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Sveučilǐste u Zagrebu Doktorska disertacija
Prirodoslovno-matematički fakultet
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Chapter 1

Introduction

The topic of semi-leptonic interactions in nuclei is of interest for several reasons.
Most of the fundamental tests of weak-interaction theory have involved nuclei,
and if nuclei are to serve as laboratories with which to conduct experiments
on weak interactions, it is essential that the nuclear physics of these processes
be well understood. Knowing the nature of weak-interaction processes, they
can be used for testing current theoretical description of nuclear phenomena.
Following the conserved-vector-current (CVC) theory, weak-interaction matrix
elements coming from the vector current are identical to those measured in elec-
tron scattering. It follows that weak probes can complement electromagnetic
probes in examining nuclear structure. However, weak-interaction processes
are even more informative as they are also sensitive to the axial-vector, as
well as vector current, providing a better experimental tool. Finally, weak
interactions play a critical role in astrophysical applications such as r-process
nucleosynthesis, core-collapse supernova explosions and others.

The weak-interaction coupling constant is small enough to allow for a pertur-
bative treatment of problems, reducing the calculations to a nuclear structure
problem. However, inability to accurately treat nuclear systems has introduced
large uncertainties in theoretical examinations of weak-interaction processes.
Nevertheless, a lot of progress has been made in this field recently based on
a self-consistent mean-field approach leading to an improved ground-state de-
scription of nuclei, both close to and removed from the valley of stability [1].
Building on these developments, models describing collective motion of nu-
clei have been developed, applicable to exotic modes of excitation in nuclei
far from stability [2]. Continuing this line of research, the focus of this the-
sis is on application of relativistic Hartree-Bogoliubov + proton-neutron rela-
tivistic quasiparticle random phase approximation framework on semi-leptonic
weak-interaction processes in neutron-rich nuclei: β-decay, muon capture and
neutrino-nucleus reactions.

Semi-leptonic weak-interaction processes are usually considered in the wider
context of nuclear astrophysics [3]. Within this field of research, one of the
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most active topics is the question of nucleosynthesis of heavy elements during
the r-process, a quantitative description of which requires precise data on in-
volved nuclei, including but not limited to masses, β-decay half-lives, energies
of excited states, beta delayed neutron emission rates, (n, γ) reaction rates,
etc. for thousands of nuclei, most of which are experimentally unreachable.
Therefore, astrophysical models must rely on nuclear structure and reaction
theory to provide all relevant input which can be used to determine astrophys-
ical conditions in which creation of neutron-rich stable isotopes takes place.
However, models that provide most accurate description of stable nuclei do
not necessarily extrapolate well to neutron-rich regions. Unexpectedly large
neutron skins appear in medium-heavy and heavier nuclei where additional
neutrons are weakly bound and neutron density becomes extended in space
beyond the proton density. In light nuclei this effect is brought to its extreme
with halo nuclei. Another unique feature of neutron-rich regions is the re-
forming of shell structure with changed shell closures. In stable nuclei magic
numbers N,Z = 8, 20, 28, 50, 82, 126 are well known and explained, but with
high neutron to proton number ratios shell closures change, significantly in-
fluencing transition properties. Nuclear structure models aiming to provide
astrophysical models with relevant input data must be able to simultaneously
describe both stable and unstable nuclei within a universal theoretical frame-
work.

Models based on the shell model are known to be very precise. Using real-
istic interactions and including as many correlations as possible they provide
accurate results and can serve as a benchmark for all other models. Very
large configuration space places computational limitations and restricts appli-
cation to lightest nuclei only. Significant research has been done with the aim
of overcoming these obstacles, resulting with Monte Carlo techniques, vari-
ous ways of reducing the configuration space without eliminating important
correlations, and methods of including short range correlations directly into
operators. However, applications to heavy nuclei are still impossible and mean-
field theory has been developed to systematically treat all nuclei. Best known
nonrelativistic phenomenological effective interactions developed over the last
several decades are the Skyrme and Gogny energy functionals.

Even though nonrelativistic models provide a good description of nuclei with
reasonable accuracy, natural description of nuclear systems is relativistic. Nu-
clear potential is a result of cancellation of two strong potentials, the attractive
scalar potential and the repulsive vector potential. Strong spin-orbit coupling
is described by the spin-orbit potential equal to the sum of the scalar and
vector potentials. Therefore, relativistic effects are important even at low en-
ergies. Relativistic mean-field models assume that nuclear interaction is based
on the exchange of mesons which build the single-particle potentials that nu-
cleons move in. The source of mesons is the nucleon density, coupling nucleon
and meson wave equations and making the system self-consistent. To obtain
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a quantitative description of finite nuclei, the basic model is extended by in-
cluding nonlinear meson self-interaction terms, however further improvement
of such models is difficult due to new parameters, as available experimental
data only allows unique determination of a limited number of parameters.
Modern versions of relativistic mean-field models include density-dependence
of meson-nucleon coupling constants as a more flexible replacement of non-
linear terms. Properties of nuclear matter and finite nuclei, hypernuclei and
neutron stars have all been successfully described within the relativistic mean-
field (RMF) theory. Relativistic interactions adjusted to properties of nuclear
matter and bulk properties of finite nuclei will be used to describe semi-leptonic
weak-interaction processes in neutron-rich nuclei. Pairing correlations will be
treated in the relativistic Hartree-Bogoliubov (RHB) framework which is a rel-
ativistic extension of the conventional Hartree-Bogoliubov models and provides
a unified description of mean-field and pairing correlations.

A known characteristic of relativistic models is a relatively low effective nu-
cleon mass, which is connected to low density of states around the Fermi
surface. A measure of non-locality in space and time in nonrelativistic models,
effective mass leads to momentum and energy dependence of the single-particle
potential. The standard density-dependent framework will be extended in
two separate attempts in order to improve the description of density of states
around the Fermi level. In the first attempt, tensor coupling of the ω-meson
will be introduced to preserve good spin-orbit properties while increasing ef-
fective nucleon mass. In the other approach, momentum-dependent terms will
be directly included in the Lagrangian density leading to energy-dependent
scalar and vector self-energies in the stationary solutions of nuclear equations
of motion. With both approaches the effective mass will be enhanced close
to nonrelativistic values, improving the description of the ground-state single-
particle structure of neutron-rich nuclei.

These two models will be used to study β-decay rates of neutron-rich nuclei,
for isotopic chains around closed proton shells at Z = 28 and Z = 50. Even
with relatively large Q-values in these mass regions, momentum transfer in
β-decay is small allowing for the use of the long-wavelength approximation.
Gamow-Teller strength will be calculated using the proton-neutron relativistic
quasiparticle random phase approximation (pn-RQRPA) with the same inter-
actions as was used at the mean-field level. When considering β-decay, the
important part of the spectrum is at low energies below the Q-value where
strength is particularly sensitive to single-particle structure of the nucleus. Of
critical importance for a quantitative description, models commonly rely on ex-
perimental nuclear masses or highly specialized mass models like microscopic-
macroscopic finite range droplet model (FRDM), extended Thomas-Fermi with
Strutinsky integral (ETFSI) approach or Duflo-Zuker mass table inspired by
shell model results, to obtain Q-values. In this thesis, the Q-value is approx-
imated using proton and neutron chemical potentials derived from a Taylor
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expansion of the binding energy of the daughter nucleus, eliminating the need
for any external input. β-decay half-lives are obtained by integrating the vol-
ume of phase space available to outgoing leptons and compared to experimental
values. Improved level density around the Fermi level has proved to be cru-
cial for improving predicted helf-lives, but additional proton-neutron residual
interaction had to be introduced to reproduce experimental values.

Even though β-decay is dominated by allowed Gamow-Teller transitions,
there has been a lot of speculation in recent years on the importance of for-
bidden transitions for precise predictions of half-lives and the effect on nucle-
osynthesis. Their contribution may be significant in nuclei near closed shells,
and their effect in nuclei with a large neutron excess and in nuclei around
N = 126 is yet unknown [4]. Additionally, other weak-interaction processes
have very large momentum transfer and cannot be treated within the long-
wavelength approximation. A more general framework will be implemented
at the pn-RQRPA level where all multipole transitions are treated equally,
making no approximations and having full momentum transfer dependence in-
cluded in transition operators [5]. Within this formalism, muon capture and
neutrino-nucleus reactions will be examined.

Muon capture on stable nuclei has been studied in detail since many years,
both experimentally and theoretically [6]. In this process the momentum trans-
fer is of the order of the muon mass and, therefore, the calculation of total
muon capture rates presents an excellent test of models that are also used in
studies of low-energy neutrino-nucleus reactions. Neutrino-nucleus reactions
at low energies play an important role in many phenomena in nuclear and par-
ticle physics, as well as astrophysics. These reactions present extremely subtle
physical processes, not only because they involve the weak interaction but
also because they are very sensitive to the structure of nuclear ground states
and excitations, i.e., to the solution of the nuclear many-body problem that
includes the strong and electromagnetic interactions. The use of microscopic
nuclear structure models in a consistent theoretical framework is therefore es-
sential for a quantitative description of neutrino-nucleus reactions [7]. Detailed
predictions of neutrino-nucleus cross sections are crucial for the interpretation
of neutrino experiments and the detection of neutrinos produced in supernova
explosions. Neutrino-nucleus reactions that occur in a type II supernova could
also contribute to the nucleosynthesis [3], but more data on cross sections are
necessary for a more complete understanding of this process, as well as the
supernova dynamics.

Chapter 2 will give a short review of the relativistic mean-field theory used
to obtain the ground-state of a spherical, even-even nucleus. Two extensions of
the model aimed at increasing nucleon effective mass will be presented in Sec-
tion 2.5. Chapter 3 will provide a description of a fully self-consistent proton-
neutron relativistic quasiparticle RPA. Details of β-decay half-lives will also
be given, and comparison with experimental values provided in Sections 3.4
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and 3.5, respectively. Chapter 4 will cover the necessary formalism of the weak
interaction, focusing on aspects of this particular implementation. Application
of the theoretical framework to total muon capture rates and neutrino-nucleus
reaction cross sections will be presented and comparison with experiment and
other theoretical studies given. Finally, a short summary with possible future
applications is given in Chapter 5.
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Chapter 2

Relativistic mean-field theory

Modern nuclear structure theory has evolved from macroscopic and micro-
scopic studies of phenomena in stable nuclei towards regions of exotic, short-
lived nuclei far from the valley of stability, and nuclear astrophysics applica-
tions. The principal challenge is to build a consistent microscopic theoretical
framework that will provide a unified description of bulk properties, nuclear
excitations and reactions. Self-consistent mean-field models based on the rel-
ativistic mean-field theory (RMF) [8] have been very successfully employed in
analyses of a variety of nuclear structure phenomena, not only in nuclei along
the valley of β-stability, but also in exotic nuclei with extreme isospin values
and close to the particle drip-lines. RMF-based models have reached a level of
sophistication and accuracy comparable to the non-relativistic Hartree-Fock-
Bogoliubov framework based on Skyrme and Gogny effective interactions [1].

In addition to the self-consistent mean-field single-nucleon potential, the
inclusion of pairing correlations is essential for a quantitative description of
structure phenomena in open-shell spherical and deformed nuclei. In weakly
bound systems far from stability, in particular, the Fermi surface for one type
of nucleons is found close to the particle continuum. The single-nucleon sepa-
ration energies become comparable to the pairing gaps, and this results in the
lowest particle hole (ph) and particle particle (pp) modes being embedded in
the continuum. A unified and self-consistent treatment of both the mean-field
and pairing correlations becomes necessary, and the coupling between bound
and continuum states has to be taken into account explicitly. The Hartree-
Fock-Bogoliubov (HFB) theory [9] provides a unified description of ph- and
pp-correlations in nuclei and, when the self-consistent HFB equations are for-
mulated in coordinate space, allows for a treatment of continuum effects in the
presence of pairing.

To be able to reproduce the data on β-decay half-lives, the description of
single-particle energies around the Fermi surface must be improved. A simple
approach to increase the density of single-nucleon states without going beyond
mean-field level will be taken. An increase of the effective mass necessitates
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a reduction of the vector self-energy. However, to retain the empirical value
of the nuclear matter binding energy, the scalar self-energy should be reduced
correspondingly. A serious problem arises because such an effective interaction
would systematically underestimate the spin-orbit splittings in finite nuclei. A
solution to this problem has been known for a long time, namely the tensor
coupling of the ω-meson to the nucleon. This interaction enhances the effective
spin-orbit potential in finite nuclei but is not included in the most commonly
used relativistic mean-field models.

Another solution is provided by the recently introduced relativistic mean-
field model with momentum-dependent nucleon self-energies [10]. In this model
the standard effective Lagrangian with density-dependent meson-nucleon cou-
pling vertices is extended by including a particular form of the couplings be-
tween the isoscalar meson fields and the derivatives of the nucleon fields. This
leads to a linear momentum dependence of the scalar and vector self-energies
in the Dirac equation for the in-medium nucleon. Even though the extension
of the standard mean-field framework is phenomenological, it is nevertheless
based on Dirac-Brueckner calculations of in-medium nucleon self-energies, and
consistent with the relativistic optical potential in nuclear matter, extracted
from elastic proton-nucleus scattering data. In the extended model it is pos-
sible to increase the effective nucleon mass, while keeping a small Dirac mass
which is required to reproduce the empirical strength of the effective spin-orbit
potential.

2.1 Relativistic Lagrangian density

In the standard representation of quantum hadrodynamics the nucleus is de-
scribed as a system of Dirac nucleons coupled to the exchange mesons and
the electromagnetic field through an effective Lagrangian. The isoscalar scalar
σ-meson, the isoscalar vector ω-meson, and the isovector vector ρ-meson build
the minimal set of meson fields that together with the electromagnetic field
is necessary for a quantitative description of bulk and single-particle nuclear
properties [8, 11]. The model is defined by the Lagrangian density

L = LN + LM + Lint. (2.1)

LN denotes the Lagrangian of the free nucleon

LN = ψ̄ (iγµ∂µ −m)ψ , (2.2)

where m is the bare nucleon mass and ψ denotes the Dirac spinor. Lm is the
Lagrangian of the free meson fields and the electromagnetic field

LM =
1

2

(

∂µσ∂
µσ −m2

σσ
2
)

− 1

2

(

1

2
ΩµνΩ

µν −m2
ωωµω

µ

)

−1

2

(

1

2
~Rµν

~Rµν −m2
ρ~ρµ~ρ

µ

)

− 1

4
FµνF

µν , (2.3)
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with the corresponding masses mσ, mω, mρ and Ωµν , ~Rµν , Fµν are field tensors

Ωµν = ∂µων − ∂νωµ (2.4)

~Rµν = ∂µ~ρν − ∂ν~ρµ (2.5)

Fµν = ∂µAν − ∂νAµ , (2.6)

where arrows denote isovectors. Boldface symbols will be used to denote vec-
tors in coordinate space. The minimal set of interaction terms is contained in
Lint

Lint = −gσψ̄σψ − gωψ̄γµω
µψ − gρψ̄γµ~ρ

µ~τψ − eψ̄γµA
µ 1 − τ3

2
ψ. (2.7)

with coupling constants gσ, gω, gρ and e. The phenomenological σ-meson
approximates a large attractive scalar field that results from complicated mi-
croscopic processes, such as uncorrelated and correlated two-pion exchange.
The ω-meson describes the short-range repulsion between the nucleons, and
the ρ-meson carries the isospin quantum number. The latter is required by
the large empirical asymmetry potential in finite nuclear systems. Because of
parity conservation there is no direct contribution from the pion field. The
self-consistent RMF approach represents a particular realization of the rel-
ativistic Kohn-Sham density functional theory [12], in which one attempts
to effectively include in the nuclear energy density functional effects which
go beyond the Hartree approximation (Fock terms, short-range correlations,
vacuum-polarization effects). The many-body correlations of the energy den-
sity functional can be represented by a medium dependence of the correspond-
ing effective nuclear interaction. An effective density dependence can be in-
cluded, for instance, through meson self-interaction terms. Over the years
a number of non-linear meson-exchange interactions have been adjusted to
the nuclear matter equation of state and bulk properties of a set of spherical
closed-shell nuclei, and applied in the description of nuclear properties along
the β-stability line. One of the most successful phenomenological interactions
of this type is the non-linear parameter set NL3 [13], which has been employed
in many studies of ground-state properties and collective excitations both in
stable nuclei and in exotic systems far from the line of β-stability.

Another class of medium-dependent effective interactions is characterized by
an explicit baryon-density dependence of the meson-nucleon vertices. Such an
approach retains the basic structure of the relativistic mean-field framework,
but can be more directly related to the underlying microscopic description of
nuclear interactions. The functional form of the meson-nucleon vertices can be
deduced from in-medium Dirac-Brueckner interactions, obtained from realistic
free-space NN interactions, or a phenomenological approach can be adopted,
with the density dependence for the σ, ω and ρ meson-nucleon couplings ad-
justed to properties of nuclear matter and a set of spherical nuclei. The former
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represents an ab-initio description of nuclear matter and finite nuclei, and the
corresponding density-dependent relativistic mean-field model has also been
applied to asymmetric nuclear matter and exotic nuclei [14]. In the latter ap-
proach very accurate phenomenological density-dependent relativistic effective
interactions have recently been adjusted [15, 16, 17], and employed in analyses
of both bulk nuclear properties and collective excitations. A number of recent
studies have shown that, in comparison with non-linear meson self-interactions,
relativistic models with an explicit density dependence of the meson-nucleon
couplings provide an improved description of asymmetric nuclear matter, neu-
tron matter and nuclei far from stability.

The single-nucleon Dirac equation is derived by variation of Lagrangian (2.1)
with respect to ψ̄

[

γµ
(

i∂µ − Σµ − ΣR
µ

)

− (m+ Σ)
]

ψ = 0 (2.8)

With the nucleon self-energies defined by the following relations:

Σ = gσσ , (2.9)

Σµ = gωωµ + gρ~τ · ~ρµ + e
1 − τ3

2
Aµ . (2.10)

The density dependence of the vertex functions gσ, gω and gρ produces the
rearrangement contribution ΣR

µ to the vector self-energy

ΣR
µ =

jµ
ρv

(

∂gω

∂ρv
ψ̄γνψων +

∂gρ

∂ρv
ψ̄γν~τψ · ~ρν +

∂gσ

∂ρv
ψ̄ψσ

)

. (2.11)

The inclusion of the rearrangement self-energies is essential for the energy-
momentum conservation and the thermodynamical consistency of the model
(the equality of the pressure obtained from the thermodynamical definition
and from the energy-momentum tensor) [15].

The density-dependence of the meson-nucleon couplings can be parametrized
in a phenomenological way by the following fuctionals [15, 16]. The coupling
of the σ-meson and ω-meson to the nucleon field reads

gi(ρ) = gi(ρsat)fi(x) za i = σ, ω , (2.12)

where

fi(x) = ai
1 + bi (x+ di)

2

1 + ci (x+ di)
2 x =

ρ

ρsat
. (2.13)

is a function of x = ρ/ρsat, and ρsat denotes the baryon density at saturation
in symmetric nuclear matter. The eight real parameters in Eq. (2.13) are not
independent. The five constraints

• fi(1) = 1
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• f ′′
σ (1) = f ′′

ω(1)

• f ′′
i (0) = 0

reduce the number of independent parameters to three. Three additional pa-
rameters in the isoscalar channel are gσ(ρsat), gω(ρsat) and mσ - the mass of the
phenomenological σ-meson. For the ρ-meson coupling the functional form of
the density dependence is suggested by Dirac-Brueckner calculations of asym-
metric nuclear matter [18]

gρ(ρ) = gρ(ρsat)e
−aρ(x−1) . (2.14)

The isovector channel is parametrized by gρ(ρsat) and aρ. For the masses of
the ω and ρ mesons the free values are used: mω = 783 MeV and mρ = 763
MeV.

The eight independent parameters, seven coupling parameters and the mass
of the σ-meson, are adjusted to reproduce properties of symmetric and asym-
metric nuclear matter, binding energies, charge radii and neutron radii of
spherical nuclei. In particular, the density-dependent meson-exchange effective
interaction DD-ME1 was constructed in Ref. [16]. The seven coupling param-
eters and the σ-meson mass have been simultaneously adjusted to properties
of symmetric and asymmetric nuclear matter, and to ground-state properties
(binding energies, charge radii and differences between neutron and proton
radii) of 12 spherical nuclei. For the open shell nuclei pairing correlations have
been treated in the BCS approximations with empirical pairing gaps (five-point
formula).

Neglecting retardation effects for the meson fields, a self-consistent solution
is obtained when the time-dependent mean-field potentials are calculated at
each step in time from the solution of the stationary Klein-Gordon equations

(

� +m2
σ

)

σ = −gσ〈ψ̄ψ〉, (2.15)
(

� +m2
ω

)

ωµ = gω〈ψ̄γµψ〉, (2.16)
(

� +m2
ρ

)

~ρµ = gρ〈ψ̄γµ~τψ〉, (2.17)

�Aµ = e2〈ψ̄γµ 1 − τ3
2

ψ〉. (2.18)

For energies relevant for nuclear structure the stationary approximation is jus-
tified by the large meson masses. The corresponding meson exchange forces
are of short range and therefore retardation effects can be neglected. In appli-
cations to nuclear matter and finite nuclei, the relativistic models are used in
the no-sea approximation: the Dirac sea of states with negative energies does
not contribute to the densities and currents. For a nucleus with A nucleons

〈ψ̄Γmψ〉 =
A
∑

i=1

ψ̄iΓmψi , (2.19)
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where the summation is performed only over occupied orbits in the Fermi sea
of positive energy states.

The lowest order of the quantum field theory is the mean-field approxima-
tion: the meson-field operators are replaced by their expectation values in
the nuclear ground state. The A nucleons, described by a Slater determinant
|Φ〉 of single-particle spinors ψi, (i = 1, 2, . . . , A), move independently in the
classical meson fields. The sources of the meson fields are defined by the nu-
cleon densities and currents. The ground state of a nucleus is described by the
stationary self-consistent solution of the coupled system of Dirac and Klein-
Gordon equations. The couplings of the meson fields to the nucleon are ad-
justed to reproduce the properties of nuclear matter and finite nuclei. Because
of parity conservation there is no direct contribution from the pion field on
the Hartree level. The pion has been included in the relativistic Hartree-Fock
model [19]. Many effects that go beyond the mean-field level are apparently
neglected in the RMF models: Fock terms, vacuum polarization effects and
the short-range Brueckner-type correlations. The experimental data to which
the meson-nucleon couplings are adjusted, however, contain all these effects
and much more. It follows that effects beyond the mean-field level are im-
plicitly included in the RMF approach by adjusting the model parameters to
reproduce a selected empirical data set. Vacuum effects, chiral symmetry, nu-
cleon substructure, exchange terms, long- and short-range correlation effects
are, therefore, effectively included in this approach although neither of them
can be assessed separately.

2.2 Covariant density functional theory

The mean-field approach to nuclear structure represents an approximate imple-
mentation of Kohn-Sham density functional theory (DFT) [12, 20, 21], which
is successfully employed in the treatment of the quantum many-problem in
atomic, molecular and condensed matter physics. At the basis of the DFT
approach are energy density functionals of the ground-state density. In rela-
tivistic mean-field models, these become functionals of the ground-state scalar
density and of the baryon currents.

The nonrelativistic DFT is based on the Hohenberg-Kohn theorem [20]. For a
many-fermion system under consideration, the theorem states that the ground-
state expectation value of any observable Ô is a unique functional of the exact
ground-state density ρ0. As a second important statement, the theorem es-
tablishes the variational character of the energy functional E[ρ]. For any non-
negative trial density that gives the correct number of fermions in the system,
the true ground state energy E0 for the exact density ρ0 satisfies the relation

E[ρ0] ≤ E[ρ]. (2.20)
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Nuclear mean-field models approximate the energy functional, which in-
cludes all higher-order correlations, with powers and gradients of ground-state
nucleon densities and currents. Within the covariant DFT theory, ground state
|Φ0〉 of a nucleus is uniquely determined by proton and neutron ground-state
four-currents jµ

p and jµ
n , and ground-state scalar density ρs. Ground-state

energy reads
E0

[

ρs, j
µ
p , j

µ
n

]

= 〈Φ0|Ĥ|Ψ0〉 . (2.21)

Currents and the density are

ρs =
∑

q=p,n

∑

i

ψ̄i,q(r)ψi,q(r) , (2.22)

µq =
∑

i

ψ̄i,q(r)γµψi,q(r) , (2.23)

where the sum is over all occupied positive energy states. The ground-state
energy functional

E0 = Ts + Eh + Exc (2.24)

consists of the single-particle kinetic term

Ts =

∫

d3r
∑

ψ+
i,q(r)(−iα∇ + βm)ψi,q(r), (2.25)

the Hartree energy

Eh = −1

2

∫

d3rd3r′Dσ(r, r′)gσ(r)gσ(r
′)ρs(r)ρs(r

′)

+
1

2

∫

d3rd3r′Dω(r, r′)gω(r)gω(r′)
(

jµ
p (r) + jµ

n(r)
)

(jµ p(r
′) + jµ n(r′))

+
1

2

∫

d3rd3r′Dρ(r, r
′)gρ(r)gρ(r

′)
(

jµ
p (r) − jµ

n(r)
)

(jµ p(r
′) − jµ n(r′))

+
1

2

∫

d3rd3r′e2DC(r, r′)jµ
p (r)jµ n(r′) , (2.26)

and the exchange-correlation term. The latter is defined by (2.24), and mini-
mization of the ground state energy E0 leads to Kohn-Sham equations
{

−iα∇ + β
[

m+ Σs,h + Σs,xc + γµ

(

Σµ
q,h + Σµ

q,R + Σµ
q,xc

)]}

ψi,q = ǫi,qψi,q .
(2.27)

Σs,h and Σµ
q,h are the usual scalar and vector self-energies, and Σµ

q,R is the
rearrangement contribution. Local exchange-correlation potentials are defined
as

Es,xc(r) =
δ

δρs(r)
Exc , (2.28)

Eµ
q,xc(r) =

δ

δjµ
q (r)

Exc . (2.29)
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2.3 Stationary solutions of the equations of

motion

The ground state of the nucleus is obtained as a solution of the stationary
equations of motion. In this case, the nucleon spinors are eigenvectors of
the stationary Dirac equation, which yields the single-particle energies ǫi as
eigenvalues

[

α (−i∇ − V (r)) + βmD(r) + V (r) + ΣR(r)
]

ψi(r) = ǫiψi(r). (2.30)

where V (r) is the space-like, and V (r) the time-like component of the vector
self-energy. ΣR is the rearrangement self-energy (2.11). The Dirac mass is
defined by the scalar field

mD (r) = m+ gσσ(r) , (2.31)

with m being the bare nucleon mass. Due to charge conservation, only the
neutral component of the isovector ρ meson contributes.

The equations can be further simplified by only considering systems with
time-reversal invariance, such as even-even nuclei in the ground state. In that
case there are no net currents, and the corresponding space-like components
of the vector potential vanish. Final form of the Dirac equation reads

[

−iα∇ + βmD(r) + V (r) + ΣR(r)
]

ψi(r) = ǫiψi(r) , (2.32)

and is coupled with a system of Klein-Gordon equations for the mesons

(

−∆ +m2
σ

)

σ(r) = −gσρs(r) , (2.33)
(

−∆ +m2
ω

)

ω0(r) = gωρv(r) , (2.34)
(

−∆ +m2
ρ

)

ρ0
3(r) = gρρtv(r) , (2.35)

−∆A0(r) = eρC(r) . (2.36)

The meson equations can be solved analytically using the Green’s functions
method

σ(r) = −
∫

gσ(ρv(r
′))Dσ(r, r′)ρs(r

′)d3r′ , (2.37)

ω0(r) = −
∫

gω(ρv(r
′))Dω(r, r′)ρv(r

′)d3r′ , (2.38)

ρ0
3(r) = −

∫

gρ(ρv(r
′))Dρ(r, r

′)ρtv(r
′)d3r′ , (2.39)

A0(r) = e

∫

DC(r, r′)ρC(r′)d3r′ (2.40)
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with the meson propagators

Dφ(r, r
′) =

1

4π

e−mφ|r−r′ |

|r − r′| , (2.41)

and the photon propagator

DC(r, r′) =
1

4π

1

|r − r′| . (2.42)

The set of coupled equations is solved iteratively. Starting from an initial
guess of the scalar and vector potentials, densities

ρs(r) =
A
∑

i=1

ψ+
i (r)βψi(r) , (2.43)

ρv(r) =

A
∑

i=1

ψ+
i (r)ψi(r) , (2.44)

ρtv(r) =

A
∑

i=1

ψ+
i (r)τ3ψi(r) , (2.45)

ρC(r) =
A
∑

i=1

ψ+
i (r)

1 − τ3
2

ψi(r) , (2.46)

are calculated from nucleon wave functions, and are then used as sources in
the Klein-Gordon equations. Meson fields are solutions of the Klein-Gordon
equations, and enter the scalar and vector potentials in (2.32). Final solution
is reached when the system achieves convergence.

Integrating the T 00 component of the stress-energy tensor over the entire
nucleus total energy of the system is obtained

ERMF =
A
∑

i=1

∫

ψ+
i (−iα∇ + βm)ψid

3r

+
1

2

∫

(

gσρsσ + gωω
0ρv + gρρ

0
3ρtv

)

d3r . (2.47)

Total binding energy is corrected for the center-of-mass motion by

Ecm = −〈P 2
cm〉

2Am
, (2.48)

where Pcm is the total momentum of a nucleus with A nucleons [22].
By considering only spherical nuclei, the set of coupled equations describing

the nucleus is further simplified easing the computational cost. In spherical
systems densities and fields depend solely on the radial coordinate r. The
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nucleon spinor is determined by the quantum numbers of angular momentum
j and m, parity π and isospin projection mt = ±1

2
for neutron and proton,

respectively

ψ(r, s, t) =

(

f(r)Φj,l,m(θ, ϕ, s)
ig(r)Φj,l̃,m(θ, ϕ, s)

)

χt(t) , (2.49)

with the isospin wave function χt(t). Angular and spin components of the
wave function are coupled to total angular momentum j

Φl j m(θ, ϕ, s) =
∑

ms,ml

〈1
2
ms l ml|j m〉χms(s)Yl ml

(θ, ϕ) . (2.50)

The orbital angular momentum l for the large, and l̃ for the small component of
the Dirac spinor are determined from the total angular momentum and parity

l = j +
1

2
, l̃ = j − 1

2
for π = (−1)j+ 1

2 , (2.51)

l = j − 1

2
, l̃ = j +

1

2
for π = (−1)j− 1

2 . (2.52)

The Dirac equation reduces to a coupled set of two ordinary differential equa-
tions for radial functions f(r) and g(r)

[m∗(r) + V (r)] f(r) +

(

∂r −
κ− 1

r

)

g(r) = ǫf(r) , (2.53)

−
(

∂r +
κ+ 1

r

)

f(r) − [m∗(r) − V (r)] g(r) = ǫg(r) , (2.54)

where κ = ±(j + 1
2
) for j = l ∓ 1

2
. Densities can be expressed using nucleon

radial functions

ρs(r) =
∑

i

(2ji + 1)
[

|fi(r)|2 − |gi(r)|2
]

, (2.55)

ρv(r) =
∑

i

(2ji + 1)
[

|fi(r)|2 + |gi(r)|2
]

, (2.56)

ρtv(r) =
∑

i

ti(2ji + 1)
[

|fi(r)|2 − |gi(r)|2
]

, (2.57)

ρC(r) =
∑

i

(2ji + 1)(1 − ti)
[

|fi(r)|2 − |gi(r)|2
]

, (2.58)

where ti = 1 corresponds to neutrons and ti = −1 to protons. Expressing
Klein-Gordon equations via these densities results with the following form:

(

− ∂2

∂r2
− 2

r

∂

∂r
+m2

φ

)

= gφ(ρv(r))φ(r) . (2.59)
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2.4 Relativistic Hartree-Bogoliubov model

The inclusion of pairing correlations is essential for a correct description of
structure phenomena in spherical open-shell nuclei and in deformed nuclei.
For nuclei close to the β-stability line, pairing has been included in the rela-
tivistic mean-field model in the form of the simple BCS approximation [23].
However, for nuclei far from stability the BCS model presents only a poor
approximation. In particular, in drip-line nuclei the Fermi level is found close
to the particle continuum. The lowest particle-hole (ph) or particle-particle
(pp) modes are often embedded in the continuum, and the coupling between
bound and continuum states has to be taken into account explicitly. The BCS
model does not provide a correct description of the scattering of nucleonic
pairs from bound states to the positive energy continuum; levels high in the
continuum become partially occupied. Including the system in a box of finite
size leads to unreliable predictions for nuclear radii depending on the size of
this box. In the non-relativistic case it has been shown that the Hartree-Fock-
Bogoliubov (HFB) theory in the continuum provides a very elegant solution
to this problem [24, 25].

The HFB theory [9] provides a unified description of ph- and pp-correlations
on a mean-field level by using two average potentials: the self-consistent
Hartree-Fock field Γ̂ which encloses all the long-range ph-correlations, and
a pairing field ∆̂ which sums up the pp-correlations. The ground state of a
nucleus is described by a generalized Slater determinant |Φ〉 which represents
the vacuum with respect to independent quasiparticles. The quasiparticle
operators are defined by the unitary Bogoliubov transformation of the single-
nucleoncreation and annihilation operators

α+
k =

∑

l

Ulkc
+
l + Vlkcl, (2.60)

where Ulk and Vlk are the Hartree-Fock-Bogoliubov wave functions. The index
l denotes an arbitrary basis, for instance the harmonic oscillator states. In
the coordinate space representation l = (r, σ, τ), with the spin index σ and
the isospin index τ . The HFB wave functions determine the hermitian single-
particle density matrix

ρl l′ =
〈

Ψ
∣

∣c+l′ cl
∣

∣Ψ
〉

= (V ∗V T )ll′ (2.61)

and the antisymmetric pairing tensor

κl l′ = 〈Ψ |cl′cl|Ψ〉 = (V ∗UT )ll′ . (2.62)

According to Valatin [26] these two densities can be combined into the gener-
alized density matrix

R =

(

ρ κ
−κ∗ 1 − ρ∗

)

, (2.63)
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which is both Hermitian (R+ = R) and idempotent (R2 = R).
The relativistic Hartree-Bogoliubov (RHB) model can be easily derived within

the framework of covariant density functional theory. When pairing correla-
tions are included, the energy functional depends not only on the density
matrix ρ̂ and the meson fields φm but in addition also on the pairing tensor:

ERHB [ρ̂, κ̂, φm] = ERMF [ρ̂, φm] + Epair [κ̂] , (2.64)

where the pairing energy Epair [κ̂] is given by

Epair [κ̂] =
1

4
Tr [κ̂∗V ppκ̂] . (2.65)

V pp denotes a general two-body pairing interaction. The equation of motion
for the generalized density matrix reads

i∂tR = [H(R),R] , (2.66)

and the generalized Hamiltonian is obtained as a functional derivative of the
energy with respect to the generalized density

H =
δERHB

δR =

(

ĥD −m− λ ∆̂

−∆̂∗ −ĥD +m+ λ

)

. (2.67)

Variation of the energy functional with respect to single-particle density pro-
vides the single-particle Hamiltonian

ĥD =
δE

δρ̂
= α (p + V ) + V + β (m− S) , (2.68)

while variation with respect to the pairing tensor provides the pairing field

∆ =
δE

δκ̂
, ∆a b(r, r

′) =
1

2

∑

c,d

V pp
abcd(r, r

′)κcd(r, r
′) , (2.69)

where a, b, c and d denote the quantum numbers of Dirac spinors, and V pp
abcd

are the matrix elements of the pairing interaction. The pairing field can be
written as

(

∆̂++ ∆̂+−

∆̂−+ ∆̂−−

)

, (2.70)

where + and − refer to the large and small components of the Dirac quasipar-
ticle spinors Uk and Vk

The stationary limit of Eq. (2.66) describes the ground state of an open-
shell nucleus [27]. It is determined by the solutions of the Hartree-Bogoliubov
equations

(

ĥD −m− λ ∆̂

−∆̂∗ −ĥD +m+ λ

)(

Uk(r)
Vk(r)

)

= Ek

(

Uk(r)
Vk(r)

)

. (2.71)
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The chemical potential λ is determined by the particle number subsidiary con-
dition in order that the expectation value of the particle number operator
in the ground state equals the number of nucleons. The column vectors de-
note the quasiparticle wave functions, and Ek are the quasiparticle energies.
The dimension of the RHB matrix equation is two times the dimension of
the corresponding Dirac equation. For each eigenvector (Uk, Vk) with positive
quasiparticle energy Ek > 0 there exists an eigenvector (V ∗

k , U
∗
k ) with quasi-

particle energy −Ek. Since the baryon quasiparticle operators satisfy fermion
commutation relations, the levels Ek and −Ek cannot be occupied simultane-
ously. For the solution that corresponds to a ground state of a nucleus with
an even particle number, one usually chooses the eigenvectors with positive
eigenvalues Ek.

The RHB equations are solved self-consistently with the potential deter-
mined within the mean-field approximation from the solutions of the Klein-
Gordon equations

(

−∆ +m2
σ

)

σ(r) = −gσρs(r) , (2.72)
(

−∆ +m2
ω

)

ω0(r) = gωρv(r) , (2.73)
(

−∆ +m2
ρ

)

ρ0
3(r) = gρρtv(r) , (2.74)

−∆A0(r) = eρC(r) . (2.75)

for the σ-meson, the ω-meson, the ρ-meson and photon field, respectively.
The source terms in Eqs. (2.72)-(2.75) are sums of bilinear products of baryon
amplitudes

ρs(r) =
∑

Ek>0

V +
k (r)γ0Vk(r) , (2.76)

ρv(r) =
∑

Ek>0

V +
k (r)Vk(r) , (2.77)

ρ3(r) =
∑

Ek>0

V +
k (r)τ3Vk(r) , (2.78)

ρem(r) =
∑

Ek>0

V +
k (r)

1 − τ3
2

Vk(r) . (2.79)

where the sum over positive-energy states Ek > 0 corresponds to the no-sea
approximation. The self-consistent solution of the Dirac-Hartree-Bogoliubov
integro-differential equations and Klein-Gordon equations for the meson fields
determines the ground state of a nucleus. For systems with spherical symmetry,
i.e. closed-shell lnuclei, the coupled system of equations has been solved using
finite element method in coordinate space [28, 29], and by expansion in a basis
of spherical harmonic oscillator [27].

The eigensolutions of Eq. (2.66) form a set of orthogonal (normalized) single
quasiparticle states. The corresponding eigenvalues are the single quasiparticle
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energies Ek. The self-consistent iteration procedure is performed in the basis of
quasiparticle states. In order to obtain a better understanding of the structure
of the Hartree-Bogoliubov wave function |Ψ〈, the self-consistent quasiparticle
eigenspectrum is then transformed into the canonical basis of single-nucleon
states. By definition the canonical basis {|ψµ(r)|} diagonalizes the single-
nucleon density matrix ρ̂ in Eq. (2.61)

ρ̂ |φµ〉 = v2
µ |φµ〉 . (2.80)

The transformation to the canonical basis determines the energies and pairing
matrix elements

ǫµ =
〈

φµ

∣

∣

∣
ĥD −m

∣

∣

∣
φµ

〉

and ∆µ =
〈

φµ

∣

∣

∣
∆̂
∣

∣

∣
φµ

〉

, (2.81)

and the occupation probabilities of single-nucleon states

v2
µ =

1

2



1 − ǫµ −m− λ
√

(ǫµ −m− λ)2 + ∆2
µ



 . (2.82)

The self-consistent solution |Ψ〉 for the ground-state of a nucleus has the struc-
ture of a BCS-state with those occupation probabilities (for details see Ref. [9]).

In early applications to nuclear matter [30], the same effective Lagrangian,
i.e. identical meson-nucleon coupling parameters were used both in the ph-
channel and in the pp-channel. It was found, however, that the standard RMF
effective interactions that were adjusted to ground-state properties of spherical
nuclei, produce pairing correlations that are much too strong when compared
with empirical pairing gaps. The reason is that the meson-exchange forces have
no momentum cut-off and, therefore, exhibit unphysical behavior at large mo-
menta or, equivalently, at small distances. The strong repulsive force of the
ω-meson exchange generates a pairing field in nuclear matter that is more than
a factor of three larger then the one calculated with the phenomenological
Gogny force [31, 32]. This short-distance behavior of the effective interactions
does not affect ordinary relativistic mean-field calculations in the ph-channel,
where momenta above the Fermi momentum do not contribute. In calculations
of pairing correlations, on the other hand, the occupation numbers decrease
very slowly in momentum space, and the convergence of the momentum inte-
gral is achieved only by relativistic kinematic factors. However, in an effective
theory there is no physical reason to use the same interactions both in the
ph-channel and in the pp-channel. In non-relativistic self-consistent mean-field
models, for instance, a number of different effective pairing forces have been
used, often with no direct relation to the interaction in the ph-channel.

One possibility is a δ-force in the pp-channel. This choice, however, intro-
duces an additional cut-off parameter in energy and neither this parameter,
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nor the strength of the interaction, can be determined in a unique way. In
Ref. [27] it was therefore suggested that the pairing part of the well-known
and very successful Gogny force [33] should be employed in the pp-channel

V pp(1, 2) =
∑

i=1,2

e
−

“

r1−r2
µi

”2

(Wi +BiP
σ −HiP

τ −MiP
σP τ ) , (2.83)

with the set D1S for the parameters µi, Wi, Bi, Hi and Mi (i = 1, 2). Values
of the parameters are given in Table 2.1. This force has been very carefully
adjusted to the pairing properties of finite nuclei all over the periodic table.
In particular, the basic advantage of the Gogny force is the finite range, which
automatically guarantees a proper cut-off in momentum space.

Table 2.1: Values of the parameters of the D1S Gogny pairing interaction.

i µi [fm] Wi Bi Hi Mi [MeV]
1 0.7 -1720.3 1300.0 -1813.53 1397.60
2 1.2 103.69 -163.483 162.812 -223.934

Since the Gogny force is a non-relativistic interaction, there is no unique way
to implement this force in a relativistic calculation. For a general two-body
interaction, the matrix elements of the relativistic pairing field read

∆̂a1p1,a2p2 =
1

2

∑

a3p3,a4p4

〈a1p1, a2p2 |V pp| a3p3, a4p4〉aκa3p3,a4p4 , (2.84)

where the indices (p1, p2, p3, p4 = +,−) refer to the large and small components
of the quasiparticle Dirac spinors. In most applications of the RHB model,
only the large components of the spinors Uk(r) and Vk(r) were included in the
non-relativistic pairing tensor κ̂. At this stage normalization is not taken into
account. The resulting pairing field that has been used in calculation of finite
nuclei reads

∆̂a1+,a2+ =
1

2

∑

a3+,a4+

〈a1+, a2 + |V pp| a3+, a4+〉aκa3+,a4+ . (2.85)

The other components: ∆̂+−, ∆̂−+ and ∆̂−− are neglected, in accordance
with the results that are obtained with the relativistic zero-range force [34].
Normalization is taken into account in a global way by multiplying the pairing
field with an overall factor 1.15, adjusted to increase the strength of the Gogny
force in such a way that the pairing energy calculated for the nucleus 116Sn
is identical to the value obtained in the non-relativistic HFB calculation with
the Gogny force D1S.
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Concerning the use of phenomenological pairing forces in relativistic self-
consistent structure models, it must be emphasized that pairing in nuclei is a
fully non-relativistic phenomenon. Pairing effects are restricted to an energy
window of a few MeV around the Fermi level, and their scale is well separated
from the scale of binding energies, which are in the range of several hundred,
and for heavy nuclei even more than a thousand MeV. So far there is no
experimental evidence for any relativistic effect in the nuclear pairing field
∆̂. This is clearly different from the case of the mean field ĥ, where the
importance of the spin-orbit potential has been known since the early days
of the nuclear shell model. In a phenomenological approach based on density
functional theory, such as the RHB framework, it is therefore fully justified to
use a hybrid model with a non-relativistic pairing interaction.

2.5 Effective mass in relativistic models

In nonrelativistic mean-field models the effective nucleon mass m∗ character-
izes the energy dependence of an effective local potential which is equivalent to
the nonlocal and frequency dependent microscopic nuclear potential [35]. m∗

represents a measure of the density of single-nucleon states around the Fermi
surface and, therefore, it has a pronounced effect on the calculated proper-
ties of ground and excited states. In the case of Skyrme-type interactions,
for instance, calculation of ground-state properties and excitation energies of
quadrupole giant resonances have shown that a realistic choice for the nucleon
effective mass is in the interval m∗/m = 0.8 ± 0.1 [36].

In the relativistic mean-field framework the expression “effective mass” has
been used to denote different quantities. The quantity which is usually used to
characterize an effective interaction, and which in the literature is most often
called “the relativistic effective mass”, is also known as the “Dirac mass” [37]

mD = m+ S(r) , (2.86)

where m is the bare nucleon mass and S(r) denotes the scalar nucleon self-
energy. The concept of the effective nucleon mass in the relativistic framework
has been extensively analyzed in Refs. [37, 38]. Specifically, it has been pointed
out that the Dirac mass should not be identified with the effective mass of
the nonrelativistic mean-field models. Instead, the quantity which should be
compared with the empirical effective mass derived from the nonrelativistic
analyses of scattering and bound state data is given by

m∗

m
= 1 − V (r)

m
. (2.87)

where V denotes the time-like component of the vector self-energy. The Dirac
mass, on the other hand, is determined by two factors: (i) the empirical spin-
orbit splittings in finite nuclei, and (ii) the binding energy at the saturation
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density in nuclear matter. In the first order approximation, and assuming
spherical symmetry, the spin-orbit part of the effective single-nucleon potential
reads

Vls(r) =
1

4M̄2

[

1

r

d

dr
(V − S)

]

l · σ, (2.88)

where M̄ is specified as

M̄ = M − 1

2
(V − S) . (2.89)

While the difference between the vector and scalar potentials determines the
spin-orbit potential, their sum defines the effective single-nucleon potential
and is determined by the nuclear matter binding energy at saturation density.
The energy spacings between spin-orbit partner states in finite nuclei, and the
nuclear matter binding and saturation, place the following constraints on the
values of the Dirac mass and the nucleon effective mass: 0.55m ≤ mD ≤ 0.6m,
0.64m ≤ m∗ ≤ 0.67m, respectively. These values have been used in most
standard relativistic mean-field effective interactions. In comparison with the
nonrelativistic models, the relativistic nucleon effective mass has a rather low
value, and this results in a smaller density of states around the Fermi surface.
Also, the range of allowed values of the nucleon effective mass is very narrow
in the standard relativistic mean-field phenomenology, and there is really no
room for any significant enhancement of the single-nucleon level densities at
the Fermi surface.

2.5.1 Inclusion of a tensor term in ω-meson-nucleon cou-

pling

An increase of the effective mass necessitates a reduction of the vector self-
energy (see Eq. (2.87)). However, in order to retain the empirical value of
the nuclear matter binding energy, the scalar self-energy should be reduced
correspondingly. A serious problem arises because such an effective interaction
would systematically underestimate the spin-orbit splittings in finite nuclei. A
solution to this problem has been known for a long time, namely the tensor
coupling of the ω-meson to the nucleon. This interaction enhances the effective
spin-orbit potential in finite nuclei, but is not included in the most commonly
used relativistic mean-field models. In Ref. [39] it was shown that the tensor
coupling

Ltensor = − fV

2M
ψ̄σµνψ (∂µων − ∂νωµ) . (2.90)

generates an additional term in the spin-orbit part of the effective nucleon
potential, which now reads

Vls(r) =

[

1

4M̄2

1

r

d

dr
(V − S) +

fV

2MM̄

1

r

dω

dr

]

l · σ (2.91)
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Naturally, the tensor term also appears in the Klein-Gordon equation for the
ω-meson which now reads

(

−∆ +m2
ω

)

ω0(r) = gωρv(r) − fV

4m
ρT , (2.92)

with the tensor density obtained from a summation over states

ρT = i∇ ·
∑

k

V +
k (r)γVk(r). (2.93)

Starting from the DD-ME1 interaction that has been used in the PN-RQRPA
analysis of charge-exchange modes [40], and with the inclusion of the additional
tensor omega-nucleon interaction (2.90), the parameters of the new interaction
have been adjusted simultaneously to properties of nuclear matter and finite
nuclei [16]. An additional constraint has been placed on the value of the nu-
cleon effective mass. The modified effective interaction, denoted as DD-ME1*,
exhibits the following values for the Dirac mass and the nucleon effective mass:
mD = 0.67m, m∗ = 0.76m, respectively. These are the highest values for
which a realistic description of nuclear matter and finite nuclei is still possi-
ble, i.e. the quality of the calculated nuclear matter equation of state and of
ground-state properties of spherical nuclei is comparable to that of the DD-
ME1 interaction. The value of the Dirac mass is also in agreement with the
results of Ref. [39], where a detailed analysis was performed on the correlation
between the isoscalar tensor coupling and the Dirac mass in successful mean-
field models. Although the value of m∗ is still lower than those typically used
in nonrelativistic mean-field models, this result presents a significant improve-
ment over the standard DD-ME1 density-dependent interaction (mD = 0.58m,
m∗ = 0.66m).

The new interaction was used to calculate the energy spacings between spin-
orbit partner states in the doubly closed-shell nuclei 16O, 40Ca, 48Ca, 132Sn,
and 208Pb. The results are shown in Table 2.2, in comparison with those ob-
tained using the DD-ME1 interaction, and with the experimental data. Both
interactions provide an excellent description of the spin-orbit splittings in fi-
nite nuclei. In order to illustrate the effect of the tensor-coupling term, in
Fig. 2.1 the radial dependence of the spin-orbit term of the single-nucleon
potential in the self-consistent solutions for the ground-state of 132Sn is dis-
played, calculated with the DD-ME1 and DD-ME1* effective interactions. For
DD-ME1*, in particular, also the contributions of the first and second term in
Eq. (2.91) are plotted separately. Even though the strength of the spin-orbit
interaction that arises from the large scalar and vector self-energies (first term
in Eq. (2.91)) is significantly reduced, the tensor omega-nucleon coupling ef-
fectively compensates this reduction, and the resulting spin-orbit potential is
even slightly stronger than the one calculated with the DD-ME1 interaction.
Therefore, while both interactions produce very similar results for the spin-
orbit splittings in finite nuclei, the inclusion of the isoscalar tensor-coupling
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Figure 2.1: Radial dependence of the spin-orbit potential in the self-consistent
solution for the ground-state of 132Sn. Full line corresponds to the potential
obtained with the DD-ME1 interaction, while others are obtained with the DD-
ME1∗ interaction. First and second term correspond to the first and second
term of the potential in (2.91).

term in DD-ME1* allows for an increase of the Dirac mass and effective mass.

In Fig. 2.2 neutron and proton single-particle levels in 132Sn are displayed,
calculated with DD-ME1 and DD-ME1* and compared to experimental val-
ues. The levels calculated with DD-ME1* are in much better agreement with
data [42], than those obtained with the original DD-ME1 interaction.

2.5.2 Inclusion of momentum dependent terms in nu-

cleon self-energies

A different solution to the problem of low effective mass is provided by rela-
tivistic mean-field model with momentum-dependent nucleon self-energies in-
troduced in Refs. [43, 10]. In this model the standard effective Lagrangian with
density-dependent meson-nucleon coupling vertices is extended by including a
particular form of the couplings between the isoscalar meson fields and the
derivatives of the nucleon fields. This leads to a linear momentum dependence
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Table 2.2: Energy separation (in MeV) between spin-orbit partner states in
doubly closed-shell nuclei, calculated with the DD-ME1 and DD-ME1* inter-
actions, and compared with experimental data [41].

DD-ME1 DD-ME1* Exp.
16O ν1p 6.32 6.02 6.18

π1p 6.25 5.96 6.32
40Ca ν1d 6.57 6.59 6.00

π1d 6.51 6.51 6.00
48Ca ν1f 7.69 7.79 8.38

ν2d 1.72 0.56 2.02
132Sn ν2d 1.88 2.03 1.65

π1g 6.24 6.57 6.08
π2d 1.82 1.98 1.75

208Pb ν2f 2.20 2.38 1.77
ν1i 6.84 7.13 5.84
ν3p 0.88 0.89 0.90
π2d 1.65 1.82 1.33
π1h 5.84 6.06 5.56

of the scalar and vector self-energies in the Dirac equation for the in-medium
nucleon. Even though the extension of the standard mean-field framework is
phenomenological, it is nevertheless based on Dirac-Brueckner calculations of
in-medium nucleon self-energies, and consistent with the relativistic optical
potential in nuclear matter, extracted from elastic proton-nucleus scattering
data. In the extended model it is possible to increase the effective nucleon
mass, while keeping a small Dirac mass which is required to reproduce the
empirical strength of the effective spin-orbit potential.

In the work of Ref. [10], in particular, an improved Lagrangian density of the
model with density-dependent and derivative couplings (D3C) has been intro-
duced. The parameters of the coupling functions were adjusted to ground-state
properties of eight doubly-magic spherical nuclei, and the results for nuclear
matter, neutron matter, and finite nuclei were compared to those obtained
with conventional RMF models. It was shown that the new effective inter-
action improves the description of binding energies, nuclear shapes and spin-
orbit splittings of single-particle levels. More important, it was possible to
increase the effective nucleon mass (m∗ = 0.71m) and, correspondingly, the
density of single-nucleon levels close to the Fermi surface as compared to stan-
dard RMF models. At the same time the Dirac mass was kept at the small
value mD = 0.54m, which ensures that the model reproduces the empirical
spin-orbit splittings. The momentum dependence of the nucleon self-energies
provides also a correct description of the empirical Schroedinger-equivalent
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Figure 2.2: Neutron (left panel) and proton (right panel) single-particle ener-
gies for doubly-closed nucleus 132Sn. Plotted in the first column denoted with
(a) are states calculated with the DD-ME1 interaction, DD-ME1∗ (b) and com-
pared to the experimental values in the last column (c). Experimental data is
taken from [42].

central optical potential. This model is described in detail in Appendix A
The functional forms of the density dependence of the σ, ω and ρ meson-

nucleon couplings are identical for the conventional DD-ME1 effective interac-
tion and the D3C model. The latter includes momentum-dependent isoscalar
scalar and vector self-energies, and thus contains two additional coupling func-
tions ΓS and ΓV . In Ref. [10] these have been parametrized with the following
functional form:

Γi(x) = Γi(ρref)x
−ai for i = S, V , (2.94)

where x = ρv/ρref , ρv is the vector density, and the reference density ρref cor-
responds to the vector density determined at the saturation point of symmetric
nuclear matter. In the parameterization of Ref. [10] aS = aV = 1, and these
values will be retained in the following calculation. The parameters ΓS(ρref)
and ΓV (ρref) have been constrained by the requirement that the resulting op-
tical potential in symmetric nuclear matter at saturation density has the value
50 MeV at a nucleon energy of 1 GeV. In total there are 10 adjustable param-
eters in the D3C model, compared to eight for the standard density-dependent
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Table 2.3: Properties of symmetric nuclear matter at saturation density cal-
culated with the models DD-ME1, D3C, and D3C*.

DD-ME1 D3C D3C*
̺sat [fm−3] 0.152 0.151 0.152
aV [MeV] -16.20 -15.98 -16.30
a4 [MeV] 33.1 31.9 33.0
K∞ [MeV] 244.5 232.5 224.9
mD/m 0.58 0.54 0.57
m∗/m 0.66 0.71 0.79

ΓS 0.0 -21.632 -146.089
ΓV 0.0 302.188 180.889

RMF models, e.g. the DD-ME1 parameterization.
The effective nucleon mass of the D3C model is m∗ = 0.71m, compared to

m∗ = 0.66m for DD-ME1. In addition, starting from D3C, a new parameteri-
zation has been adjusted with m∗ = 0.79m, which is much closer to the effec-
tive masses used in non-relativistic Skyrme effective interactions [36, 44, 45].
The new effective interaction, denoted D3C*, has been adjusted following the
original procedure of Ref. [10], with an additional constraint on the effective
nucleon mass. Value of m∗ = 0.79m is the highest for which a realistic de-
scription of nuclear matter and finite nuclei is still possible, and the quality of
the calculated nuclear matter equation of state and of ground-state properties
of spherical nuclei is comparable to that of the DD-ME1 and D3C interac-
tions. The three interactions are compared in Table 2.3, where the charac-
teristics of the corresponding nuclear matter equations of state at saturation
point are listed: the saturation density ̺sat, the binding energy per particle
aV , the symmetry energy a4, the nuclear matter compression modulus K∞,
the Dirac mass mD, and the effective (Landau) mass m∗. In addition, for the
two interactions with energy-dependent single-nucleon potentials, the values
of ΓS(ρref) and ΓV (ρref) are compared. A pronounced increase of the strength
of the scalar field is noticeable. This is, however, compensated by the corre-
sponding decrease of the strength of the vector coupling, so that the difference
ΓV (ρref)−ΓS(ρref) is practically the same for D3C and D3C*. For both inter-
actions the optical potential at 1 GeV nucleon energy has been constrained to
50 MeV. With the increase of the effective nucleon mass from DD-ME1 to D3C
and D3C∗, there is a corresponding decrease of the nuclear matter compres-
sion modulus K∞. This correlation between K∞ and m∗ is also well known in
non-relativistic Skyrme effective interactions [44].

In Fig. 2.3 the neutron and proton single-particle levels in 132Sn are displayed,
calculated in the relativistic mean-field model with the DD-ME1, D3C, and
D3C* effective interactions, in comparison with available data for the levels

40



close to the Fermi surface [42]. Compared to the DD-ME1 interaction, the
enhancement of the effective mass in D3C and D3C* results in the increase of
the density of states around the Fermi surface, and the calculated spectra are
in much better agreement with the empirical energy spacings.
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Figure 2.3: Neutron (left panel) and proton (right panel) single-particle ener-
gies for doubly-closed nucleus 132Sn. Plotted in the first column denoted with
(a) are states calculated with the DD-ME1 interaction, D3C (b) and D3C∗ (c)
and compared to the experimental values in the last column (d). Experimental
data is taken from [42].
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Chapter 3

Relativistic quasiparticle

random phase approximation

The successful application of the relativistic mean-field theory to finite nuclei
has raised the possibility of describing excitation properties within the rela-
tivistic RPA framework. Small amplitude collective excitations of arbitrarily
heavy nuclei can be accurately described by the random phase approximation
(RPA) or, in the case of open-shell nuclei, by the quasiparticle random phase
approximation (QRPA) [9].

A consistent and unified treatment of mean-field and pairing correlations
is crucial for a quantitative analysis of ground-state properties and multi-
pole response of unstable, weakly bound nuclei far from the line of stability.
The relativistic quasiparticle random-phase approximation (RQRPA) has been
formulated in the canonical single-nucleon basis of the relativistic Hartree-
Bogoliubov (RHB) model [40]. The RHB model presents the relativistic ex-
tension of the Hartree-Fock-Bogoliubov framework, and it provides a unified
description of particle-hole (ph) and particle-particle (pp) correlations. In this
framework the ground state of a nucleus can be written either in the quasipar-
ticle basis as a product of independent quasiparticle states, or in the canonical
basis as a highly correlated BCS state. By definition, the canonical basis di-
agonalizes the density matrix and it is always localized. It describes both the
bound states and the positive-energy single-particle continuum. The formula-
tion of the RQRPA in the canonical basis is particularly convenient because,
in order to describe transitions to low-lying excited states in weakly bound nu-
clei, the two-quasiparticle configuration space must include states with both
nucleons in the discrete bound levels, states with one nucleon in a bound level
and one nucleon in the continuum, and also states with both nucleons in the
continuum.

Exploration of neutron-rich regions of the nuclear chart naturally includes
the study of semi-leptonic weak interaction processes, e.g. β-decay, lepton cap-
ture, etc. The unique structure properties which characterize highly unstable
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nuclei such as, for instance, the weak binding of the outermost nucleons and
the coupling between bound states and the particle continuum, the modifica-
tion of the effective nuclear potential and the formation of nuclei with very
diffuse neutron densities, the occurrence of neutron skin and halo structures,
will also affect the multipole response of these systems, and new modes of
excitation could arise in nuclei at the limits of stability. Therefore a quanti-
tative description of properties of ground and excited states in weakly bound
nuclei, and especially studies of exotic modes far from stability, necessitate
using the time-dependent self-consistent mean-field framework. To that end
the proton-neutron relativistic quasiparticle RPA will be formulated as a rel-
ativistic extension of a nonrelativistic proton-neutron QRPA.

3.1 Relativistic random phase approximation

The relativistic random phase approximation (RRPA) represents the small
amplitude limit of the time-dependent relativistic mean-field theory. In this
section the RRPA matrix equations are derived from the response of the density
matrix ρ̂

ρ̂(r, r′, t) =
A
∑

i=1

|ψi(r, t)〉 〈ψi(r
′, t)| , (3.1)

to an external field
F̂ (t) = F̂ e−iωt + h.c. (3.2)

that oscillates with a small amplitude. In the single-particle space, this field
is represented by single-particle creation and destruction operators as

f̂(t) =
∑

kl

fkl(t)â
+
k âl . (3.3)

The equation of motion for the density operator reads

i∂tρ̂ =
[

ĥ(ρ̂) + f̂(t), ρ̂
]

. (3.4)

In the small amplitude limit the density matrix is expanded to linear order

ρ̂(t) = ρ̂(0) + δρ̂(t) , (3.5)

where ρ̂(0) is the stationary ground-state density. From the definition of the
density matrix (3.1), it follows that the density operator is a projector at all
times, i.e. ρ̂(t)2 = ρ̂(t). In particular, this means that the eigenvalues of ρ̂(0)

are 0 and 1. In the nonrelativistic case particle states above the Fermi level
correspond to the eigenvalue 0, and hole states in the Fermi sea correspond
to the eigenvalue 1. In the relativistic case one also has to take into account
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states from the Dirac sea. In tthe no-sea approximation these states are not
occupied, i.e. they correspond to the eigenvalue 0 of the density matrix. In
the basis which diagonalizes ρ̂(0)

ρ
(0)
kl = δklρ

(0)
k =







0 for unoccupied states above the Fermi sea (index p
1 for occupied states in the Fermi sea (index h
0 for unoccupied states in the Dirac sea (index α)

(3.6)
Since ρ̂(t) is a projector at all times, one has in linear order

ρ̂(0)δρ̂+ δρ̂ρ̂(0) = δρ̂ . (3.7)

This means that the non-vanishing matrix elements of δρ̂ are δρph, δρhp, δραh

and δρhα. These are determined by the solution of the TDRMF equation (3.4).
In the linear approximation the equation of motion reduces to

i∂tδρ̂ =
[

ĥ(0), δρ̂
]

+

[

∂ĥ

∂ρ
δρ, ρ̂(0)

]

+
[

f̂ , ρ̂(0)
]

, (3.8)

where

∂ĥ

∂ρ
δρ =

∑

ph

∂ĥ

∂ρph

δρph +
∂ĥ

∂ρhp

δρhp +
∂ĥ

∂ραh

δραh +
∂ĥ

∂ρhα

δρhα . (3.9)

In the small amplitude limit δρ will, of course, also display a harmonic time
dependence e−iωt. Taking into account the fact that ĥ

(0)
kl = δklǫk is diagonal in

the stationary basis, we obtain

(ω − ǫp + ǫh)δρph = fph +
∑

p′h′ Vph′hp′δρp′h′ + Vpp′hh′δρh′p′

+
∑

α′h′ Vph′hα′δρα′h′ + Vpα′hh′δρh′α′ ,
(ω − ǫα + ǫh)δραh = fαh +

∑

p′h′ Vαh′hp′δρp′h′ + Vαp′hh′δρh′p′

+
∑

α′h′ Vαh′hα′δρα′h′ + Vαα′hh′δρh′α′ ,
(ω − ǫh + ǫp)δρhp = fhp +

∑

p′h′ Vhh′pp′δρp′h′ + Vhp′ph′δρh′p′

+
∑

α′h′ Vhh′pα′δρα′h′ + Vhα′ph′δρh′α′ ,
(ω − ǫh + ǫα)δρhα = fhα +

∑

p′h′ Vhh′αp′δρp′h′ + Vhp′αh′δρh′p′

+
∑

α′h′ Vhh′αα′δρα′h′ + Vhα′αh′δρh′α′

(3.10)

or, in matrix form
[

ω

(

1 0
0 −1

)

−
(

A B
B∗ A∗

)](

X
Y

)

=

(

F
F̄

)

. (3.11)

The RRPA matrices A and B read

A =

(

(ǫp − ǫh)δpp′δhh′

(ǫα − ǫh)δαα′δhh′

)

+

(

Vph′hp′ Vph′hα′

Vαh′hp′ Vαh′hα′

)

,(3.12)

B =

(

Vpp′hh′ Vpα′hh′

Vαp′hh′ Vαα′hh′

)

, (3.13)
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and the amplitudes X and Y are defined as

X =

(

δρph

δραh

)

i Y =

(

δρhp

δρhα

)

. (3.14)

The vectors which represent the external field contain the matrix elements

F =

(

fph

fαh

)

i F̄ =

(

fhp

fhα

)

. (3.15)

The eigenmodes of the system are determined by the RPA equation

(

A B
−B∗ −A∗

)(

X
Y

)

µ

= Ωµ

(

F
F̄

)

µ

. (3.16)

In principle, this is a non-Hermitian eigenvalue problem. In the non-relativistic
case, however, it can be reduced to a Hermitian problem of half-dimension, if
the RPA matrices are real and if (A+B) is positive definite. In this case one can
also show that the eigenvalues Ω2

µ are positive, i.e. the RPA eigenfrequencies
Ωµ are real [9].

The relativistic case is much more complicated. In addition to the normal
ph-configurations with a particle p above the Fermi level and a hole h in
the Fermi sea, one has the αh-configurations with a particle α in the Dirac
sea, which is empty in the no-sea approximation, and a hole h in the Fermi
sea. From Eq. (3.12) one can notice that the matrix (A + B) is not positive
definite. The αh-configurations have large negative diagonal matrix elements
ǫαh = ǫα − ǫh ≤ −1.2 GeV, and the RRPA equation can no longer be reduced
to a Hermitian problem of half-dimension. In this case it is also not clear
whether the eigenfrequencies are necesserily real, because the stability matrix

S =

(

A B
B∗ A∗

)

(3.17)

is no longer positive definite. Rather than minima, the solutions of the RMF
equations are saddle points [46] in the multi-dimensional energy surface, and
the Thouless theorem [47], which states that a positive definite stability matrix
S leads to a stable RPA equation with real frequencies, does not apply.

However, the opposite is not true: if the stability matrix is not positive
definite, it does not automatically follow that the eigenvalues of the corre-
sponding RPA matrix are not real. In fact, cases like this occur also in the
non-relativistic RPA in the neighborhood of phase transitions, where the in-
teraction V is very large and attractive. As compared to the matrix elements
of V , the positive energies ǫp − ǫh on the diagonal of the stability matrix are
not large enough to guarantee positive eigenvalues of S. In the relativistic
case the energies on the diagonal ǫα − ǫh are negative. Even for small matrix
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elements of V the stability matrix S will have negative eigenvalues. However,
as long as the diagonal part dominates, i.e. as long as one is not in the neigh-
borhood of a phase transition, the RRPA eigenfrequencies are real. This can
be easily demonstrated if instead of RPA amplitudes X and Y , one defines the
generalized coordinates Q and momenta P

Q =
1√
2

(X − Y ∗) , P =
i√
2

(X + Y ∗) . (3.18)

In the small amplitude limit the time-dependent mean-field equations take the
form of classical Hamiltonian equations (see Ref. [9], Chapter 12)

H(Q,P ) =
1

2
(P ∗ − P )M−1

(

P
−P ∗

)

+
1

2
(Q∗Q)S

(

Q
Q∗

)

, (3.19)

with the tensor of inertia

M =

(

A −B
−B∗ A∗

)−1

. (3.20)

The large negative diagonal matrix elements are also present in the inertia
tensor. If the off-diagonal matrix elements are not too large, a negative inertia
and a negative curvature will result in real frequencies. In all applications of
RRPA real frequencies have been found, though in none of these cases the
stability matrix S was positive definite. This also explains why the time-
dependent RMF equations have stable solutions which describe oscillations
with real frequencies around the stationary ground state, although the static
solution itself corresponds to a saddle point.

The solution of the RPA equations in configuration space is much more
complicated in the relativistic case. Firstly, because in addition to the usual
ph-states, the configuration space includes a large number of αh-states. A
further complication arises because the full non-Hermitian RPA matrix has to
be diagonalized, even in cases when the matrix elements are real. The usual
method [9], which reduces the dimension of the RPA equations by half does
not apply.

3.2 Relativistic quasiparticle random phase ap-

proximation

Relativistic RPA calculations have been performed since the early 1980s, but
it is only more recently that non-linear meson self-interaction terms or density-
dependent meson-nucleon couplings have been included in the RRPA frame-
work [48, 49, 50]. As in the case of ground-state properties, the inclusion
of a medium dependence in the residual interaction is necessary for a quan-
titative description of collective excited states. Another essential feature of
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the RRPA is the fully consistent treatment of the Dirac sea of negative energy
states. Within the no-sea approximation, in addition to the usual particle-hole
pairs, the RRPA configuration space must also include pair-configurations built
from positive-energy states occupied in the ground-state solution, and empty
negative-energy states in the Dirac sea [51]. Collective excitations in open-
shell nuclei can be analyzed with the relativistic quasiparticle random-phase
approximation (RQRPA), which in Ref. [52] has been formulated in the canon-
ical single-nucleon basis of the relativistic Hartree-Bogoliubov (RHB) model.

The RQRPA represents the small amplitude limit of the time-dependent
relativistic Hartree-Bogoliubov (RHB) framework. The RQRPA matrix equa-
tions in the quasiparticle basis are, however, rather complicated and require
the evaluation of the matrix elements of the Dirac Hamiltonian in the basis of
the Hartree-Bogoliubov spinors Uk(r) and Vk(r). A considerably simpler repre-
sentation is provided by the canonical single-nucleon basis. Namely, any RHB
wave function can be expressed either in the quasiparticle basis as a product
of independent quasiparticle states, or in the canonical basis as a highly cor-
related BCS-state. The canonical basis is specified by the requirement that
it diagonalizes the single-nucleon density matrix. The transformation to the
canonical basis determines the energies and occupation probabilities of single-
nucleon states that correspond to the self-consistent solution for the ground
state of a nucleus. Since it diagonalizes the density matrix, the canonical basis
is always localized. It describes both the bound states and the positive-energy
single-particle continuum.

Taking into account the rotational invariance of the nuclear system, the
matrix equations of the RQRPA read [52]:

(

AJ BJ

B∗J A∗J

)(

Xλ,JM

Y λ,JM

)

= ωλ

(

1 0
0 −1

)(

Xλ,JM

Y λ,JM

)

. (3.21)

For each RQRPA energy ων , X
ν and Y ν denote the corresponding forward and

backward two-quasiparticle amplitudes, respectively. The coupled RQRPA
matrices in the canonical basis read

AJ
kk′ll′ = H

11(J)
kl δk′l′ −H

11(J)
k′l δkl′ −H

11(J)
kl′ δk′l +H

11(J)
k′l′ δkl

+
1

2
(ξ+

kk′ξ
+
ll′ + ξ−kk′ξ

−
ll′)V

J
kk′ll′

+ζkk′ll′Ṽ
J
kl′k′l (3.22)

BJ
kk′ll′ =

1

2
(ξ+

kk′ξ
+
ll′ − ξ−kk′ξ

−
ll′)V

J
kk′ll′

+ζkk′ll′(−1)jl−jl′+J Ṽ J
klk′l′ . (3.23)

H11 denotes the one-quasiparticle terms

H11
kl = (ukul − vkvl)hkl − (ukvl + vkul)∆kl , (3.24)
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i.e. the canonical RHB basis does not diagonalize either the Dirac single-
nucleon mean-field Hamiltonian ĥD, or the pairing field ∆̂. The occupation
amplitudes vk of the canonical states are eigenvalues of the density matrix. Ṽ
and V are the particle-hole and particle-particle residual interactions, respec-
tively. Their matrix elements are multiplied by the pairing factors ξ± and ζ ,
defined by the occupation amplitudes of the canonical states. The relativistic
particle-hole interaction Ṽ is defined by the same effective Lagrangian den-
sity as the mean-field Dirac single-nucleon Hamiltonian ĥD. Ṽ includes the
exchange of the isoscalar scalar σ-meson, the isoscalar vector ω-meson, the
isovector vector ρ-meson, and the electromagnetic interaction. The two-body
matrix elements include also contributions from the spatial components of the
vector fields. The pairing factors read

ζκκ′λλ′ =















η+
κκ′η

+
λλ′ for σ, ω0 ,ρ0, A0; if J is even

for ω, ρ, A; if J is odd
η−κκ′η

−
λλ′ for σ, ω0, ρ0, A0; if J is odd

for ω, ρ, A; if J is even

(3.25)

with the η-coefficients defined by

η±kk′ = ukvk′ ± vkuk′ , (3.26)

and

ξ±kk′ = ukuk′ ∓ vkvk′ . (3.27)

σ, ω0, ρ0, and A0 denote the time-like components, and ω, ρ, A the spatial
components of the meson and photon fields, respectively.

The RQRPA configuration space must also include the Dirac sea of negative
energy states, i.e. pair-configurations formed from the fully or partially occu-
pied states of positive energy and the empty negative-energy states from the
Dirac sea. The inclusion of configurations built from occupied positive-energy
states and empty negative-energy states is essential for current conservation
and the decoupling of spurious states, as well as for a quantitative comparison
with the experimental excitation energies of giant resonances.

The RQRPA model is fully self-consistent: the same interactions, in the
particle-hole and particle-particle channels, are used both in the RHB equa-
tions that determine the canonical quasiparticle basis, and in the RQRPA
equations. The parameters of the effective interactions are completely deter-
mined by the RHB calculations of ground-state properties, and no additional
adjustment is needed in the RQRPA calculations. This is an essential feature
of the RHB+RQRPA approach and it ensures that RQRPA amplitudes do not
contain spurious components associated with the mixing of the nucleon number
in the RHB ground state, or with the center-of-mass translational motion.
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3.3 Proton-neutron RQRPA

Transitions between the 0+ ground state of a spherical even-even parent nu-
cleus and the Jπ excited state of the corresponding odd-odd daughter nucleus
are induced by a charge-exchange operator T JM . Taking into account the rota-
tional invariance of the nuclear system, the quasiparticle pairs can be coupled
to good angular momentum and the matrix equations of the PN-RQRPA read

(

AJ BJ

B
∗J A

∗J

)(

XλJ

Y λJ

)

= Eλ

(

1 0
0 −1

)(

XλJ

Y λJ

)

. (3.28)

The matrices A and B are defined in the canonical basis [9]

AJ
pn,p′n′ = H11

pp′δnn′ +H11
nn′δpp′

+ (upvnup′vn′ + vpunvp′un′)V phJ
pn′np′ + (upunup′un′ + vpvnvp′vn′)V ppJ

pnp′n′

BJ
pn,p′n′ = (−1)jp′−jn′+J (upvnvp′un′ + vpunup′vn′)V phJ

pp′nn′

− (upunvp′vn′ + vpvnup′un′)V ppJ
pnp′n′ . (3.29)

Here p, p′, and n, n′ denote proton and neutron quasiparticle canonical states,
respectively, V ph is the proton-neutron particle-hole residual interaction, and
V pp is the corresponding particle-particle interaction. The canonical basis
diagonalizes the density matrix and the occupation amplitudes vp,n are the
corresponding eigenvalues. The canonical basis, however, does not diagonalize
the Dirac single-nucleon mean-field Hamiltonian ĥD and the pairing field ∆̂,
and therefore the off-diagonal matrix elements H11

nn′ and H11
pp′ appear in Eq.

(3.29):
H11

κκ′ = (uκuκ′ − vκvκ′)hκκ′ − (uκvκ′ + vκuκ′)∆κκ′ , (3.30)

For each energy Eλ, X
λJ and Y λJ in Eq. (3.29) denote the correspond-

ing forward- and backward-going QRPA amplitudes, respectively. The total
strength for the transition between the ground state of the even-even (N,Z)
nucleus and the excited state of the odd-odd (N+1,Z-1) or (N-1,Z+1) nucleus,
induced by the operator T JM , reads

B±
λJ =

∣

∣

∣

∣

∣

∑

pn

< p||T J ||n >
(

XλJ
pn upvn + (−1)JY λJ

pn vpun

)

∣

∣

∣

∣

∣

2

. (3.31)

The isoscalar part of the interaction

V T=0
τ = 1112 (3.32)

does not contribute to the particle-hole interaction due to vanishing matrix
element

〈pn′ |1112|np′〉 = 0. (3.33)
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However, the isovector part

V T=1
τ = ~τ1~τ2 = 4τ1zτ2z + 2τ1+τ2− + 2τ1−τ2+ (3.34)

gives a finite two-body matrix element

〈pn′ |~τ1~τ2|np′〉 = 2. (3.35)

Therefore, in the PN-RQRPA model only the isovector parts of the interaction
contribute to the particle-hole matrix elements of the interaction.

The spin-isospin dependent interaction terms are generated by the ρ-and
π-meson exchange. Because of parity conservation, the one-pion direct con-
tribution vanishes in the mean-field calculation of a nuclear ground state. Its
inclusion is important, however, in calculations of excitations that involve spin
and isospin degrees of freedom. The particle-hole residual interaction in the
PN-RQRPA is derived from the Lagrangian density

Lint
π+ρ = −gρψ̄γ

µ~ρµ~τψ − fπ

mπ
ψ̄γ5γ

µ∂µ~π~τψ . (3.36)

Vectors in isospin space are denoted by arrows, and boldface symbols will
indicate vectors in ordinary three-dimensional space.

The coupling between the ρ-meson and the nucleon is assumed to be a ver-
tex function of the vector density ρv =

√

jµjµ, with jµ = ψ̄γµψ. In Ref. [50]
it has been shown that the explicit density dependence of the meson-nucleon
couplings introduces additional rearrangement terms in the residual two-body
interaction of the RRPA, and that their contribution is essential for a quan-
titative description of excited states. However, since the rearrangement terms
include the corresponding isoscalar ground-state densities, it is easy to see that
they are absent in the charge exchange channel, and the residual two-body in-
teraction reads

V (r1, r2) = ~τ1~τ2(βγ
µ)1(βγµ)2gρ(ρv(r1))gρ(ρv(r2))Dρ(r1, r2)

−
(

fπ

mpi

)2

~τ1~τ2(Σ1∇1)(Σ2∇2)Dπ(r1, r2) , (3.37)

Dρ(π) denotes the meson propagator

Dρ(π) =
1

4π

e−mρ(π)|r1−r2|

|r1 − r2|
, (3.38)

and

Σ =

(

σ 0
0 σ

)

. (3.39)

For the ρ-meson coupling the functional form used in the DD-ME1 density-
dependent effective interaction [16] is adopted

gρ(ρv) = gρ(ρsat)exp[−aρ(x− 1)] , (3.40)
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where x = ρv/ρsat, and ρsat denotes the saturation vector nucleon density in
symmetric nuclear matter. For the pseudovector pion-nucleon coupling the
standard values are used

mπ = 138.0 MeV
f 2

π

4π
= 0.08 . (3.41)

The derivative type of the pion-nucleon coupling necessitates the inclusion of
the zero-range Landau-Migdal term, which accounts for the contact part of
the nucleon-nucleon interaction

Vδπ = g′
(

fπ

mπ

)2

~τ1~τ2Σ1 · Σ2δ(r1 − r2) , (3.42)

with the parameters g′DD−ME1 = 0.55, g′DD−ME1∗ = 0.62 for DD-ME1∗ inter-
action which includes the tensor coupling of the ω-meson, and g′D3C∗ = 0.76
for the momentum-dependent interaction D3C∗ adjusted to reproduce experi-
mental data on the GTR excitation energies.

With respect to the RHB calculation of the ground state of an even-even nu-
cleus, the charge-exchange channel includes the additional one-pion exchange
contribution. The PN-RQRPA model is fully consistent: the same interac-
tions, both in the particle-hole and particle-particle channels, are used in the
RHB equation that determines the canonical quasiparticle basis, and in the
PN-RQRPA equation (3.28). In both channels the same strength parameters
of the interactions are used in the RHB and RQRPA calculations.

The two-quasiparticle configuration space includes states with both nucleons
in the discrete bound levels, states with one nucleon in the bound levels and one
nucleon in the continuum, and also states with both nucleons in the continuum.
In addition to the configurations built from two-quasiparticle states of positive
energy, the RQRPA configuration space contains pair-configurations formed
from the fully or partially occupied states of positive energy and the empty
negative-energy states from the Dirac sea. As will be shown in the next section,
the inclusion of configurations built from occupied positive-energy states and
empty negative-energy states is essential for the consistency of the model.

In the pp-channel of the RHB model a phenomenological pairing interaction
was used, the pairing part of the Gogny force,

V pp(1, 2) =
∑

i=1,2

e−((r1−r2)/µi)2 (Wi + BiP
σ −HiP

τ −MiP
σP τ ), (3.43)

with the set D1S [33] for the parameters µi, Wi, Bi, Hi and Mi (i = 1, 2). This
force has been very carefully adjusted to the pairing properties of finite nuclei
all over the periodic table. In particular, the basic advantage of the Gogny
force is the finite range, which automatically guarantees a proper cut-off in
momentum space. In the present analysis the Gogny interaction in the T = 1
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pp-channel of the PN-RQRPA will also be used. For the T = 0 proton-neutron
pairing interaction in open shell nuclei a similar interaction is employed: a
short-range repulsive Gaussian combined with a weaker longer-range attractive
Gaussian:

V12 = −V0

2
∑

j=1

gje
−

r2
12

µ2
j

Π̂S=1,T=0

. (3.44)

where Π̂S=1,T=0 projects onto states with S = 1 and T = 0. This interac-
tion was used in the non-relativistic QRPA calculation [53] of β-decay rates
for spherical neutron-rich r-process waiting-point nuclei. As it was done in
Ref. [53], the ranges µ1=1.2 fm and µ2=0.7 fm of the two Gaussians are taken
from the Gogny interaction (3.43), and choose the relative strengths g1 = 1 and
g2 = −2 so that the force is repulsive at small distances. The only remaining
free parameter is V0, the overall strength.

3.4 Treatment of allowed transitions in neutron-

rich nuclei

Because of the identity of the Fermi operator with the nuclear isospin-lowering
operator and because of the resulting selection rules, the only state that can
be reached by the superallowed Fermi transition is the isobaric analog state.
This state is shifted in energy relative to the β-decaying state by the Coulomb
displacement energy and consequently lies beyond the Qβ window for β− tran-
sitions. Therefore, allowed transitions in neutron-rich nuclei are exclusively
Gamow-Teller transitions.

The total strength for the transition between the ground state of the even-
even (N,Z) nucleus and a 1+ state of the odd-odd (N-1,Z+1) nucleus, induced
by the Gamow-Teller operator, reads

Bλ =

∣

∣

∣

∣

∣

∑

pn

〈p ‖στ−‖n〉
(

Xλ
pnupvn − Y λ

pnvpun

)

∣

∣

∣

∣

∣

2

. (3.45)

The rate for the decay of an even-even nucleus in the allowed Gamow-Teller
approximation reads

1

T1/2
=
∑

m

λm
if = D−1g2

A

∑

m

∫

dEe

∣

∣

∣

∣

∣

∑

pn

〈

1+
λ ‖στ−‖ 0+

〉

∣

∣

∣

∣

∣

2
dnm

dEe
, (3.46)

where D = 6163.4 ± 3.8 s [54]. |0+〉 denotes the ground state of the parent
nucleus, and

∣

∣1+
λ

〉

is a state of the daughter nucleus. The sum runs over all
final states with an excitation energy smaller than the Qβ− value. In order
to account for the universal quenching of the Gamow-Teller strength function,
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the effective weak axial nucleon coupling constant gA = 1 is used, instead of
gA = 1.26 [55]. The kinematic factor in Eq. (3.46) can be written as

dnm

dEe

= Ee

√

E2
e −m2

e(ω − Ee)
2F (Z,A,Ee) , (3.47)

where ω denotes the energy difference between the initial and the final state.
The Fermi function F (Z,A,Ee) corrects the phase-space factor for the nuclear
charge and finite nuclear size effects [56]. Defining E∗

1+
m

as the energy of the

m-th excited Jπ = 1+ state with respect to the ground state of the daughter
nucleus, the maximum energy of the electron is

ω = Qβ − E∗
1+

m
. (3.48)

To obtain an approximation for the maximum energy of the electron without
explicitly calculating the Q-value, Qβ is expressed in terms of nuclear ground-
state binding energies

Qβ = ∆Mn−H +Bg.s.(Z,N) − Bg.s.(Z + 1, N − 1), (3.49)

with ∆Mn−H = 0.78227 MeV being the difference in mass between a neutron
and a hydrogen atom. The ground-state binding energy of an odd-odd final
nucleus, in the independent quasiparticle approximation is given by

B(Z + 1, N − 1) ≈ B(Z,N) +
dE

dZ
− dE

dN
+ E2qp,lowest (3.50)

where dE/dZ ≡ λp and dE/dN ≡ λn are the proton and neutron Fermi
energies, respectively, and E2qp,lowest is the lowest two-quasiparticle excitation
with respect to the parent nucleus [53]. The excitation energies of the q+ states
with respect to the final ground state

E∗
1+

m
≈ EQRPA −E2qp,lowest, (3.51)

where EQRPA is the QRPA phonon energy. It follows from Eqs. (3.49) and
(3.50) that the energy released in the transition from the ground state of the
initial nucleus to a 1+ state in the final nucleus is

ω = Qβ − E∗
1+

m
≈ λn − λp + ∆Mn−H − EQRPA. (3.52)

The Fermi function F (Z,A,Ee) corresponds to the ratio of the relativistic
electron density at the nucleus to the density at infinity [57]. To account for
finite nuclear size effects, the expression is evaluated for a point nucleus at the
nuclear radius R obtaining

F (±Z,A,Ee) = 2 (1 + γ0)

(

2pR

~

)−2(1−γ0)

e+πν

( |Γ(γ0 + iν)|
Γ(2γ0 + 1)

)2

, (3.53)
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with

γ0 ≡
√

1 − (αZ)2, α ≡ e2

~c
(3.54)

and

ν ≡ ±αZEe

cp
. (3.55)

In these expressions the plus sign is used in case of electron emission, and
minus sign in case of positron emission, and Z is the charge of the final nucleus.
Finally, to correct for electron screening F (±Z,A,Ee) is replaced with [56]

F (±Z,A,Ee) → F (±Z,A,Ee ∓ V0)

[

(Ee ∓ V0)
2 − (mec

2)2

E2
e − (mec2)2

]1/2(
Ee ∓ V0

Ee

)

,

(3.56)
where V0 is the shift in the potential energy of the nucleus caused by the
screening, and has been shown to be

V0 ≈ 1.45α2|Z|4/3mec
2. (3.57)

3.5 Half-lives of neutron rich nuclei around

closed shells

The first attempt to apply the PN-RQRPA to β-decay processes, by employing
the DD-ME1 interaction, was not successful. We tried to reproduce the em-
pirical half-life of the 78Ni. This spherical nucleus undergoes high-energy fast
β-decay and, since it has doubly-closed spherical shells, there is no contribu-
tion from the T = 0 pairing. The PN-RQRPA with the DD-ME1 interaction
predicts a half-life T1/2 = 7 s, which is an order of magnitude longer than the
experimental value T1/2 = 104+126−57 ms [58]. The results of nonrelativistic
QRPA calculations are much closer to the empirical half-life. For example, for
the interaction DF3 the calculated half-life is T1/2 ≈ 0.3 s [59], whereas the
Skyrme interaction SkO’ predicts T1/2 ≈ 0.6 s [53]. Obviously, while the DD-
ME1 interaction provides an accurate description of the high-energy region of
the GT strength function, it does a rather poor job for the low-energy tail of
the distribution. The problem, as already emphasized, lies in the low density
of single-proton states around the Fermi level. This has motivated the ad-
justment of the new effective interaction DD-ME1*, which has a considerably
higher value of the nucleon effective mass, and consequently produces a higher
density of single-nucleon states at the Fermi surface.

The change of the density of single-nucleon states will also affect the position
of the GT resonance, and therefore the parameter of the zero-range Landau-
Migdal force has to be readjusted. A higher density of states implies a lowering
of the GT strength distribution, and this means that value of g′ = 0.55 used
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with DD-ME1, has to be increased in order to reproduce the empirical ex-
citation energy of GT resonances. For DD-ME1* the new value g′ = 0.62
was adjusted to the position of the GT resonance in 208Pb. With this value
of g′ an excellent agreement between the calculated and experimental excita-
tion energies of the GTR for 48Ca, 90Zr, and 112−124Sn is also found. For the
momentum-dependent interaction D3C∗ the value g′ = 0.76 was obtained in
the same way.

With the new set of parameters (DD-ME1* effective interaction, mπ = 138
MeV, f 2

π/4π = 0.08, g′ = 0.62), the β-decay half-life of 78Ni was recalculated.
The value T1/2 = 0.9 s presents a significant improvement over our first result
obtained with DD-ME1, although it still overestimates the empirical half-life of
78Ni, and the values calculated with the nonrelativistic PN-QRPA. The most
probable reason is that the value of the nucleon effective mass used in DD-
ME1* is still below the values used in the nonrelativistic effective interactions
[53, 59]. A further increase of m∗ in our relativistic model is, however, not
possible without downgrading the agreement with experimental data on ground
state properties of finite nuclei.

In recent years a number of experimental and theoretical studies have fo-
cused on the level structure and decay properties of neutron-rich nuclei in the
vicinity of the doubly magic 78Ni and 132Sn. In particular, beta-decay rates in
these two regions of the periodic chart have been extensively investigated in
the framework of the nonrelativistic PN-QRPA [53, 54, 59]. In the next two
sections the relativistic pn-QRPA will be applied in the calculation of β-decay
half-lives of nuclei in the regions N≈50 and N≈82.

3.5.1 N≈50 region

In this region iron, nickel, and zinc isotopic chains, and the N = 50 isotones
were investigated. The structure of the low-energy part of the GT strength
distribution crucially depends on the occupancy of the Z = 28 proton shell. It
should be noted that, because of possible deformation effects in the Fe and Zn
chains, these nuclei might not be as good as the Ni isotopes for a comparison
with results of spherical PN-QRPA calculations.

In Fig. 3.1 the calculated half-lives of the Fe isotopes (two holes in the π1f7/2

orbit) are displayed in comparison with the available experimental data [60].
The results are obtained with the DD-ME1* interaction, mπ = 138 MeV,
f 2

π/4π = 0.08, g′ = 0.62, Gogny D1S T=1 pairing, and the D3C∗ interaction,
g′ = 0.76. Predicted half-lives are displayed both with and without the in-
clusion of the T = 0 pairing channel. Obviously, the absolute values of the
calculated half-lives are very sensitive to the T = 0 pairing strength. With-
out the inclusion of this pairing channel, in all considered cases the calculated
half-lives are at least an order of magnitude longer than the experimental val-
ues. In the case of iron isotopes the pairing strength parameter V0 has been
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Figure 3.1: Half-lives of iron isotopes calculated with various interactions.
Open symbols denote values obtained without T = 0 residual interaction,
while full symbols denote values with additional interaction. Strength of the
residual pairing is V0 = 115 MeV for the DD-ME1∗ interaction, and V0 = 125
MeV for the momentum-dependent D3C∗ interaction. Theoretical results are
compared to experimental values taken from Ref. [60].

adjusted to reproduce the half-life of 68Fe. With this value it is possible to
reproduce the half-lives of the 66Fe and 70Fe isotopes very accurately, whereas
the lifetime of the 64Fe isotope is somewhat overestimated.

It is, however, probable that the inclusion of a strong T = 0 pairing par-
tially compensates the deficiencies of the single-particle spectra calculated
with the DD-ME1* interaction. The ground-state occupation probabilities
for the single-particle levels relevant for this β-decay process are listed in Ta-
ble 3.1. Since the π1f7/2 orbit is not fully occupied, the transition with the
highest probability is dominated (95% of the neutron-to-proton QRPA ampli-
tude) by the back spin-flip configuration ν1f5/2 → π1f7/2. Other transitions,
with much smaller probabilities, correspond to the back spin-flip configuration
ν2p1/2 → π2p3/2, and the core-polarization configurations ν1f5/2 → π1f5/2,
ν1g9/2 → π1g9/2, ν2p3/2 → π2p3/2, and ν2p1/2 → π2p1/2. Since except π1f7/2,
all proton single-particle levels listed in Table 3.1 have very small occupation
probabilities, the only sizeable contribution from the T = 0 pairing to the
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RQRPA matrices comes from the π1f7/2(ν1f5/2)
−1 pair. Because of the at-

tractive nature of the pairing interaction, the large diagonal matrix element
v2

pV
pp
pnpn (p and n denote π1f7/2 and ν1f5/2 states, respectively) effectively re-

duces the sum of the quasiparticle energies: H11
pp +H11

nn = Ep +En. This means
that the T = 0 pairing compensates for the fact that even the DD-ME1* in-
teraction still predicts a rather low density of states around the Fermi surface,
i.e., the π1f7/2 and ν1f5/2 single-particle levels are still too close. The inclusion
of the T = 0 pairing will affect only configurations with the proton level at
least partially occupied.

Table 3.1: Occupation probabilities of neutron and proton single-particle states
for the ground-states of 76Fe and 80Zn.

76Fe 80Zn
nlj neutrons protons nlj neutrons protons

1f7/2 1.000 0.743 1f7/2 1.000 0.980
1f5/2 1.000 0.019 1f5/2 1.000 0.260
2p3/2 1.000 0.005 2p3/2 1.000 0.098
2p1/2 1.000 0.004 2p1/2 1.000 0.040
1g9/2 1.000 0.004 1g9/2 1.000 0.014

For the Ni isotopes the π1f7/2 orbit is completely occupied, i.e., in this case
the transition ν1f5/2 → π1f7/2 is blocked. The T = 0 pairing could only
have an effect on the π1g9/2(ν1g9/2)

−1 configuration, because the ν1g9/2 orbit
is not fully occupied for isotopes below 78Ni. However, it is true that when
this orbit is almost empty (70Ni, 72Ni) there is a large contribution from the
pairing interaction, but at the same time there is only a small number of
neutrons which can participate in the β-decay process. On the other hand,
when this orbit is almost full (74Ni, 76Ni), the contribution from the T = 0
pairing becomes negligible. In contrast to the iron isotopic chain, it was not
possible to obtain a single value of the T = 0 pairing strength parameter that
would provide a consistent description of the entire chain of nickel isotopes.
To reproduce the experimental half-lives, an extremely strong T = 0 pairing
would have to be used and this would cause the collapse of the PN-RQRPA
calculation. Because of the closed Z = 28 proton shell, the T = 0 pairing is
not effective in Ni isotopes and, therefore, the calculated β-decay half-lives,
shown in Fig. 3.2, overestimate the experimental data.

In this mass region the half-lives of zinc isotopes were also analyzed. In
Ref. [53] the measured half-lives of three zinc isotopes 76Zn, 78Zn, and 80Zn,
and of 82Ge, were used to adjust the T = 0 pairing strength. It was shown
that the experimental lifetimes can all be reproduced with a single value of the
T = 0 pairing strength, V0 = 230 MeV. In the present calculation the mea-
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Figure 3.2: Half-lives of nickel isotopes calculated with various interactions.
Experimental values taken from Ref. [60], except for 78Ni which is taken from
Ref. [58].

sured half-lives are only reproduced by using a much stronger T = 0 pairing
interaction. The effect that T = 0 pairing has on the β-decay probability is
illustrated in the example of the semi-magic nucleus 80Zn. In Table 3.1 the
ground-state occupation probabilities for the relevant single-particle levels are
included. It is important to note that, because of the T = 1 pairing, the occu-
pation probability of the π1f7/2 state is not equal to one. Besides π1f7/2, only
π1f5/2 has a sizeable occupation probability among the proton states. The
T = 0 pairing interaction produces a large contribution to the RQRPA ma-
trices for the following configurations: π1f5/2(ν1f5/2)

−1 and π1f7/2(ν1f5/2)
−1.

Because the transition ν1f5/2 → π1f7/2 is essentially blocked, the effect of
T = 0 pairing is much weaker than in the case of Fe isotopes. If the parameter
V0 is kept below ≈ 250 MeV, the T = 0 pairing has virtually no effect on
the calculated half-lives. In the interval between V0 = 0 MeV and V0 = 220
MeV the half-life decreases by just 10%. With a further increase of V0, how-
ever, the calculated half-life displays a steep decrease. The measured half-life
is reproduced for V0 ≈ 330 MeV. The corresponding distributions of neutron-
to-proton QRPA amplitudes for three values of the T = 0 pairing strength
(V0 = 0 MeV, V0 = 255 MeV, and V0 = 330 MeV) are shown in Table 3.2. As
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one would expect, in the absence of T = 0 pairing, the β-decay process is char-
acterized by two transitions. The lower one is dominated by the back spin-flip
transition ν2p1/2 → π2p3/2, whereas the higher component represents a mix-
ture of core-polarization transitions. Increasing the T = 0 pairing strength to
V0 = 255 MeV, two points are noted: (i) transitions built from the back spin-
flip configuration ν2p1/2 → π2p3/2 and the core-polarization configurations are
no longer well separated, and (ii) an additional transition appears, built dom-
inantly on the back spin-flip configuration ν1f5/2 → π1f7/2, which results in a
sudden reduction of the calculated half-life. Of course, this would not be pos-
sible if π1f7/2 was fully occupied. This was the case for the Ni isotopes, and
consequently their half-lives could not be improved by increasing the strength
of the T = 0 pairing. Since the T = 0 pairing has a strong effect on the
ν1f5/2 → π1f7/2 configuration, a further increase of its strength lowers the
energy of the corresponding transition. For V0 = 330 MeV only one transition
is found, predominantly based on the ν1f5/2 → π1f7/2 configuration.

3.5.2 N≈82 region

In the mass region around the doubly magic 132Sn, the β-decay half-lives of the
cadmium, tin, and tellurium isotopic chains have been calculated. In Fig. 3.4
the calculated half-lives of the Cd isotopes are plotted. The results correspond
to two calculations, with V0 = 0 and V0 = 225 MeV for the strength parameter
of the T = 0 pairing. As in the cases that have been considered in the previous
section, the calculated half-lives are more than an order of magnitude too long
when the T = 0 pairing is not included. With the pairing strength parameter
V0 = 225 MeV adjusted to reproduce the half-life of 130Cd, the PN-QRPA
calculation reproduces the experimental half-lives of the Cd isotopic chain.
With two holes in the π1g9/2 orbit, the situation in the cadmium chain is similar
to that of Fe isotopes (two holes in the π1f7/2 orbit). The β-decay process in
the Cd isotopes is dominated by the back spin-flip transition ν1g7/2 → π1g9/2.
Again, an increase of the T = 0 pairing strength partially compensates for the
fact that the difference between the ν1g7/2 and π1g9/2 single-particle energies
is too small, due to a relatively small effective mass.

For the Sn isotopes the π1g9/2 orbit is completely occupied and the transition
ν1g7/2 → π1g9/2 is blocked. A similar problem was already encountered for
the Ni isotopes. One would, therefore, expect that the calculated half-lives
of the Sn isotopes will overestimate the experimental values by at least an
order of magnitude, and furthermore that it will not be possible to improve
the results by simply increasing the T = 0 pairing strength. However, this
turns out to be true only for 132Sn. The model predicts that this isotope is
stable against β-decay, whereas the experimental half-life is T1/2 = 39.7 ± 0.5
s [60]. In Fig. 3.5 the calculated half-lives of the Sn isotopes are displayed, in
comparison with the available experimental data [60]. In contrast to 132Sn, the
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Table 3.2: β−-transitions in 80Zn for three values of the T = 0 pairing strength. The contribution (in percent) of a particular
configuration to the QRPA amplitude is included in parenthesis.

V0 = 0 MeV (T1/2 = 18.9 s) V0 = 255 MeV (T1/2 = 13.1 s) V0 = 330 MeV (T1/2 = 0.6 s)
Ef −Ei (MeV) Ef − Ei (MeV) Ef − Ei (MeV)

-3.088 g9/2 → g9/2 (12%) -3.271 f5/2 → f5/2 (11%) -5.273 f7/2 → f7/2 (5%)
p1/2 → p3/2 (80%) g9/2 → g9/2 (18%) f5/2 → f7/2 (71%)

p1/2 → p3/2 (60%)
-2.690 p3/2 → p3/2 (6%) -2.982 f5/2 → f5/2 (13%)

p1/2 → p3/2 (11%) g9/2 → g9/2 (16%)
f5/2 → f5/2 (22%) p1/2 → p3/2 (19%)
g9/2 → g9/2 (54%) p3/2 → f5/2 (47%)

-2.302 p1/2 → p1/2 (13%)
g9/2 → g9/2 (15%)
f5/2 → f7/2 (58%)
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Figure 3.3: Half-lives of zinc isotopes calculated with various interactions.
Open symbols denote values obtained without T = 0 residual interaction, while
full symbols denote values with additional interaction. Strength of the residual
pairing is V0 = 330 MeV for the DD-ME1∗ interaction, and V0 = 300 MeV for
the momentum-dependent D3C∗ interaction. Experimental values taken from
Ref. [60]. No experimental value is available for 82Zn, so an empirical value
was used.

theoretical half-lives of the heavier Sn isotopes show a pronounced dependence
on the T = 0 pairing strength. For V0 = 225 MeV the calculated half-lives are
only slightly longer than the experimental values. This is easily explained by
the fact that in tin isotopes beyond 132Sn neutrons begin to occupy the ν1h9/2

single-particle level, and this enables the back spin-flip transition ν1h9/2 →
π1h11/2. The occupation probabilities of the ν1h9/2 single-particle level for the
Sn and Te isotopes are included in Table 3.3. Because the neutron level ν1h9/2

has low occupancy, the T = 0 pairing produces a very strong effect on the
π1h11/2(ν1h9/2)

−1 configuration, and reduces the calculated half-lives to the
experimental values.

This effect is further illustrated in Fig. 3.6, where the calculated half-lives of
the Te isotopes are plotted, in comparison with available experimental data.
In this case, the choice V0 = 225 MeV results in half-lives that are even some-
what shorter than the experimental values. This is related to the fact that
the calculated energy spacing between the ν1h9/2 and π1h11/2 states in 132Sn
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Figure 3.4: Half-lives of cadmium isotopes calculated with various interactions.
Open symbols denote values obtained without T = 0 residual interaction, while
full symbols denote values with additional interaction. Strength of the residual
pairing is V0 = 225 MeV for the DD-ME1∗ interaction, and V0 = 235 MeV for
the momentum-dependent D3C∗ interaction. Experimental values taken from
Ref. [60].

is larger than the experimental value. A slightly lower value of the T = 0
pairing strength (V0 = 200 MeV) accurately reproduces the half-lives of the
Te isotopes.
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Figure 3.5: Half-lives of tin isotopes calculated with various interactions. Open
symbols denote values obtained without T = 0 residual interaction, while full
symbols denote values with additional interaction. Strength of the residual
pairing is V0 = 225 MeV for the DD-ME1∗ interaction, and V0 = 235 MeV for
the momentum-dependent D3C∗ interaction. Experimental values taken from
Ref. [60].

Table 3.3: Occupation probabilities of the ν1h9/2 single-particle state for the
ground-states of the Sn and Te isotopes.

Sn Te
A v2

ν1h9/2
A v2

ν1h9/2

134 0.024 136 0.035
136 0.054 138 0.077
138 0.092 140 0.129
142 0.142 142 0.192
144 0.203 144 0.263
146 0.271 146 0.339
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Figure 3.6: Half-lives of tellurium isotopes calculated with various interactions.
Open symbols denote values obtained without T = 0 residual interaction, while
full symbols denote values with additional interaction. Strength of the residual
pairing is V0 = 225 MeV for the DD-ME1∗ interaction, and V0 = 235 MeV for
the momentum-dependent D3C∗ interaction. Experimental values taken from
Ref. [60].
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Chapter 4

Nuclear semi-leptonic

weak-interaction processes

The latest theoretical and computational advances in nuclear structure mod-
eling have also had a strong impact on nuclear astrophysics. More and more
often calculations of stellar nucleosynthesis, nuclear aspects of supernova col-
lapse and explosion, and neutrino-induced reactions are based on microscopic
global predictions for the nuclear ingredients rather than on oversimplified
phenomenological approaches. The nuclear input for astrophysics calculations
necessitates the properties of thousands of nuclei far from stability, including
the characteristics of strong electromagnetic and weak interaction processes.
Most of these nuclei, especially on the neutron-rich side, are not accessible in
experiments and, therefore, many nuclear astrophysics calculations crucially
depend on accurate theoretical predictions for the nuclear masses, bulk prop-
erties, nuclear excitations, (n, γ) and (γ, n) rates, α- and β-decay half-lives,
fission probabilities, electron and neutrino capture rates, and so on.

A unified description of semileptonic weak interaction processes in nuclei, i.e.
the β-decay, charged-lepton capture and neutrino capture can be obtained in
close analogy to the theory of electron scattering. The conserved vector current
(CVC) theory equates half of the weak interaction matrix elements, those
coming from the vector current, with those measured in electron scattering.
Using the weak interaction Hamiltonian written in the current-current form,
one can obtain a general expression for the matrix element of the Hamiltonian
valid for all semi-leptonic processes. Reaction rate for a particular process then
follows from the Fermi Golden rule. To successfully combine the theoretical
description with a particular microscopic approach and extend it to regions of
unknown nuclei far from stability, it is necessary to perform extensive tests and
compare results with available data. Reliable prediction of weak interaction
rates, in particular, requires a fully consistent description of the structure of
the ground state and multipole excitations.

Calculated β-decay half-lives are very sensitive to single-particle structure
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of the ground-state, but due to small momentum transfer they can only test
excitations of lowest multipoles. Higher multipoles are excited in neutrino-
nucleus reactions in the low-energy range below 100 MeV, and these reactions
at low energies play an important role in many phenomena in nuclear and par-
ticle physics, as well as astrophysics. These reactions present extremely subtle
physical processes, not only because they involve the weak interaction but
also because they are very sensitive to the structure of nuclear ground states
and excitations, i.e., to the solution of the nuclear many-body problem that
includes the strong and electromagnetic interactions. The use of microscopic
nuclear structure models in a consistent theoretical framework is therefore es-
sential for a quantitative description of neutrino-nucleus reactions [7]. Detailed
predictions of neutrino-nucleus cross sections are crucial for the interpretation
of neutrino experiments and the detection of neutrinos produced in super-
nova explosions. Neutrino-nucleus reactions that occur in a type II supernova
could also contribute to the nucleosynthesis [3], but data on cross sections are
necessary for a more complete understanding of this process, as well as the
supernova dynamics.

Many more data is available for total muon capture rates. Muon capture on
stable nuclei has been studied in details since many years, both experimentally
and theoretically [6, 61]. In this process the momentum transfer is of the order
of the muon mass and, therefore, the calculation of total muon capture rates
presents an excellent test of models that are also used in studies of low-energy
neutrino-nucleus reactions.

4.1 Formalism of weak interaction processes

In the interaction representation, fermion fields take the following form

Ψ(x) =
1√
V

∑

kλ

(

akλu(kλ)eik·x + b+kλv(−kλ)e−ik·x
)

. (4.1)

In this expression a destroys a lepton, b+ creates an antilepton, and λ denotes
the helicity with respect to the accompanying momentum variable.

In weak interactions, massless leptons couple through the following two-
component fields

φ =
1

2
(1 + γ5)ψ. (4.2)

This expression implies that the lepton coupling terms in the weak Hamiltonian
take the following form

φ̄aOiφb =
1

4
ψ̄a (1 − γ5)Oi (1 + γ5)ψb. (4.3)

This expression vanishes for scalar, pseudoscalar and tensor couplings of the
form Oi = 1, γ5, σµν ; and in the case of vector and axial-vector interactions
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Oi = γµ, γµγ5 the coupling is unique

φ̄aOiφb =
1

4
ψ̄a (1 − γ5) γµ (1 + γ5)ψb =

1

2
ψ̄aγµ (1 + γ5)ψb. (4.4)

To include other leptons the lepton current in the Hamiltonian is generalized
to

j
(−)
λ (leptonic) = i

∑

l=e,µ,τ

ψ̄lγµ (1 + γ5)ψνl
, (4.5)

with the total current having both a hadronic and a leptonic part

J (−)
λ = Jλ(hadronic) + jλ. (4.6)

The adjoint of the above current describes weak processes where the charge is
raised

J (+)
λ ≡

(

J (−)+
1 ,J (−)+

2 ,J (−)+
3 ,+iJ (−)+

0

)

(4.7)

It is then an empirical fact that all charge-changing weak interactions can be
described through a universal current-current interaction of the currents in
Eqs. (4.6) and (4.7)

HW = − G√
2
J (+)

λ J (−)
λ , (4.8)

where G is the Fermi constant. It can be determined experimentally from
muon decay and is equal to

Gµ =
1.0267 · 10−5

m2
p

(4.9)

Using only Lorentz, parity and isospin invariance of the nuclear interaction,
a general form of the single-nucleon matrix elements can be obtained.

〈

p′
∣

∣J (−)
µ

∣

∣ p
〉

=
i

V
ū(p′) [F1γµ + F2σµνqν + iFSqµ] τ−u(p) (4.10)

〈

p′
∣

∣

∣
J

(−)
µ5

∣

∣

∣
p
〉

=
i

V
ū(p′) [FAγ5γµ − iFPγ5qµ − FTγ5σµνqν ] τ−u(p) (4.11)

where q ≡ p − p′, p2 = p′2 = −m2 and all the form factors are functions of
momentum transfer as Fi(q

2). The conserved vector current theory states that
the Lorentz vector part of the weak charge-changing current is obtained from
the other spherical isospin components of the same isovector operator that ap-
pears in the electromagnetic current. As a consequence, one can relate matrix
elements of the Lorentz vector part of the charge-changing weak currents to
those of the isovector part of the electromagnetic current. The CVC theory
provides relations between the weak and electromagnetic formfactors of the
nucleon,

F1,2 = F V
1,2 (4.12)
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with

F V
1 (0) = 1 (4.13)

2mF V
2 (0) = λp − λn = 3.706 (4.14)

where λp and λn are the proton and neutron anomalous magnetic moments,
respectively.

To examine the axial-vector part of the interaction, one must turn to pion
processes. There is a one-pion exchange process in the lepton-nucleon scat-
tering which produces a pole in the scattering amplitude. Evaluation of the
S-matrix gives the following form of the pseudoscalar form factor

FP = −
√

2gπFπ

q2 +m2
π

(4.15)

The value of the constant Fπ can be determined from pion decay process
π− → l− + ν̄l. The decay rate is given by

ω =
G2F 2

π

8π
m2

π

(

ml

mπ

)2(

1 − ml

mπ

)2

mπ. (4.16)

A comparison with experiment gives the value as

Fπ ≈ 0.92mπ (4.17)

The final form factor FA can be determined using the partially conserved
axial-vector current (PCAC) postulate which states

∂JV
λ5(x)

∂xλ

= O(m2
π). (4.18)

In the limit of mπ → 0 the current is fully conserved. Evaluating the single-
nucleon matrix element of the divergence of the axial-vector current and using
the results obtained in the pion processes, the Goldberger-Treiman relation is
obtained

−2mFA =
√

2gπFπ (4.19)

Combining Eqs. (4.15) and (4.19) provides

FP (q2) =
2mFA(0)

q2 +m2
π

, (4.20)

where FA(0) is determined from decay of the neutron as

FA(0) = −1.23 ± 0.01 (4.21)

All form factors except for the pseudoscaral one have the momentum depen-
dence of the nucleon charge form factor [62].

Finally, due to a theorem of Weinberg [63], if the currents have the same
transformation properties under time reversal, parity, charge conjugation and
isospin as the bare current then

FS = FT = 0. (4.22)
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4.2 Multipole analysis of the leptonic matrix

element

Starting from the weak interaction Hamiltonian written in a more convenient
form

HW = − G√
2

∫

d3xJµ(x)jleptonic
µ (x) (4.23)

its matrix element reads

〈f |HW | i〉 = − G√
2
lµ

∫

d3xe−iq·x 〈f |Jµ(x)| i〉 (4.24)

where

q = k2 ± k1. (4.25)

Here the + sign is for neutrino or charged lepton capture, and the − sign is
for decay. k2 and k1 are the momenta of the outgoing and incoming particles,
respectively, except for the case of decay where k2 is the momentum of the
particle and k1 momentum of the antiparticle. Here two assumptions are made

• target is well localized in space enabling partial integration on the tran-
sition matrix elements, neglecting the vanishing contribution at infinity,

• initial and final states of the target nucleus have definite angular mo-
mentum and parity.

By defining a complete orthonormal set of unit vectors with z-axis in the
direction of momentum transfer, any vector can be expanded into its spherical
components as

l =
∑

λ=0,±1

lλe
+
λ ⇒ lλ = eλ · l. (4.26)

Combining this result with the multipole expansion of the exponential func-
tion (κ = |q|)

eiq·x =

∞
∑

J=0

√

4π(2J + 1)jJ (κx)YJ0(Ωx), (4.27)

the expansion

eqλe
iq·x = − i

κ

∞
∑

J=0

√

4π(2J + 1)iJ∇ (jJ(κx)YJ0(Ωx)) , λ = 0 (4.28)

= −
∞
∑

J≥1

√

2π(2J + 1)iJ
[

λjJ(κx)Yλ
JJ1 +

1

κ
∇×

(

jJ(κx)Yλ
JJ1

)

]

, λ = ±1
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is obtained. Defining the Coulomb, longitudinal, transverse electric and trans-
verse magnetic multipole tensor operators by

MJM(κ) ≡ MJM +M5
JM =

∫

d3x [jJ (κx)YJM(Ωx)]J0(x), (4.29)

LJM(κ) ≡ LJM + L5
JM =

i

κ

∫

d3x {∇ [jJ(κx)YJM(Ωx)]} · J (x), (4.30)

T el
JM(κ) ≡ T el

JM + T el,5
JM =

1

κ

∫

d3x
[

∇× jJ(κx)rYM
JJ1(Ωx)

]

· J (x),(4.31)

T mag
JM (κ) ≡ Tmag

JM + Tmag,5
JM =

∫

d3x
[

jJ(κx)rYM
JJ1(Ωx)

]

· J (x). (4.32)

The index “5” denotes terms arising from the axial-vector part of the current.
Using these operators the matrix element of the Hamiltonian can be expressed
as

〈f |HW | i〉 = − G√
2

〈

f

∣

∣

∣

∣

∣

{

−
∑

J≥1

√

2π(2J + 1)(−i)J
∑

λ=±1

lλ
[

λT mag
J−λ (κ) + T el

J−λ(κ)
]

+
∑

J≥0

√

4π(2J + 1)(−i)J [l3LJ0(κ) − l0MJ0(κ)]

}∣

∣

∣

∣

∣

i

〉

. (4.33)

Employing the Wigner-Eckart theorem, summing over final target states and
averaging over initial states, and using the relation

∑

λ=±1

lλl
∗
λ |a + λb|2 =

(

|a|2 + |b|2
)2

(l · l∗ − l3l
∗
3) − i (l × l∗)3 2Re a∗b (4.34)

a general expression for the matrix element of the Hamiltonian is obtained
valid for all semileptonic nuclear processes

1

2Ji + 1

∑

Mi,Mf

|〈f |HW | i〉|2 =
G2

2

4π

2Ji + 1

×
{

∑

J≥1

[

1

2
(l · l∗ − l3l

∗
3)
(

|〈Jf ‖T mag
J ‖ Ji〉|2 +

∣

∣

〈

Jf

∥

∥T el
J

∥

∥ Ji

〉∣

∣

2
)

− i

2
(l × l∗)3

(

2Re 〈Jf ‖T mag
J ‖ Ji〉 〈Jf ‖T mag

J ‖ Ji〉∗
)

]

+
∑

J≥0

[

l3l
∗
3 |〈Jf ‖LJ‖ Ji〉|2 + l0l

∗
0 |〈Jf ‖MJ‖ Ji〉|2

− 2Re
(

l3l
∗
0 〈Jf ‖LJ‖ Ji〉 〈Jf ‖MJ‖ Ji〉∗

)

]

}

(4.35)
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Table 4.1: Lepton traces obtained from lepton matrix elements lµ.

Summand General result1 ERL (|β| → 1)
1
2
(l · l∗ − l3l

∗
3) 1 − (ν̂ · q̂) (β · q̂)

q2
µ

q2 cos2 ϑ
2

+ 2 sin2 ϑ
2

l0l
∗
0 1 + ν̂ · β 2 cos2 ϑ

2

l3l
∗
3 1 − ν̂ · β + 2 (ν̂ · q̂) (β · q̂) 2

q2
0

q2 cos2 ϑ
2

−l3l∗0 −q̂ · (ν̂ + β) −2 q0

|q| cos2 ϑ
2

− i
2
(l × l∗)3 −S1q̂ · (ν̂ − β) 2S1S3

|q| sin ϑ
2

√

q2
µ cos2 ϑ

2
+ q2 sin2 ϑ

2

Table 4.2: Sign factors for weak processes used in Table 4.1.

Process S1 S3

Neutrino reaction -1 +1
Antineutrino reaction +1 +1

Lepton capture +1 -1
β−-decay -1 sgn (ǫ− ν)
β+-decay +1 sgn (ǫ− ν)

To obtain the reaction rates of semileptonic weak processes, a sum over lepton
spins is performed. The results of this summation are given in Table 4.1.
The sign factors S1 and S3 that appear in the lepton traces are specific to a
particular process, and are given in Table 4.2.

To make use of this relation, an actual form of the reduced matrix elements
of the multipole operators is required. A derivation is given for the case where
the nuclear current operator is taken to be the sum of contributions of in-
dividual nucleons. In the approximation that nucleons in the target move
nonrelativistically, the four-component Dirac wave function reads

u(p, λ) ≈
(

χλ
σ · p
2m

χλ

)

(4.36)

where χλ are two-component Pauli spinors, and the component of the σ op-
erators are Pauli matrices. Substituting this wave function into expressions
(4.10) and (4.11) and evaluating the result to order 1/m provides

〈

p′, λ′, ρ′
∣

∣J (−)
µ (0)

∣

∣pλρ
〉

=
1

V
χ+

λ′η
+
ρ′

[

Mµ − qµ

(

FP
σ · q
2m

)]

τ−ηρχλ, (4.37)
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where the time-like and space-like components of the operator Mµ are

M0 = F1 + σ ·
[(

FA
2p − q

2m

)]

, (4.38)

M = FAσ − (F1 + 2mF2)
iσ × q

2m
+ F1

(

2p − q

2m

)

. (4.39)

This single-particle operator can be broken down into seven fundamental op-
erators [64]

MM
J (x) = jJ (κx)YJM (Ωx) , (4.40)

∆JM(x) = MM
JJ(x) · 1

κ
∇, (4.41)

∆′
JM(x) = −

[

1

κ
∇× MM

JJ(x)

]

· 1

κ
∇, (4.42)

ΣJM(x) = MM
JJ(x) · σ, (4.43)

Σ′
JM(x) = −i

[

1

κ
∇× MM

JJ(x)

]

· σ, (4.44)

Σ′′
JM(x) =

[

1

κ
∇MM

J (x)

]

· σ, (4.45)

ΩJM(x) = MM
J (x)σ · 1

κ
∇, (4.46)

where MM
JL(x) = jL(κx)Y M

JL1 (Ωx), and Y M
JL1 are the vector spherical har-

monics. Reduced single-particle matrix elements in the spherical harmonic
oscillator basis are given in Ref. [61].

Using these seven basic operators, the expressions for the vector and axial-
vector parts of the multipole operators in Eqs. (4.29) – (4.32) can be written
down as

MJM(x) = F V
1 M

M
J (x), (4.47)

M5
JM(x) = −i κ

m

[

FAΩJM(x) +
1

2
(FA − λmFp) Σ′′

JM(x)

]

, (4.48)

LJM(x) =
q0
κ
F V

1 MJM(x), (4.49)

L5
JM(x) = i

[

FA − 1

2
λ′
( κ

m

)2

mFP

]

Σ′′
JM (x), (4.50)

T el
JM(x) =

κ

m

[

F V
1 ∆′

JM(x) +
1

2
µV ΣJM(x)

]

, (4.51)

T el,5
JM(x) = iFAΣ′

JM(x), (4.52)

Tmag
JM (x) = −i κ

m

[

F V
1 ∆JM(x) − 1

2
µV Σ′

JM (x)

]

, (4.53)

Tmag,5
JM (x) = FAΣJM(x). (4.54)
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Here, the parameters λ and λ′ differ depending on the process in question. For
neutrino processes λ = −q0/m and λ′ = 1, for muon capture λ = mµ/m and
λ′ = 0 and for all electron processes both λ and λ′ are equal to 0.

Having derived the most general expression for the matrix element of the
weak interaction Hamiltonian, including summation over final spins and aver-
aging over initial spins, particular processes can be examined.

4.3 Muon capture

The capture of a negative muon from the atomic 1s orbit on a nucleus (Z,N)

µ− + (Z,N) −→ νµ + (Z − 1, N + 1)∗ , (4.55)

presents a simple semi-leptonic reaction that proceeds via the charged current
of the weak interaction. Detailed expressions for the reaction rates and the
transition matrix elements can be found in Refs. [64, 61, 5]. The capture rate
reads

ωfi =
Ων2

2π

∑

lepton spins

1

2Ji + 1

∑

Mi

∑

Mf

|〈f | ĤW |i〉|2 , (4.56)

where Ω denotes the quantization volume and ν is the muon neutrino energy.
The expression for the muon capture rate is given by

ωfi =
2G2ν2

(1 + ν/MT )

1

2Ji + 1

{

∞
∑

J=0

∣

∣

∣

〈

Jf

∥

∥

∥
φ1s

(

M̂J − L̂J

)∥

∥

∥
Ji

〉∣

∣

∣

2

(4.57)

+
∞
∑

J=1

∣

∣

∣

〈

Jf

∥

∥

∥
φ1s

(

T̂ el
J − T̂ mag

J

)∥

∥

∥
Ji

〉∣

∣

∣

2
}

where G is the weak coupling constant, the phase-space factor (1 + ν/MT )−1

accounts for the nuclear recoil, and MT is the mass of the target nucleus. The
nuclear transition matrix elements between the initial state |Ji〉 and final state
|Jf〉, correspond to the charge M̂J , longitudinal L̂J , transverse electric T̂ EL

J ,

and transverse magnetic T̂ MAG
J multipole operators. The neutrino energy is

determined by the energy conservation relation

mµ − ǫb + Ei = Ef + νf , (4.58)

where ǫb is the binding energy of the muonic atom.
For each nucleus the muon wave function and binding energy are calculated

as solutions of the Dirac equation with the Coulomb potential determined
by the self-consistent ground-state charge density. However, while the RHB
single-nucleon equations are solved by expanding nucleon spinors and meson
fields in terms of eigenfunctions of a spherically symmetric harmonic oscillator
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Figure 4.1: Square of the wave function of a muon in a 1s state for 16O, 40Ca,
120Sn and 208Pb. Dashed lines denote wave functions of a muon in a potential
of pointlike charge Z, while the full line denotes wave functions obtained by
performing the full finite element method calculation for the self-consistent
Coulomb potential. Shaded area indicates charge density distribution in a
particular nucleus scaled by an arbitrary factor.

potential, the same method could not be used for the muon wave functions.
The reason, of course, is that the muon wave functions extend far beyond
the surface of the nucleus and, even using a large number of oscillator shells,
solutions expressed in terms of harmonic oscillator basis functions do not con-
verge. The Dirac equation for the muon is therefore solved in coordinate space
using the method of finite elements with B-spline shape functions [65, 66].
As an illustration, in Fig. 4.1 the square of the 1s muon wave functions for
16O, 40Ca, 120Sn and 208Pb is plotted. The solutions that correspond to self-
consistent ground-state charge densities are compared with eigenfunctions of
the Coulomb potential for the corresponding point-charge Z. For light nuclei
the radial dependence of the 1s muon wave function is not very different from
that of the point-charge Coulomb potential. With the increase of Z the muon
is pulled into the nuclear Coulomb potential, and thus the magnitude of the
1s density inside the nucleus is reduced with respect to the point-charge value.
To test our calculation of muon orbitals in the nuclear Coulomb potential, in
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Table 4.3: Calculated muon transition energies in tin isotopes (in units of keV),
compared with available data [67].

1p1/2 − 1s1/2 1p3/2 − 1s1/2

exp. calc. exp. calc.
112Sn 3432 3439 3478 3485
114Sn 3426 3432 3471 3478
116Sn 3420 3427 3465 3472
118Sn 3421 3466
120Sn 3408 3415 3454 3460
122Sn 3409 3454
124Sn 3400 3404 3445 3450

Table 4.4: Calculated muon transition energies in 208Pb (in units of keV), in
comparison with experimental values [68].

208Pb exp. calc.
1p3/2 − 1s1/2 5963 5956
1p1/2 − 1s1/2 5778 5773
1d3/2 − 1p1/2 2642 2633
1d5/2 − 1p3/2 2501 2493
1d3/2 − 1p3/2 2458 2450

Tables 4.3 and 4.4 the muon transition energies in Sn isotopes and in 208Pb, re-
spectively, are compared with available data [67, 68]. The calculated transition
energies are in good agreement with experimental values.

The effect of the finite distribution of ground-state charge densities on the
calculated muon capture rates is illustrated in Fig. 4.2. For a large set of
nuclei from 12C to 244Pu, the ratio between calculated and experimental muon
capture rates is plotted. This ratio is ≤ 1.5 for all nuclei when the muon 1s
wave functions are determined by self-consistent ground-state charge densities,
whereas for point-charge Coulomb potentials one notes a distinct increase with
Z, and ωcalc./ωexp. ≥ 4 for the heaviest systems.

The muon capture rates shown in Fig. 4.2 are calculated with the standard
set of free nucleon weak form factors, i.e. the calculation does not include
any in-medium quenching of the corresponding strength functions. Even with
muon wave functions determined self-consistently by finite-charge densities, the
resulting capture rates are larger than the corresponding experimental values
by a factor ≈ 1.2 − 1.4. This is in contrast to the results of Ref. [69], where
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Figure 4.2: Ratio of the calculated and experimental total muon capture rates,
as function of the proton number Z. The theoretical values are calculated with
muon 1s wave functions determined by self-consistent ground-state charge den-
sities (filled circle symbols), and by the corresponding point-charge Coulomb
potentials (squares).

the experimental values have been reproduced to better than 15% accuracy,
using the free-nucleon weak form factors and residual interactions with a mild
A dependency. In fact, it was shown that the calculated rates for the same
residual interactions would be significantly below the data if the in-medium
quenching of the axial-vector coupling constant is employed to other than the
true Gamow-Teller (GT) amplitudes. Consequently, the calculations reported
in Ref. [69] were performed with quenching only the GT part of the transition
strength by a common factor (0.8)2 = 0.64. It was concluded, however, that
there is actually no need to apply any quenching to operators that contribute to
the muon capture process, especially those involving single-nucleon transitions
between major oscillator shells.

As already emphasized in the Introduction, although both calculations are
based on the RPA framework, there are important differences between the
model of Ref. [69], and the RHB+RQRPA approach employed in the present
study. The main difference is probably the fact that the present calculation is
fully consistent: for all nuclei both the basis of single-nucleon states and the
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Figure 4.3: Ratio of the calculated and experimental total muon capture rates,
as function of the proton number Z. Circles correspond to rates calculated with
the free-nucleon weak form factors [62], and diamonds denote values obtained
by quenching the free-nucleon axial-vector coupling constant gA = 1.262 to
gA = 1.135 for all operators, i.e. in all multipole channels.

multipole response are calculated using the same effective interaction, whereas
in Ref. [69] the phenomenological Woods-Saxon potential was adjusted to in-
dividual nuclei and the strength of the residual Landau-Migdal force had a
mild A-dependence.

In Fig. 4.3 the ratios of the theoretical and experimental total muon cap-
ture rates are compared for two sets of weak form factors. First, the rates
calculated with the free nucleon weak form factors [62] (circles), and already
shown in Fig. 4.2. The lower rates, denoted by diamonds, are calculated by
applying the same quenching gA = 1.262 → gA = 1.135 to all axial operators,
i.e. gA is reduced by 10% in all multipole channels. In the latter case the level
of agreement is very good, with the mean deviation between theoretical and
experimental values of only 6%. The factor 0.9 with which the free-nucleon
gA is multiplied is chosen in such a way to minimize the deviation from ex-
perimental values for spherical, closed-shell medium-heavy and heavy nuclei.
On the average the results are slightly better than those obtained in Ref. [69]
(cf. Fig. 2 of [69]). Note, however, that in the calculation of Zinner, Lan-
ganke and Vogel [69] only the true Gamow-Teller 0~ω transition strength was
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Figure 4.4: Relative contributions of different multipole transitions to the RHB
plus RQRPA total muon capture rates in 16O, 40Ca, 120Sn and 208Pb.

quenched, rather than the total strength in the 1+ channel. In the present
study considerably better results are obtained when the quenched value of the
axial-vector coupling constants is used for all multipole operators. The reason
to consider quenching the strength in all multipole channels, rather than just
for the GT is, of course, that the axial form factor appears in all four opera-
tors Eqs. (4.29 – (4.32) that induce transitions between the initial and final
states, irrespective of their multipolarity. Even more importantly, only a rela-
tively small contribution to the total capture rates actually comes from the GT
channel 1+. This is illustrated in Fig. 4.4, where the relative contributions of
different multipole transitions to the RHB plus RQRPA muon capture rates in
16O, 40Ca, 120Sn and 208Pb are displayed. For the two lighter N = Z nuclei the
dominant multipole transitions are λπ = 1− and λπ = 2− (spin-dipole). For
the two heavier nuclei there are also significant contributions of the λπ = 1+

and λπ = 2+, especially for 208Pb and for other heavy nuclei. Note that in
heavy nuclei the λπ = 1+ multipole represents 2~ω transitions, rather than the
0~ω Gamow-Teller transitions.

Returning to Fig. 4.3, with a 10% quenching of the free-nucleon axial-vector
coupling constant gA, for medium-heavy and heavy nuclei the calculated cap-
ture rates are still slightly larger than the corresponding experimental values,
with the ratio ωcalc./ωexp. typically around 1.1, whereas for several lighter nuclei
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considered here this ratio is actually less than 1 (cf. also Table 4.5). Overall the
best results, with ωcalc./ωexp. ≈ 1, are obtained near closed shells. The charac-
teristic arches between closed shells can probably be attributed to deformation
effects, not taken into account in our RHB+RQRPA model. In addition to the
DD-ME2 interaction, a full calculation of total capture rates from 12C to 244Pu
was also carried out, using the density- and momentum-dependent relativistic
effective interaction D3C*. In the study of β-decay half-lives of Ref. [70], this
interaction was constructed with the aim to enhance the effective (Landau) nu-
cleon mass, and thus improve the RQRPA description of β-decay rates. When
D3C* is used to calculate muon capture rates, some improvement is obtained
only locally, for certain regions of Z, whereas in other regions (Z ≈ 50 and
Z ≥ 82) the results are not as good as those obtained with DD-ME2. The
overall quality of the agreement between theoretical and experimental capture
rates is slightly better with DD-ME2.

The calculated total muon capture rates for natural elements and individual
isotopes are also collected in Table 4.5, and compared with available data
[71]. In particular, the calculation nicely reproduces the empirical isotopic
dependence of the capture rates [76], i.e. for a given proton number Z the rates
decrease with increasing neutron number, because of the gradual blocking of
available neutron levels. The isotopic trend is also illustrated in Fig. 4.5, where
the experimental and theoretical total muon capture rates on Ca, Cr and Ni
nuclei are plotted. The latter correspond to the quenching gA = 1.262 → gA =
1.135 for all multipole operators.

4.4 Neutrino capture

In the present section the charged-current neutrino-nucleus reactions are con-
sidered:

νl +Z XN →Z+1 X
∗
N−1 + l− , (4.59)

where l denotes the charged lepton (electron, muon). Detailed expressions
for the reaction rates and the transition matrix elements can be found in
Refs. [64, 61]. The charged-current neutrino-nucleus cross section reads

(

dσν

dΩ

)

=
1

(2π)2
V 2plEl

∑

lepton spins

1

2Ji + 1

∑

MiMf

|〈f |ĤW |i〉|2 , (4.60)

where pl and El are the momentum and energy of the outgoing lepton, respec-
tively. In the extreme relativistic limit— (ERL), in which the energy of the
outgoing lepton is considered much larger than its rest mass, the differential
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Table 4.5: Experimental and calculated muon capture rates for natural ele-
ments and individual isotopes. The theoretical rates are calculated using the
fully consistent RHB plus RQRPA framework with the DD-ME2 universal
effective interaction, and with the quenching of the axial-vector coupling con-
stant gA = 1.262 → gA = 1.135 for all multipole operators. Values for naturally
occuring elements (element symbol with no superscript) are weighted averages
of capture rates on individual isotopes, using their natural abundances. Ex-
perimental values are from Ref. [71], unless otherwise stated. All rates are in
units of 106 s−1.

Nucleus Exp. Calc. Nucleus Exp. Calc. Nucleus Exp. Calc.
12C 0.039 0.032 94Zr 8.792 Nd 12.50 13.861
16O 0.103 0.065 Zr 8.660 9.619 148Sm 15.425
18O 0.088 0.057 92Mo 12.374 150Sm 14.132
20Ne 0.204 0.237 94Mo 12.001 152Sm 13.451
24Mg 0.484 0.506 96Mo 10.933 154Sm 12.563
28Si 0.871 0.789 98Mo 9.804 Sm 12.22 13.554
32S 1.352 1.485 Mo 9.614 10.995 156Gd 14.785

40Ar 1.355 1.368 104Pd 13.182 158Gd 13.573
40Ca 2.557 2.340 106Pd 11.912 160Gd 12.460
44Ca 1.793 1.851 108Pd 10.795 Gd 11.82 13.580
48Ca 1.214a 1.163 110Pd 9.821 162Dy 14.917
48Ti 2.590 2.544 Pd 10.00 11.391 164Dy 13.540
50Cr 3.825 4.001 110Cd 12.960 Dy 12.29 14.194
52Cr 3.452 3.419 112Cd 11.800 166Er 16.129
54Cr 3.057 3.065 114Cd 10.746 168Er 14.949
Cr 3.472 3.483 116Cd 9.829 170Er 13.912

56Fe 4.411 4.723 Cd 10.61 11.381 Er 13.04 15.270
58Ni 6.110 6.556 116Sn 12.395 178Hf 16.434
60Ni 5.560 5.610 118Sn 11.369 180Hf 15.276
62Ni 4.720 4.701 120Sn 10.486 Hf 13.03 15.783
Ni 5.932 6.234 122Sn 9.645 182W 17.259

64Zn 6.862 124Sn 8.837 184W 15.938
66Zn 5.809 Sn 10.44 10.923 186W 14.807
68Zn 4.935 126Te 10.652 W 12.36 15.971
Zn 5.834 6.174 128Te 9.830 198Hg 17.369

70Ge 6.923 130Te 9.068 200Hg 16.227
72Ge 5.970 Te 9.270 9.706 202Hg 15.205
74Ge 5.519 132Xe 9.4b 10.631 204Hg 13.993
Ge 5.569 6.011 136Xe 8.6b 8.625 Hg 12.74 15.733

78Se 6.644 136Ba 11.461 206Pb 15.717
80Se 5.796 138Ba 10.127 208Pb 13.718
82Se 4.935 Ba 9.940 10.259 Pb 13.45 14.348
Se 5.681 5.950 140Ce 11.888 232Th 12.56 13.092

86Sr 8.885 142Ce 12.142 234U 13.79 14.231
88Sr 7.393 Ce 11.60 11.917 236U 13.09c 13.490
Sr 7.020 7.553 142Nd 14.043 238U 12.57c 12.872

90Zr 9.874 144Nd 14.288 242Pu 12.90 13.554
92Zr 9.694 146Nd 12.981 244Pu 12.40d 12.887

a From Ref. [72].
b From Ref. [73].
c From Ref. [74].
d From Ref. [75].
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Figure 4.5: Total muon capture rates on Ca, Cr and Ni isotopes. Experimental
rates (filled symbols) are compared to theoretical values (empty symbols),
calculated using the fully consistent RHB plus RQRPA framework with the
DD-ME2 universal effective interaction, and with the quenching of the axial-
vector coupling constant gA = 1.262 → gA = 1.135 for all multipole operators.

neutrino-nucleus cross section takes the form
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,

where GF is the Fermi constant for the weak interaction, θc is the Cabbibo’s
angle, ϑ denotes the angle between the incoming and outgoing leptons, the
energy of the lepton in the final state is El, and the 4-momentum transfer
is q ≡ (q0, q). The nuclear transition matrix elements between the initial
state |Ji〉 and final state |Jf〉, correspond to the charge M̂J , longitudinal L̂J ,

transverse electric T̂ el
J , and transverse magnetic T̂ mag

J multipole operators.
The inclusive cross sections, that sum the contributions from transitions to
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all possible final states, are given as functions of neutrino energy, and can be
averaged over the experimental neutrino flux when available, e.g. from the
decay at rest of µ+, and the decay in flight of π+ [77, 78, 79, 80, 81]. The flux-
averaged cross sections provide a crucial test for the validity of the theoretical
approach used for modeling neutrino-nucleus reactions.

For charged-current reactions the cross section Eq. (4.60) must be corrected
for the distortion of the outgoing lepton wave function by the Coulomb field
of the daughter nucleus. In order to be able to compare present results with
previous studies [82, 83], the same prescription for the Coulomb correction is
used. The cross section can either be multiplied by a Fermi function obtained
from the numerical solution of the Dirac equation for an extended nuclear
charge distribution [83] or, at higher energies, the effect of the Coulomb field
can be described by the effective momentum approximation (EMA) [84], in
which the lepton momentum pl and energy El are modified as

peff
l =

√

Eeff
l −m2

l (4.62)

Eeff
l = El − VC(0), (4.63)

where V eff
C is the effective Coulomb potential, the nuclear charge radius is de-

noted by rc, and ml is the mass of the outgoing lepton. In a recent study using
exact Dirac wave functions, it has been shown that an accurate approximation
for the effective electron momenta is obtained by using the mean value of the
Coulomb potential; V eff

C = 4VC(0)/5, where VC(0) = −3Zα/(2rc) corresponds
to the electrostatic potential evaluated at the center of the nucleus [85]. In
calculations with EMA the original lepton momentum pl and energy El appear-
ing in the expression for the cross section, are replaced by the above effective
quantities.

The results of model calculations can be compared with available data by
averaging the cross section over the neutrino flux f(Eν), which depends on the
specific neutrino source

〈σν〉 =

∫

dEνσν(Eν)f(Eν)
∫

dE ′
νf(E ′

ν)
. (4.64)

For νe the Michel flux from the decay at rest (DAR) of µ+ is used [81],

f(Eνe) =
96E2

νe

m4
µ

(mµ − 2Eνe) , (4.65)

whereas for νµ the polynomial fit to the experimental flux obtained from the
decay in flight (DIF) of π+ [86] is employed.

In Fig. 4.6 the calculated inclusive cross sections are plotted up to 100 MeV
neutrino energy for three reactions including also heavier nuclei: 16O(νe, e

−)16F,
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Figure 4.6: Inclusive cross sections for the 16O(νe, e
−)16F, 56Fe(νe, e

−)56Co,
and 208Pb(νe, e

−)208Bi reactions. The RHB plus PN-RQRPA(DD-ME2) results
are compared with those obtained in the QRPA with the Skyrme interaction
SIII [87] (full symbols) and with a hybrid model [88] (open symbols).

56Fe(νe, e
−)56Co, and 208Pb(νe, e

−)208Bi. The results of the RHB plus PN-
RQRPA calculations are compared with those of a very recent analysis per-
formed with the nonrelativistic QRPA and using the Skyrme interaction SIII
[87]. The pronounced enhancement of cross sections for neutrino reactions on
heavier nuclei is noticeable: from 16O to 208Pb the reaction cross sections in-
crease by more than two orders of magnitude. For the reaction on 208Pb the
present results are in excellent agreement with the QRPA - SIII cross sections
[87] at all neutrino energies. This is also the case for the reactions on 16O and
56Fe at neutrino energies above 40 MeV, whereas at lower energies the RHB
plus RQRPA cross sections appear somewhat below the QRPA results.

In Table 4.6 various theoretical results of flux-averaged cross sections for
the electron neutrino reactions with 16O, 56Fe, and 208Pb target nuclei are
compared. For the neutrino flux the DAR spectrum Eq. (4.65) is used, and
values obtained with the shell model [89], the tensor model [90], Tamm-
Dancoff [91], and various RPA-based calculations are included. For the 16O
target, the present PN-RQRPA(DD-ME2) cross section agrees with the shell
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Table 4.6: Flux-averaged cross sections for the νe reaction on 16O, 56Fe, and
208Pb target nuclei. Values denoted with a were obtained without any quench-
ing of the axial-vector coupling constant (gA = −1.262), while values denoted
with b were obtained using a quenching factor of Q = 0.8 (gA = −1.0).

16O(νe, e
−)16F 56Fe(νe, e

−)56Co 208Pb(νe, e
−)208Bi

〈σ〉(10−42cm2) 〈σ〉(10−42cm2) 〈σ〉(10−42cm2)

SM(0~ω ×0.64) [89] 10.8
TM [90] 214
TDA(SKIII) [91] 2954,3204
SM + SGII [92] 269
RPA [93] 14.55 277 2643
CRPA(WS+LM) [88] 240 3620
(Q)RPA(SIII,SGII) 16.90,17.20 [94] 352 [87] 4439 [95]
PN-RQRPA(DD-ME2)a 8.825 473 4848
PN-RQRPA(DD-ME2)b 6.090 341 3284

Exp.(KARMEN) [79, 88] 256±108±43

model and (Q)RPA results. For heavier targets the differences between vari-
ous calculations are more pronounced. Particularly important is the reaction
56Fe(νe, e

−)56Co, because it is the only case in which data are available for
a medium-heavy target nucleus [79, 88]. The two self-consistent calculations:
the QRPA [87] and the present RHB plus PN-RQRPA, which do not require
any additional adjustments of the model parameters to the specific target
nucleus, predict values for the cross section: 352×10−42cm2(QRPA [87]) and
341×10−42cm2(PN-RQRPA) which are within the uncertainties of the experi-
mental result (256±108±43)×10−42cm2.

Obviously various theoretical approaches differ significantly in the predicted
neutrino-nucleus cross sections, and this will require more detailed studies
of the underlying nuclear structure that contributes to the neutrino reaction
rates. On the other hand, the only data for a medium-heavy target nucleus
are from the KARMEN collaboration [79], and this result has not yet been
confirmed by independent measurement. One hopes that future experiments
will provide additional constraints for theoretical models that are used in the
description of weak interaction rates. At the same time the nuclear struc-
ture input for neutrino-nucleus cross sections must be further analyzed, and
checked by improving the description of nuclear ground-state properties and
spin-isospin excitations relevant for the calculation of the reaction rates.

The contribution of different multipole transitions to the cross section for
the reaction 56Fe(νe, e

−)56Co, at increasing neutrino energies, is illustrated in
Fig. 4.7. The partial contributions to the total cross section of multipoles
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Figure 4.7: Inclusive cross sections for the 56Fe(νe, e
−)56Co reaction. Positive

parity multipoles are denoted by full lines, while negative parity transitions
are denoted by dashed lines.

from J = 0± to J = 3± are displayed. At Eνe = 20 MeV the reaction is domi-
nated by transitions to the IAS and GTR. At higher energies, however, other
multipolarities start to play an important role and one notices, in particular,
the dominant contribution of the 1− transitions at Eνe=60 and 80 MeV. This
distribution of multipole transitions, calculated in the RHB plus PN-RQRPA
model, is similar to the one obtained in the QRPA with Skyrme effective inter-
actions [87]. The differences in the contributions of higher multipoles can be
attributed to the different effective interactions employed in the two models.

Using the decay-at-rest (DAR) neutrino spectrum, cross sections have been
averaged for each multipole with results compared to hybrid model calcula-
tion [96] in Table 4.7. Maximum neutrino energy in the DAR spectrum is
52.8 MeV, making these averaged cross sections sensitive only to relatively
low energies. The expected result is that dominating contribution comes from
Gamow-Teller channel, with a noticeable contribution of allowed 0+ and for-
bidden 1− and 2− excitations. Both theoretical studies reproduce this struc-
ture. Main difference occurs in the Gamow-Teller channel where the relativistic
model predicts a cross section which is twice as large as the hybrid model pre-
diction. 1− and 2− transitions calculated using the DD-ME2 interaction are
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Table 4.7: Flux-averaged cross sections of each multipole transition for the 56Fe
(νe, e

−) 56Co reaction compared to a hybrid shell model + CRPA calculation.
Averaged cross sections were obtained using a quenching factor of Q = 0.8
(gA = −1.0). All cross sections given in units of 10−42 cm2.

Jπ Hybrid model [96] DD-ME2
0+ 52.7 48.0
0− 0.4 0.2
1+ 112.1 244.9
1− 29.4 16.6
2+ 4.1 4.2
2− 35.0 21.8
3+ 4.2 4.2
3− 0.2 0.1

approximately 40% smaller than those obtained with the hybrid model. This
occurs due to quenching of the axial-vector coupling constant for all multipoles
equally in the relativistic model, as opposed to quenching applied only in the
Gamow-Teller channel in the hybrid model.

An important application of microscopic models of neutrino-nucleus reac-
tions is the calculation of cross sections for supernova neutrinos. Accurate
modeling of reaction rates on nuclei that can be used as targets for the su-
pernova neutrino detectors is, of course, essential for studies of supernova
dynamics and, in particular, of weak interaction processes which determine
the evolution of a supernova explosion. The supernova neutrino flux is usually
described by the Fermi-Dirac spectrum:

f(Eν) =
1

T 3

E2
ν

exp [(Eν/T ) − α] + 1
. (4.66)

At typical supernova neutrino energies one expects the total cross section for
the charged current reaction (νe, e

−) to be dominated by the allowed transitions
to the IAS and the Gamow-Teller resonance states in the daughter nucleus. In
Fig. 4.9 the flux-averaged cross sections for the reaction 56Fe(νe, e

−)56Co are
displayed, evaluated at different temperatures in the interval T = 2−10 MeV,
and for the chemical potential α=0. The results are in good agreement with
those obtained in the shell-model calculation of Ref. [92, 97], particularly at
higher temperatures. This is a very interesting result, because the two models
are based on entirely different concepts, and use different effective interactions.
An important advantage of the present approach, however, is that it can easily
be extended to heavier nuclei and to systems far from stability, and therefore
also applied in the description of the r-process nucleosynthesis.
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Figure 4.8: Supernova neutrino fluxes for temperatures ranging from T = 4
MeV to T = 10 MeV, α = 0.

The model has also been tested in the case of the heavy target: 208Pb(νe, e
−)208Bi.

For the same neutrino flux as in the previous example, the corresponding cross
sections are shown in Fig. 4.10 and compared, at T = 6, 8 and 10 MeV, with
the results from Refs. [88, 95, 99]. Since at higher temperatures the neutrino
flux extends toward higher neutrino energies, the calculated cross sections dis-
play a pronounced enhancement with temperature. In comparison with the
RPA-based results from Refs. [95, 88], good agreement is obtained at all tem-
peratures. Note that the calculation of Ref. [99], which includes the IAS,
the GT, and the first-forbidden transitions computed in the Goldhaber-Teller
model, consistently predicts higher values for the flux-averaged cross section
at all considered temperatures. As it has already been discussed in Ref. [95],
a possible origin of this difference could be the use of the Fermi function for
the Coulomb correction at higher neutrino energies, instead of the EMA.
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Figure 4.9: Inclusive cross section for the 56Fe(νe, e
−)56Co reaction, averaged

over the supernova neutrino flux and plotted as a function of temperature.
The pn-RQRPA results obtained with the DD-ME2 effective interaction are
compared with the shell model cross sections from Refs. [88, 92, 98].
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Figure 4.10: Inclusive cross section for the 56Fe(νe, e
−)56Co reaction, averaged

over the supernova neutrino flux and plotted as a function of temperature.
The pn-RQRPA results obtained with the DD-ME2 effective interaction are
compared with the shell model cross sections from Refs. [88, 95, 99].
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Chapter 5

Conclusion

In the present thesis the relativistic Hartree-Bogoliubov (RHB) + proton-
neutron relativistic quasiparticle random phase approximation (pn-RQRPA)
have been employed in an effort to study semi-leptonic weak-interaction pro-
cesses in spherical, even-even, neutron-rich nuclei. In the particle-hole channel
an effective Lagrangian with meson-nucleon coupling constants dependent on
nucleon vector density was used, while the pairing correlations were described
with the pairing part of the D1S Gogny interaction. Due to a standard prob-
lem of low effective nucleon mass in relativistic models two extensions of the
density-dependent RHB were made by (i) inclusion of an ω-meson tensor cou-
pling term in the Lagrangian density and (ii) inclusion of momentum depen-
dence of nucleon vector and scalar self-energies. Interaction used at the RPA
level is identical to the one used at the mean-field level making the framework
fully self-consistent. This is an important characteristic of the model, as it
removes spurious components of strength distributions. Only spherical, even-
even nuclei were treated, where the pion field contribution was nonexistant at
the mean-field level due to the negative parity of the pion. It needs to be in-
cluded at the RPA level, however, as well as the Landau-Migdal contact term
to resolve issues with divergent contributions. Strength of the Landau-Migdal
term is the only additional parameter introduced, adjusted to reproduce the
position of the Gamow-Teller resonance in 208Pb.

Microscopic global predictions of weak interaction rates are important, as
most of the neutron-rich nuclei relevant for the r-process nucleosynthesis are
not experimentally accessible. Calculated β-decay half-lives depend on a de-
tailed description of transition energies, shell structure, and on the choice of
the residual interactions in the ph and pp channels. In the present analysis
it has been shown that standard relativistic mean-field effective interactions,
adjusted to nuclear matter and ground-state properties of spherical nuclei,
generally overestimate the empirical half-lives by more than an order of mag-
nitude. The main reason is their low effective nucleon mass which is, in the
standard choice of interaction terms, strongly related to the empirical energy
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spacings of spin-orbit partner states. Thus, in order to be able to reproduce
measured β-decay half-lives, the effective nucleon mass of the relativistic mean-
interaction used in the RHB calculation of nuclear ground state and in the ph
channel of the QRPA residual interaction has to be increased. In this thesis
this has been done on the mean-field level, by including an additional isoscalar
tensor-coupling term in the Lagrangian, which allows for an increase of the
Dirac mass and effective mass, while at the same time the new effective in-
teraction reproduces the ground-state properties of finite nuclei, including the
spin-orbit splitting. The new force has been adjusted starting from our most
successful parameter set so far, the density-dependent interaction DD-ME1.
However, the inclusion of the tensor term allows only for a moderate increase
of the effective mass. It is not possible, like in Skyrme forces for example, to
obtain interactions with values of the effective mass close to one.

With the new density-dependent interaction DD-ME1* the GT distribution
strengths and β-decay rates of neutron-rich nuclei in the mass regions Z ≈ 28
and Z ≈ 50 have been calculated. The model reproduces in detail the data on
GT resonances and the low-energy GT strength. The results for β-decay half-
lives are similar to those obtained in the nonrelativistic PN-QRPA calculation
of Ref. [53], where it was shown that a fine tuning of the strength of the
T = 0 pairing interaction is necessary in order to reproduce the experimental
data. In general, by adjusting the strength parameter of the proton-neutron
pairing interaction to one experimental half-life, the PN-RQRPA calculation
reproduces the data for a chain of isotopes. In the region Z ≈ 28 very different
values of the T = 0 pairing strength reproduce the empirical lifetimes of the
Fe and Zn isotopic chains, whereas a single value, adjusted to the half-life
of 130Cd, qualitatively reproduces the data in the Z ≈ 50 region. T = 0
pairing, however, does not help in the case of Ni isotopes and for 132Sn, and the
model overestimates the half-lives on Ni nuclei and predicts a β-stable 132Sn.
Therefore, it was not possible, as suggested in Ref. [53], to adjust the strength
of the T = 0 pairing on experimental data, and extend the calculation to other
mass regions, or even to other isotopic chains in the same mass region. This
problem could be, however, due to the deficient description of shell structure,
related to the low effective mass of the ph interaction used. This is also the
reason a calculation of β-decay rates in the region N ≈ 126 was not attempted,
as there are not enough data to constrain the strength of the T = 0 pairing
interaction.

The calculations performed in this thesis have shown that the extension of the
standard relativistic mean-field framework to include momentum-dependent
(energy-dependent in stationary systems) nucleon self-energies naturally leads
to an enhancement of the effective (Landau) nucleon mass, and thus to an
improved PN-QRPA description of β−-decay rates. However, even though
the momentum-dependent RMF model with density-dependent meson-nucleon
couplings, adjusted here to m∗ = 0.79m, predicts half-lives of neutron-rich
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medium-mass nuclei in qualitative agreement with data, the results are not
as good as those obtained in the most advanced non-relativistic self-consistent
density-functional plus continuum-QRPA calculations [100], or with the self-
consistent HFB+QRPA model with Skyrme interactions of Ref. [53]. Namely,
although it has been possible to increase the effective mass of the interac-
tion used in the RHB calculations of nuclear ground states to m∗ = 0.79m, a
value which is sufficient for the description of giant resonances, the detailed de-
scription of the low-energy Gamow-Teller strength necessitates an even higher
value of m∗. In fact, the effective mass of the Skyrme SkO’ interaction used in
Ref. [53] is m∗ = 0.9m, whereas the continuum-QRPA calculations by Borzov
are based on the Fayans phenomenological density functional with the bare nu-
cleon mass, i.e. m∗ = m. However, it would be very difficult to further increase
the effective nucleon mass in the framework of the model used in this work, i.e.
on the nuclear matter level, without destroying the good agreement with empir-
ical ground-state properties of finite nuclei. On the other hand, this would not
even be the correct procedure because the additional enhancement of the effec-
tive nucleon mass is due to the coupling of single-nucleon levels to low-energy
collective vibrational states, an effect which goes entirely beyond the mean-
field approximation and is not included in the present model. In principle, the
effect of two- and three-phonon states on the weak-interaction rates could be
taken into account by explicitly considering the coupling of single-quasiparticle
states to phonons, and the resulting complex configurations would certainly
lead to a redistribution of low-energy Gamow-Teller strength.

The RHB plus proton-neutron RQRPA model has been tested in the calcu-
lation of total muon capture rates on a large set of nuclei from 12C to 244Pu.
The calculation is fully consistent, the same universal effective interactions
are used both in the RHB equations that determine the quasiparticle basis,
and in the matrix equations of the RQRPA. The calculated capture rates are
sensitive to the in-medium quenching of the axial-vector coupling constant.
By reducing this constant from its free-nucleon value gA = 1.262 to the ef-
fective value gA = 1.135 for all multipole transitions, i.e. with a quenching
of approximately 10%, the experimental muon capture rates are reproduced
with an accuracy better than 10%. This result can be compared to recent
RPA-based calculations that reproduce the experimental values to better than
15%, using phenomenological potentials adjusted to individual nuclei and A-
dependent residual interactions, but without applying any quenching to the
operators responsible for the µ− capture process. The test has demonstrated
that the RHB plus QRPA model provides a consistent and accurate descrip-
tion of semi-leptonic weak interaction processes at finite momentum transfer
in medium-heavy and heavy nuclei over a large Z-range.

A number of illustrative test calculations have been performed for charged-
current neutrino reactions on 12C, 16O, 56Fe, and 208Pb, in the low-energy
range below 100 MeV neutrino energy. The results have been compared with
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those obtained in previous theoretical studies based on the shell model and
the non-relativistic random phase approximation, and with the available ex-
perimental values for flux-averaged cross sections. In addition to the total
neutrino-nucleus cross sections, the evolution of the contributions of different
multipole excitations has also been analyzed as a function of neutrino energy.
It has been shown that except at relatively low neutrino energies E ≤ 30 MeV,
for which the reactions are dominated by transitions to IAS and GTR states,
at higher energies the inclusion of spin-dipole transitions, and also excitations
of higher multipolarities, is essential for a quantitative description of neutrino-
nucleus cross sections. Finally, the cross sections for reactions of supernova
neutrinos on 16O and 208Pb target nuclei have been investigated as functions
of the temperature and chemical potential.

The results for the test cases are in good agreement with the available data,
and with the cross sections calculated in the shell model for reactions on light
nuclei. The advantage of the RHB plus PN-RQRPA model over the shell
model approach is, of course, the possibility of performing calculations for
reactions on heavier nuclei and in regions of nuclei far from stability. The
differences between the results of various RPA-based calculations, especially
in heavier nuclei and at low neutrino energies, can most probably be attributed
to the different effective interactions used in modeling the structure of target
nuclei, but they also indicate that more detailed experimental and theoretical
studies of the transitions that contribute to the neutrino reaction rates must
be performed.

The relativistic Hartree-Bogoliubov and the proton-neutron relativistic quasi-
particle RPA represent a powerful method of examination of all semi-leptonic
weak-interaction processes. Enhancement of the effective nucleon mass has
proven to be crucial for a good quantitative description of β-decay half-lives as
they are very sensitive to low energy tail of the transition strength. Combined
with a more general formulation of the weak interaction framework, relativistic
models are an important quantitative tool able to provide precise predictions
of all semi-leptonic weak-interaction processes in neutron-rich nuclei.
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Appendix A

Relativistic model with

momentum-dependent

self-energies

The Lagrangian density is of the form

L =
1

2

[

ψ̄ΓµiD
µψ + ¯(iDµψ)Γµψ

]

− ψ̄ΓM∗ψ + Lm, (A.1)

with the nucleon field ψ, and the covariant derivative iDµ defined as

iDµ = i∂µ − γωωµ − γρ~τ · ~ρµ − e
1 + τ3

2
Aµ, (A.2)

and the mass operator M∗

M∗ = m− γσσ. (A.3)

Meson degrees of freedom are included in the same way as in (2.3). The
difference, when compared to the standard relativistic models, lies in quantities
Γµ and Γ which are usually equal to the Dirac matrices γµ and unit matrix,
respectively. In this approach they are given by

Γµ = γνgµν + γνYµν − γµνZ
ν , (A.4)

and
Γ = 1 + γµuνY

µν − uµZ
ν . (A.5)

Here the gµν denotes the metric tensor, and uµ = jµ/ρv the four-velocity
depending on the vector current density jµ = ψ̄γµψ and the vector density
ρv =

√

jµjµ. The quantities Y µν and Zµ are defined as

Y µν =
ΓV

m4
m2

ωω
µων (A.6)
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and

Zµ =
ΓS

m2
ωµσ. (A.7)

The particular dependence on the meson fields is required to generate a linear
energy dependence of the scalar and vector self-energies. ΓS and ΓV are new
constants of the interaction requiring readjustment of all interaction parame-
ters.

Variation of the Lagrangian density (A.1) provides the Dirac equation for
the nucleons of the form

γµ (i∂µ − Σµ)ψ − (m− Σ)ψ = 0. (A.8)

Quantities Σµ and Σ denote the vector and scalar self-energies, respectively.
They are functions of meson fields and nuclear densities and are given by

Σµ = vµ − Yµν (iDν −M∗uν) + ΣR
µ , (A.9)

Σ = s− Zµ (iDµ −M∗uµ) , (A.10)

where vector and scalar potentials read

vµ = Γωωµ + Γρ~τ · ~ρµ + Γγ
1 + τ3

2
Aµ − i

2
∂λYµλ, (A.11)

s = Γσσ − i

2
∂µZµ. (A.12)

In all expressions we neglect the contribution of the δ-meson. In this model
self-energies are differential operators acting on the nucleon fields. Momentum
dependence enters through terms (iDν −M∗uν), where the time-like compo-
nent is equivalent to E −m when acting on a plane wave. The rearrangement
term in the vector self-energy is equal to

ΣR
µ = uλ

[

Γ′
ωωµJ

µ + Γ′
ρ~ρµ · ~Jµ − Γ′

σσPs (A.13)

−
(

tDνµ − uνj
M∗

µ

) Γ′
V

ΓV

Y µν +
(

jD
µ − uµρ

M∗

s

) Γ′
S

ΓS

Zµ

]

(A.14)

+
(

jM∗

µ Y µν − ρM∗

s Zν
) gνλ − uλuν

ρv

, (A.15)

where Γ′
i are the derivatives dΓ/dρv of meson fields over nucleon vector density.

Densities and currents

Jµ = ψ̄Γµψ, ~Jµ = ψ̄Γµ~τψ, (A.16)

Ps = ψ̄Γψ, ~Ps = ψ̄Γ~τψ, (A.17)
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replace the usual (iso)vector and (iso)scalar densities. With momentum de-
pendence, additional terms appear

tDµν =
1

2

[

ψ̄γµiDνψ + ¯(iDνψγνψ
]

, (A.18)

jD
µ =

1

2

[

ψ̄iDµψ + ¯(iDµψψ
]

, (A.19)

jM∗

µ = ψ̄γµM
∗ψ, ρM∗

s = ψ̄M∗ψ. (A.20)

Continuity equations can be derived from the Dirac equation for extended
currents and densities in (A.16) and (A.17).

Equations of motion for the meson fields read

∂µ∂
µσ +m2

σσ + C̃µω
µ = ΓσPs, (A.21)

∂νGνµ +m2
ωω

νCµν − C̃µσ = ΓωJµ, (A.22)

∂ν ~Hνµ +m2
ρ~ρµ = Γρ

~Jµ, (A.23)

where the terms copling σ- and ω-mesons are given by

Cµν = gµν +
ΓV

m4

(

tDµν + tDνµ − uνj
M∗

µ − uµj
M∗

ν

)

(A.24)

and

C̃ =
ΓS

m2

(

jD
µ − uµρ

M∗

s

)

. (A.25)

For a stationary system the conserved baryon density, i.e. the time-like
component of the current Jµ becomes

ρ = J0 = j0(1 + Y00) − ρsZ0, (A.26)

and the generalized scalar density is given by

Ps = ρs(1 − Z0) + j0Y00, (A.27)

where Y00 and Z0 are

Y00 =
ΓV

m4
m2

ωω
2
0, Z0 =

ΓS

m2
ω0σ. (A.28)

The vector and scalar self-energies become

Σ0 = v0 + Y00(v0 +m− s) + ΣR
0 − Y00i∂

0, (A.29)

and
Σ = s+ Z0(v0 +m− s) − Z0i∂

0 (A.30)

respectively. The v0 and s terms are

v0 = gωω0 + gρ~τ · ~ρ0 + e
1 + τ3

2
A0 (A.31)
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and
s = gσσ, (A.32)

with the rearrangement contribution being

ΣR
0 =

[

g′ωω0J
0 + g′ρ~ρ0 · ~J0 − g′σσPs −

(

tD00 − jM∗
0

) Γ′
V

ΓV
Y00 +

(

jD
0 − ρM∗

s

) Γ′
S

ΓS
Z0

]

.

(A.33)
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Appendix B

Finite element method

In order to obtain a precise form of the muon wave-function we solve the Dirac
equation for the muon in the 1s bound state. We cannot, however, use the
basis of spherical harmonic oscillator eigenstates that we use for the nuclear
part of the problem. Because the Bohr radius of the muon is up to two order
of magnitude larger than the nuclear radius, a very large configuration space
would be necessary to correctly describe the wave function. Therefore, we
approximate the solution with piecewise polynomials using B splines. This
method has already been successfully applied to Coulomb interaction [101],
relativistic σ − ω model [65] and the relativistic Hartree-Bogoliubov problem
[28, 29].

As a basis for our radial wave functions we use the Bi,k, i = 1, 2, . . . , n
splines, a set of n polynomials of order k defined over a finite region of the
domain. Dividing the domain into N elements, we define N + 2k − 1 knots ti
as [101]

ti =







0 i = 1, 2, . . . , k − 1
Rmax

i−k
N

k < i < N + k − 1
Rmax N + k < i < N + 2k − 1

. (B.1)

Using this knot sequence, we can now define the B spline polynomials of order
1 with

Bi,1(x) =

{

1 ti ≤ x ≤ ti+1

0 othewise
, (B.2)

and polynomials of higher order recursively by

Bi,k(x) =
x− ti

ti+k−1 − ti
Bi,k−1(x) +

ti+k − x

ti+k − ti+1
Bi+1,k−1(x). (B.3)

The set of B-splines of order k on a knot sequence {ti} forms a complete
basis for piecewise polynomials of degree k− 1 on the intervals defined by the
knot sequence. We represent the solution to the Dirac equation as a linear
combinations of these B splines and we work with the representations rather
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than with the functions themselves. Using the solution to the Dirac equation
of the form

ψ(r, s, t) =
1

r

(

f(r)Φj,l,m(θ, ϕ, s)
ig(r)Φj,l̃,m(θ, ϕ, s)

)

χt(t) . (B.4)

we expand the radial functions in terms of B splines as

f(r) =
n
∑

i=1

fiBi,k(r), g(r) =
n
∑

i=1

giBi,k(r). (B.5)

Dirac equation can now be written down in terms of scalar products of B
splines as

(

S4 + S5 − λS3 S1 − κS2

−S1 − κS2 −S4 + S5 − λS3

)(

fi

gi

)

= E

(

S3 0
0 S3

)(

fi

gi

)

,

(B.6)
with the matrix elements defined as

S1 = 〈Bi′,k(r) |∂r|Bi,k(r)〉 , (B.7)

S2 = 〈Bi′,k(r) |1/r|Bi,k(r)〉 , (B.8)

S3 = 〈Bi′,k(r)|Bi,k(r)〉 , (B.9)

S4 = 〈Bi′,k(r) |m∗|Bi,k(r)〉 , (B.10)

S5 = 〈Bi′,k(r) |V (r)|Bi,k(r)〉 , (B.11)

and κ = ±
(

j + 1
2

)

with j = l∓ 1
2
. In this way the problem of solving the Dirac

equation is reduced to a simple eigenvalue problem solved by diagonalization.
While solving the specific problem of a muon bound in a 1s state of an atom,

we have used n = 300 B splines of order k = 9, with the radial mesh extending
to 300 fm. These values were sufficient to obtain the desired accuracy of the
muon wave functions.
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[50] T. Nikšić, D. Vretenar, and P. Ring, Physical Review C 66, 064302
(2002).

[51] P. Ring et al., Nuclear Physics A 694, 249 (2001).
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