofl, is alwaysn= ¢=0; and
strict ourselves to two modes for illustratiofRegimes in  orbits about it have frequendy ™ *\E;(4E,+ N2E,), span-
ning the range from Bloch to Josephson oscillations as
N2E,./E; increases(Note that in dilute Bose-Einstein con-
*Present address: Theoretical Division and CNLS, LANL, Los-densatesiE N will be on the order of the chemical potential
Alamos, NM 87545. m, and one can have;=Nw/2 for Bloch frequencyw es-

2n

Ec , 2
Hc,z7n —Ej\/1- N COSp. 2
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sentially arbitary in comparison with, so thatN2E./E; can o 1
range from much less to much more than o¢nEor |1, )= >, elldrrme2) [1Y]m), (5)
N2E./E;<4, (n,¢)=(0,m) is a maximum; but for I, m=0 vitmt

N?E./E;>4 it is a saddle point, and there are two maxima
at (n,$)=(*ny,m). The frequency of oscillations about with [m),|I) being particle number eigenstates of modes 1,2
(0,7) (or rate of dynamical instability when it is a saddle- respectively.(This Bargmann representation is over com-
point) is N~ VE,(J4E;— N?E]). And when the two degen- Plete and from this over completeness arise serious compli-
erate maxima exist, there are orbits about each of them sud@tions in some uses of our EQPM, which may be regarded
that n is always either positive or negative, agdremains s the inevitable price of its advantages—a price that will be
close tor (except possibly for large radius orbits c_heap in some applications, and excessive in others. We will
If we attempt to go beyond the classical approximation ofdiscuss these issues belpihe action of any operators on
this MFT, the classical conjugacy @ andn motivates the ~any statél ) can be represented in terms of differential op-
standard QPM12,16-19,2], in which we quantize naively e€rators acting on the associatedp; , ¢,), using

by setting i, —n,)/2—i(d/d¢). This leads to a Schdinger

equationiA W =H,¥ for the 2m-periodic wave-function f(¢na—e ()
W (), with
N R
. E. P f(gnal—i——[e ' “f(g)]. ©®
H¢=—??¢2_EJCOS¢), (3) !

(Simply integrate by partsln particular, the number opera-
so that theW of energy eigenstates are Mathieu functions.tqrs  assume the familiar formsf ()N =F(b) a'a;
|

Standard inner productsV |[¥')=¢d¢ ¥(p)*¥'(¢p) and _ _; (913, f(#,), without any approximation.

expectation valuegA)=$dpW (p)*A(h,1)¥(¢) are as- For a fixed total number of aton$, we may write
sumed. The problem with this approach is that the naive
guantization has in fact been too naive: there are serious (b, + dl2,b, — pI2)=e N+ (), @

problems with makingp andn into canonically commuting
operatord 20]. And even to obtairi2) from (3) by our naive
quantization, we have neglectad in comparison witiN?/4
under the root. This naive approach does allow us, however, _.. . .

to obtain a second-order equation fét, which is simple Elra;l/nzg ?,VGdr ¢y N qu' (4) then yields [y
enough to be solved exactly as a quantum problem, but theﬁ( m) I dbi(¢)|¢). for
nevertheless reproduces some of the behaviors predicted by
the MFT. There can be low-energy Josephson states localized exp(ing)

in the well about$=0, and also high-energy running states |¢>:n=ZN/2 \/ ) n)

|

with ¢, =1/2(¢,+ ¢,), and ¢=¢,— P, as above. The
function (@) is 27 (anti-)periodic if N is (odd) even. Inte-

N/2

¥~ exp(xike), corresponding to the MFT orbitof large E+n I E_n

radiug about one of the two maxima, having either positive 2 2

or negativen. Although the QPM and MFT are both based on 4 (B2) 1 at o i(S2\N

large N, however, some of their predictions differ. B, /E, =N!(a;e""“+aze )"|vacuum ®)
=1, the QPM implies that there will be no localized eigen-

states, and hence, no small-amplitude Josephson phase os¢ithich may be considered a finité generalization of a pure
lations. And although in running statg¥|? will be slightly ~ phase stat¢18]). The action of the Josephson Hamiltonian
larger nearg=, the QPM does not allow true oscilla-  EQ.(3) on the state vector E¢8) may thus be represented as

tions. H| )= (1/2) [ _de| p)(H ) for

The questions therefore arise, which if either of these
theories is correct where they disagree, and what corrections E. g2 2 E P
may appear for each in the mesoscopic regime of smilller H =—-—°— —F | 1+ —|cos¢ -2 sing —,
The convenience and familiarity of the single-particle Sehro 2 g¢? N N I
dinger equation, and the wealth of approximations and gen- 9)

eralizations that are available in this context, motivate us to
seek a formulation of1) similar to the QPM; but we will where (as also in the standard QPMve have dropped a
also demand exactness at lll constant energy shift, in this caBgeN(N—2)/8. As will be
Our construction proceeds as follows. An arbitrary state irclear after our discussion of over completeness below, the
the Hilbert space of our two-mode system may be written asact thatH is not Hermitian is actually no cause for alarm,
because we have maintained Hermiticity within the physical

1 & subspace. Because Hermitian Sclinger equations are
)= (2w)2f 7d¢1d¢2f(¢1’¢2)|¢1 b2), @ more familiar, however, we will finally obtaift) by defining
() =V (p)exd(2E;/E.N)cos¢]. The result is that we can
where the(un-normalizedl Bargmann statel22] are representl) by the EQPM equation
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P E. 52 1 E2 that indeed it does admit them, we must finally address the
i —=| — —C — - EJ( 1+ = |cosg— ZJ cos 26|V, consequences of Bargmann overcompleteness.
at 2 9¢ N NE. The main consequence of overcompleteness is that the

(100 inner product on the EQPM wave functiaf{ ¢) is not the

_ _ . standard one of single-particle quantum mechanics, but the
dropping another constali‘tﬁ/NZEC (justto turn a sifpterm  nponlocal

into the cos ). So, in place of the QPM Mathieu equation,
settingiz o, ¥ =EW in our EQPM gives the three-term Hill 1
equation[23]. (Yly')= 5

Equation(10) is our central result. It is exact, in the sense (2m)
that the lowestN+1 frequencies in its eigenspectrum are
exactly the spectrum of our original two-mode Hamiltonian
with fixed N. (We will show below why only these lowest N/2 Qin(6-0) oN
N+1 states are physicalSince, in very many cases, it is (0] p)y= 2 =—
only this spectrum that is experimentally probed, the subtle- n=-N/2 E_ n)' N!
ties in computing expectation values that are due to the over- 2 '
completeness of our representation, will often be irrelevant.
Before dealing with those subtleties, therefore, we will first o Su(d—0)
present some deductions from E#0) that are unaffected by (NI1)?2 N '
them.

We can immediately see that in the limit of largefor  |n the infinite N limit, (6] $) becomes proportiondin the
fixed E;/E., we obtain the standard QPM. Alternatively, in interval ¢, # [ — 7, 7]) to a delta function
the limit E;— 0, we recover simple Rabi oscillations, which
are described by the MFT but not by the QPM. To see this, lim oy(p—0)=6(dp—6), (14
we first use time-independent perturbation theonEpiE, N—e
to find the energy of thenth energy eigenstate ¢1) to be

5{5 do 99 dgu* (0 ()(0] ),

where

N
—+n

|
2 :

2N

(13

and so for largeN, the nonstandard inner product can often

be ignored. Even for very largd, however, the inner prod-
E; NE. E. A .
En=Ept | —+ ——|m— —m?+ (’)(Eg). (1) uct (13) has the effect of eliminating all Fourier components
N 4 4 e'*® having|k|>N/2. In fact, it is clear from the early step

(8) in our derivation that this is as it should be. For higher
If we consider Eq(10) in this same limitE.—0, then we  energies, of ordeN2E,, projecting out these unphysical
can expand the cosines about the two potential minéna Fourier components can drastically alter the shape of the
=0,m, writing ¢=VE./Nx (or ¢=m—+E;/NX), to see eigenfunctions. In fact, one may prove, by examin{8gin
that to leading order irE; we have two harmonic wells, Fourier space, that projecting out unphysical Fourier compo-
centered onp=0,m, with 1/E; playing the role of the mass. nents will annihilate all energy eigenfunctions above the
We may also compute perturbatively the next-to-leading orfowestN+ 1. For the higher physical states, we can use the
der correction to the energy levels, due to #feanharmo- WKB approximation to(9), to see that the phase @f( ¢)
nicity. The spectrum for the well ap=0 agrees with Eq. will vary more rapidly nearp=0 than nearp=m, so that
(11), while that for the well aip= 7 is the nonvanishing amplitude aroungi=0 will actually be

unphysical, and the physical part ¢f ¢) will be concen-

. E; E; E; (N+2)E, trated aroundp= .
Em=&t(N+Dft| =+ g~ —7 /M This effect can be shown quantitatively by computing
c (a,d,N|¥), where NI|a,d¢y,N)=(ale'??cos@/2)
— S m?+ O(E2). (120  +aje '?2sin(/2))N|vag is the SU2) coherent state on

4 which the number-conserving MFT is based. In the energy

range where the MFT predicts states, we can use WKB for
Hence, we have§>¢&y to O(E?), so that all of theN+1  y(4), and for largeN, we can evaluate the inner product
physical states are in thé=0 well. using steepest descents. The result confirms the MFT predic-

If E¢/E; is of orderN™2, then we are beyond the Rabi tion. An exception is the extreme high- limit N2E,

regime, but EQPM still provides corrections to the QPM.>2NE;,, where we may see from the WKB approximation
Expanding the potential around the two extregra0,m, we  to (¢) that its wave number does not vary significantly
find the oscillator frequenciedN *\VE;(4E;* NZEC), in with ¢, and so projecting out unphysical frequencies either
agreement with the MFT as discussed above, and in contraghnihilates eigenfunctions entirely, or else has little effect on
to the resultsy = E;E, of the standard QPM. However, one them. Consequently, there are ficstates in this regime, and
may show that as long as there is a second local minimum ahe standard QPM is essentially vindicated over MFT, even
¢=, the highest physical state has energy below that miniat very highN: the usualN~*2 improvement in MFT accu-
mum. It is therefore not obvious, at this point, how theracy is overwhelmed by strong number squeezing due to the
EQPM admitsr states any more than does the QPM. To segpredominance of the nonlinear interactid#].
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In conclusion, we have derived an exact version of thetations, the nonlocal inner product may introduce too severe
phenomenological quantum phase model, from the twoeomplications; but in general, our formalism, and its gener-
mode Bose-Hubbard model for a Josephson junction. Walizations, should provide valuable additional tools for un-
have shown that this exact quantum phase model reproducédsrstanding quantum effects in mesoscopic Josephson sys-
the time scales an@xcept for very largdN) the 7 states of tems.
the Gross-Pitaevskii mean-field theory. The corrections we
find to the standard QPM include a cas ferm in the po- A.S. thanks S. Stringari and L. Pitaevskii for discussions.
tential, and the fact that the inner product must be nonlocalhis work was partially supported by the Cofinanziamento
in ¢, because of the need to project out unphysically hightMURST, and by the American NSF through its grant for
Fourier components in the wave functions. For some compuFTAMP at the Harvard-Smithsonian Center for Astrophysics.
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