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Here we present evidence that the pyramidal cell phenotype
varies markedly in the cortex of different anthropoid species.
Regional and species differences in the size of, number of
bifurcations in, and spine density of the basal dendritic arbors
cannot be explained by brain size. Instead, pyramidal cell
morphology appears to accord with the specialized cortical
function these cells perform. Cells in the prefrontal cortex of
humans are more branched and more spinous than those in the
temporal and occipital lobes. Moreover, cells in the prefrontal

cortex of humans are more branched and more spinous than
those in the prefrontal cortex of macaque and marmoset mon-
keys. These results suggest that highly spinous, compartmen-
talized, pyramidal cells (and the circuits they form) are required
to perform complex cortical functions such as comprehension,
perception, and planning.
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Despite Ramon y Cajal’s original observations of variation in the
morphology of pyramidal cells in different species (Ramon y
Cajal, 1894), the isocortex was and still is considered by many to
be uniform in structure and composed of a repeated basic circuit
(Szentagothai, 1975; Creutzfeldt, 1977; Rockel et al., 1980;
Eccles, 1984; Douglas et al., 1989; Mountcastle, 1995). The ap-
plication of new methods of analyses (Elston, 2001) has revealed
a remarkable degree of variation in pyramidal cell morphology
between different visual areas (Elston and Rosa, 1997, 1998, 2000;
Elston et al., 1999a,b; see also Lund et al., 1993). In addition, cells
in the macaque prefrontal cortex (PFC) are considerably more
branched and more spinous than those in the occipital, parietal,
and temporal lobes (Elston, 2000). The highly modified pheno-
type found in the PFC has been interpreted as being essential in
determining the integration of diverse inputs (Elston, 2000) re-
portedly necessary for executive cortical function (Goldman-
Rakic, 1999). However, it remains to be determined whether
human’s ability to perform complex cognitive functions is solely
attributable to the increase in the number of cortical cells and
areas or whether the human PFC pyramidal cell differs from that
of other species. To evaluate the possibility that the pyramidal cell
in the PFC of humans may differ from that in other primates, we
injected cells in corresponding cortical regions of the New World
marmoset monkey (Callithrix jacchus), the Old World macaque
monkey (Macaca fascicularis), and human. We found marked
differences in the pyramidal cell phenotype between sensory,
sensory-association, and executive cortex in humans. Moreover,

we found clear differences in the pyramidal cell phenotype in
corresponding brain regions between monkeys and humans.

MATERIALS AND METHODS
Cell morphology was studied in primate species characterized by brains
of markedly different size and degree of gyrencephalization (Fig. 1a–c).
The cortical areas studied included the second visual area (V2), the
ventromedial region of the inferior temporal cortex (Brodmann’s area 21
of humans, TEa of macaques, and ITr of marmosets), and the anterior
frontal lobe (Brodmann’s area 10). Cortical areas were identified based
on previously published electrophysiological, connectional, myeloarchi-
tectonic, and cytoarchitectonic studies (Brodmann, 1907, 1909; Walker,
1940; Seltzer and Pandya, 1978; Preuss and Goldman-Rakic, 1991; Ser-
eno et al., 1995; Rosa et al., 1997; Elston et al., 1999b). Human tissue was
obtained 2 hr postmortem from the left hemisphere of a 48-year-old
normal male and immersed in 4% paraformaldehyde for 24 hr. Macaque
prefrontal cortex was derived from the left hemisphere of a 10-year-old
male, whereas occipital and temporal cortex were taken from the left
hemispheres of 18-month-old males (AM1 and DM4, respectively) (El-
ston and Rosa, 1998; Elston et al., 1999a). Marmoset PFC was taken from
an 18-month-old male (M908), the temporal lobe was taken from the left
hemisphere of 24- to 28-month-old males (BS10 and ML7), and the
occipital cortex was taken from the left hemispheres of 24- to 27-month-
old males (BS10 and CJ715) (Elston et al., 1999b). Monkeys were
overdosed by lethal injection of sodium pentobarbitone and were per-
fused intracardially with 4% paraformaldehyde.

Sections (250 mm) cut tangential to the cortical surface with the aid of
a vibratome were prelabeled with 4,6-diamidino-2-phenylindole (D9542;
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Sigma, St. Louis, MO). By relating the tangential sections to traditional
transverse sections we were able to identify the border between layers III
and IV. In addition, by focusing through the thickness of the tangential
slice, the cytoarchitectural differences between these layers were readily
distinguished, enabling the identification and injection of cells at the base
of layer III [Elston and Rosa (1997), their Fig. 3]. Furthermore, in each
case neurons were also injected in other sections in each series, allowing
the identification of all layers (our unpublished results). Cell injection
methodology has been described in detail previously (Buhl and Schlote,
1987; Einstein, 1988; Elston and Rosa, 1997). Briefly, cells were injected
with Lucifer yellow (8% in 0.1 M Tris buffer, pH 7.4) by continuous
current. After injection of neurons, the sections were first processed with
an antibody to Lucifer yellow [1:400,000 in stock solution: 2% bovine
serum albumin (A3425; Sigma), 1% Triton X-100 (30632; BDH Chem-
icals, Poole, UK), and 5% sucrose in 0.1 M phosphate buffer] and then
with a biotinylated species-specific secondary antibody (1:200 in stock
solution; RPN1004; Amersham Pharmacia Biotech, Little Chalfont,
UK), followed by a biotin–horseradish peroxidase complex (1:200 in
phosphate buffer; RPN1051; Amersham). 3,39-diaminobenzidine
(D8001; Sigma) was used as the chromogen.

The branching pattern of cells was determined by counting the number
of dendritic branches that intersected with concentric circles (centered
on the cell body) with increasing radii (25 mm increments) (Sholl, 1953).
Dendritic field areas were determined by calculating the area contained
within a polygon joining the outermost distal tips of the basal dendrites
(Elston and Rosa, 1997). The density of spines on the dendrites of
pyramidal cells was determined by counting the number of spines per 10
mm increment of 20 horizontally projecting dendrites of different cells in
each cortical area (Valverde, 1967). The total number of spines found in
the “average” pyramidal cell basal dendritic arbor was calculated by
multiplying the average number of spines of a given portion of dendrite
by the average number of branches for the corresponding region, over the
entire dendritic arbor (Elston, 2001).

RESULTS
Three hundred and forty-four layer III pyramidal cells were
included for analyses. Various aspects of cell morphology varied
independently, including the branching patterns and spine densi-
ties of the dendrites. From Figure 2a it can be seen that the
maximum number of dendritic branches for any distance from the
cell body differed according to the cortical region and species
(Table 1). Statistical analyses revealed that all within-species
between-region comparisons were significantly different ( p ,
0.05), as were all within-region between-species comparisons.
Integration of the areas under the curves revealed a consistent
trend: cells in humans were more branched than those in ma-
caques, which were more branched than those in marmosets, for
any given cortical region. Cells in the frontal lobe of humans had
approximately one-third more dendritic branches than those in
macaques and twice as many as those in marmosets. Moreover,
human prefrontal cells were the most branched of all cells stud-
ied. In addition, these data show a trend for more branched cells
with progression from occipital to temporal and prefrontal cortex
in both humans and macaques. Data for the marmoset, however,
do not comply with this trend. Instead, cells in the prefrontal
cortex of the marmoset were considerably less branched than
those in its temporal lobe (ITr).

Comparison of branching patterns with the size of the den-
dritic arbors (Fig. 2b, Table 1) revealed no consistent correlation
between the two variables. Moreover, comparison of the size of
cells revealed that they are not necessarily correlated with brain

Figure 2. Plots of the number of dendritic branches ( a),
areas ( b), and spine densities ( c) of the basal dendritic
arbors of layer III pyramidal cells sampled in the occipital
(top), temporal (middle), and prefrontal (bottom) cortex
of humans (black), macaques (dark gray), and marmosets
(light gray).

Table 1. Peak branching complexity, size, and spine density of the
basal dendrites of layer III pyramidal cells

Occipital Temporal Prefrontal

Peak branching complexity (mean 6 SD)
Marmoset 27.10 6 4.51 33.23 6 4.95 25.46 6 5.54
Macaque 21.46 6 5.47 31.54 6 5.71 32.36 6 4.41
Human 23.47 6 3.54 30.90 6 5.08 43.49 6 8.40

Basal dendritic field areas (3 104 mm2) (mean 6 SD)
Marmoset 5.17 6 0.73 10.71 6 1.64 7.5 6 1.4
Macaque 4.39 6 1.07 8.19 6 1.33 13.3 6 1.99
Human 8.60 6 0.94 15.35 6 3.12 13.5 6 1.89

Maximum spine density per 10 mm (mean 6 SEM)
Marmoset 6.8 6 0.62 16.7 6 0.80 20.6 6 0.89
Macaque 7.3 6 0.53 23.8 6 1.56 24.0 6 0.85
Human 11.75 6 0.81 32.1 6 1.6 32.5 6 1.64

Figure 1. Scale images of the human (a), macaque ( b), and marmoset
(c) brains showing the relative differences in size and gyrencephalization
between species. Note the difference in the size of the cortical lobes. The
frontal lobe in humans comprises a greater proportion of the entire cortex
than in macaque or marmoset monkeys.
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size. An ANOVA (F(343) 5 218; p , 0.0001) and post hoc Fisher’s
PLSD tests ( p , 0.05) revealed most comparisons of arbor size
to be significantly different. However, there was no significant
difference between the size of cells in the temporal lobe of
macaques, the frontal lobe of marmosets, and the occipital lobe
of humans. Nor was there any significant difference in the size of
cells in the frontal lobe of humans and macaques.

To estimate how many excitatory inputs may be sampled by
individual cells, we determined the number and distribution of
spines within the dendritic arbors of cells in the occipital, tem-
poral, and prefrontal cortex. Over 47,000 individual spines were
reconstructed from 180 dendrites of different cells. In all three
cortical regions studied, spine density was highest in humans,
followed by macaques, and then marmosets (Fig. 2c, Table 1). A
two-way repeated-measures ANOVA of the entire data set re-
vealed spine densities to be significantly different between cortical
regions and/or species (F(3258) 5 188; p , 0.0001). Post hoc
two-way repeated-measures ANOVAs revealed that, with the
exception of cells in the human temporal and prefrontal cortex, all
within-species regional comparisons were significantly different
( p , 0.001). Within-region between-species comparisons re-
vealed significant differences ( p , 0.001), except for cells in the
occipital cortex of humans and macaques and cells in the tempo-
ral cortex of humans and macaques. By combining the data on
branching patterns and spine density, we were able to estimate
the number of spines in the basal dendritic arbor of the average
cell in each area. These calculations revealed that cells in the PFC
of humans and macaques (15,138 and 8766, respectively) were
considerably more spinous than those in the temporal lobe
(12,700 and 7260, respectively) (Fig. 3). In marmosets, however,
cells in the frontal lobe (3983) were considerably less spinous than
those in the temporal lobe (5176). In all three species, cells in the
temporal lobe were more spinous than those in the occipital lobe
(human, 2417; macaque, 1139; marmoset, 1240).

DISCUSSION
The present study shows that pyramidal cell morphology varies
markedly between cortical regions in different anthropoid genera.
These data extend previous findings of systematic differences in
the pyramidal cell phenotype in the monkey cortex and reveal
interareal differences in pyramidal cell morphology in the human
cortex. In conjunction, the results provide substantial evidence for

the thesis that pyramidal cells, and the circuits they form, are
specialized for their functional requirements.

Methodological considerations
Data in the present study were, in the case of monkeys, sampled
from different animals of varying developmental ages. As both
dendritic processes and spines atrophy with aging (Scheibel et al.,
1975; Lund et al., 1977; Huttenlocher, 1979; Bourgeois and
Goldman-Rakic, 1993; Anderson and Rutledge, 1996; Jacobs et
al., 1997), some interareal variation in the pyramidal cell pheno-
type reported here may be attributable to sampling error. How-
ever, in the macaque monkey, the most complex spinous cells
were observed in the PFC of the oldest animal, which would have
been subject to the greatest spine loss and dendritic regression. In
the marmoset monkey, data from the PFC was sampled from a
slightly younger animal than those from which occipital and
temporal lobe data were sampled. Thus, it may be argued that
prefrontal cells had not yet reached their peak, whereas those in
the occipital and temporal cortex had done so (i.e., peak spine
density in the PFC may occur at a later developmental age than in
the occipital and temporal cortex). Although we are unaware of
any published data on the age at which the peak spine density is
reached in the marmoset occipital, temporal, and prefrontal cor-
tex, peak spine density in both the occipital cortex and prefrontal
cortex of humans and macaques is reached by ;1.5 years of age
(Huttenlocher, 1979; Bourgeois et al., 1994; Anderson and Rut-
ledge, 1996). As the marmoset prefrontal data were sampled from
an animal that was 18 months of age, it is likely that peak spine
density had already been reached.

Phenotypic variation and cell function
Various aspects of cell structure are reportedly critical in deter-
mining the subcellular, cellular, and systems function of neurons.
Differences in the size and number of branches in the dendritic
arbors of cortical pyramidal neurons affect the total number of
spines contained within, reflecting putative differences in the
number of excitatory inputs received by individual cells (Elston
and Rosa, 1997, 1998; Elston et al., 1999a,b; Elston, 2000). Vary-
ing spine densities reported on the basal dendrites may also affect
electrical and biochemical compartmentalization, cooperativity
between inputs, and shunting inhibition (Koch et al., 1982; Shep-
herd et al., 1985; Rall and Segev, 1987; Shepherd and Brayton,
1987; Koch and Zador, 1993; Mainen, 1999). In addition, differ-
ences in the total length of, number of branches in, and diameters
of the dendrites determine the cable properties (Rall, 1959), the
degree of nonlinear compartmentalization (Rall, 1964; Koch et
al., 1982), and the propagation of potentials (Stuart and Häusser,
1994; Spruston et al., 1995; Markram et al., 1997; Vetter et al.,
2001) within the arbor (for review, see Rall et al., 1992; Stuart et
al., 1997; Koch, 1999; Mel, 1999; Spruston et al., 1999; Häusser et
al., 2000). Modeling studies have also shown that a greater po-
tential for electrical compartmentalization in highly branched
dendritic arbors may result in a significant increase in the capacity
for learning and memory of a neuron by increasing the represen-
tational power of the cell (Poirazi and Mel, 2001). Thus, it
appears likely that regional differences in pyramidal cell morphol-
ogy contribute to area-specific aspects of cellular and systems
function such as discharge properties and contrasting synaptic
plasticity (Fuster and Alexander, 1971; Kubota and Niki, 1971;
Fuster and Jervey, 1981; Ashford and Fuster, 1985; Miyashita and
Chang, 1988; Funahashi et al., 1989; Murayama et al., 1997). As
a logical extension, species differences in pyramidal cell morphol-

Figure 3. Plot of the estimates of the total number of spines in the basal
dendritic arbor of the “average” pyramidal cell in the occipital, temporal,
and prefrontal cortex of marmosets (light gray), macaques (dark gray), and
humans (black). These calculations revealed that cells in the prefrontal
cortex of humans and macaques (15,138 and 8766, respectively) are
considerably more spinous than those in the temporal lobe (12,700 and
7260, respectively). In marmosets, however, cells in the prefrontal cortex
(3983) were less spinous than those in the temporal lobe (5176).
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ogy (for corresponding brain regions) are likely to contribute to
species-specific differences in cortical function. In particular, cells
in the human PFC potentially compartmentalize a greater num-
ber of inputs within their dendritic arbors than those in the PFC
of the macaque, and those in the PFC of macaque compartmen-
talize more than those in the PFC of the marmoset. Moreover,
cells in the human PFC may integrate a greater diversity of inputs
than those in other species.

On brain size and heterogeneity of the pyramidal
cell phenotype
The present results clearly show that the size of and the number
of branches and spines in the basal dendritic arbors of pyramidal
cells may vary independently of each other. Some of these vari-
ables may be correlated with brain size, but others may not. For
example, among the areas studied here, spine density appears to
be correlated with brain size: spine density was consistently
higher in humans compared with macaques and higher in ma-
caques compared with marmosets for any of the given brain
regions. However, the size of the cells does not necessarily cor-
relate with brain size: cells in the occipital and temporal lobe of
the marmoset were larger than those in corresponding cortical
regions in the macaque. Moreover, pyramidal cells in different
cortical regions and/or species are not merely scaled versions of
the same type but are structurally different (Elston and Jelinek,
2001; Jelinek and Elston, 2001). In addition, the total number of
spines in the basal dendritic arbor of the average cell in each
cortical region did not correlate with brain size. Whereas cells in
the PFC of humans and macaques were considerably more spi-
nous than those in the temporal and occipital lobes, those in the
PFC of marmosets were less spinous than those in the temporal
cortex (Fig. 3). Marmoset PFC occupies a smaller fraction of its
isocortex compared with the PFC of humans and macaques, and
comprises fewer cortical areas (Gebhard et al., 1995). In contrast,
the marmoset temporal lobe is relatively expansive and appears
to be highly specialized for visual processing (Rosa, 1997). The
second visual area is reportedly homologous across species (Ser-
eno et al., 1995; Rosa et al., 1997), being a phylogenetically old
cortical area (Kaas, 1992). Thus, the number of spines in the basal
dendritic arbor of the average pyramidal cell in each area appears
to reflect both the level of processing (sensory, sensory associa-
tion, or executive function) and the extent to which a particular
region has become specialized for the particular function.

Conclusions
The present results show that the enlargement of the cortex in
higher primates has not occurred solely through the addition of
new cortical areas of similar circuitry. Instead, the results suggest
that pyramidal cell morphology in marmosets, macaques, and
humans is specialized for their functional requirements in any
given cortical region. In particular, prefrontal pyramidal cells
have become more branched and spinous during the evolution of
the PFC in higher primates, facilitating specialized cortical func-
tions such as comprehension, perception, and planning. Differ-
ences in the branching structure of prefrontal pyramidal cells, and
the number of spines they contain, are not correlated with brain
size, but reflect fundamental differences in circuitry between
species.
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