
SIMPSON'S PARADOX: A LOGICALLY BENIGN, 

EMPIRICALLY TREACHEROUS HYDRA 

/. Introduction 

If the term 'paradox' is understood to refer to arguments which have 
premises that are taken to be true that entail conclusions which are false, 
then Simpson's Paradox is mislabled. On a broader understanding of the 
term 'paradox', a set of sentences which appear to be collectively incom
patible can count as paradoxical if the incompatibility is only apparent. 
Simpson's Paradox belongs to this second category. The statistician G. U. 
Yule is credited with first pointing it out in 1903; it was introduced into 
the philosophical literature by M. R. Cohen and E. Nagel in 1934, and it 
was the topic of a brief, witty, article by the statistician E. H. Simpson in 
1951.1 Cohen and Nagel used it to set a problem as an exercise; Nancy 
Cartwright [1979] and Brian Skyrms [1980] resurrected it from philo
sophical dormancy.2 The paradox has been alleged to provide counter
examples to argument forms which are valid in the propositional calculus 
and counter-examples to the Sure Thing Principle of decision theory.3 The 
alleged counter-examples are spurious, however, and the paradox is 
benign for valid inference and rational choice. Nevertheless, the basis of 
the paradox poses genuine problems for inferences from data to probabil
ity assignments to hypotheses, for models of causal inference, and for 
probabilistic analyses of causation. These problems persist when actual 
and possible empirical set-ups that manifest paradoxical structures are 
analysed. Coming to grips with them can help to explain the otherwise per
plexing features of such set-ups. 

2. An example of the paradox* 

Suppose that a new drug is under test to determine whether it provides 
an effective treatment for an illness. In order to find out whether it is effective, 
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a percentage of patients are treated with the drug and a control group is 
given a placebo. When the results of the trial are tabulated, the drug appears 
to be an effective treatment. Fifty-four percent of the treated patients 
recover and only 44% of the patients who were given placebos recover. 
Now suppose that testosterone is one of the components of the new drug, 
and the question arises whether the drug is more effective for males or 
more effective for females or whether its effects are independent of gender. 
When the populations of treated and untreated patients are partitioned by 
gender, however, it turns out that the recovery rates for both males and 
females who are given placebos are higher than the recovery rates of those 
who were given the new drug. E.g., it is consistent with the recovery rates 
for the total population that 33% of the untreated males recover and only 
27% of the treated males recover, and that 66% of the untreated females 
recover and only 64% of the treated females recover. So the drug appears 
to be effective when the total population is taken into account, but it does 
not appear to be effective for the male members of the population and it 
does not appear to be effective for the female members of the population. 
The following tables verify these relationships. 

Total Population 

Recover Do not Recover 

Received Treatment 105 90 

Did not Receive Treatment 40 50 

Males 

Recover Do not Recover 

Received Treatment 15 40 

Did not Receive Treatment 20 40 



SIMPSON'S PARADOX: A TREACHEROUS HYDRA 267 

Females 

Recover Do not Recover 

Received Treatment 90 50 

Did not Receive Treatment 20 10 

3. Percentages and probabilities 

The example used to illustrate Simpson's Paradox was given in terms 
of patients, treatments, genders, and recovery rates. An urn model can be 
provided which has the same arithmetical properties as the example, but 
instead of patients there are balls in the urn, and each ball is inscribed with 
three symbols, one from each of the sets {T, ~T}, {R, ~R}, {M, ~M}. E.g., 
a given ball might carry the inscription [R, ~T, M]. The distribution of in
scriptions on the balls is stipulated to conform to the tables above. Now 
the percentages of distributions of inscriptions on the balls can be repre
sented as probabilities; the expression 'Prob(R/T)' is read as 'The probability 
that a ball is inscribed with an R given that it is inscribed with a T'. The 
model exhibits the following probability relationships: 

Prob(R/T) > Prob(R/~T) 
Prob(R/TM) < Prob(R/~TM) 
Prob(PJT-M) < Prob(R/~T~M) 

The feeling that these inequalities are paradoxical is assuaged when it is 
recalled that probabilities can be represented as weighted averages. E.g., 

Prob(R/T)=Prob(R/TM)Prob(M/T)+Prob(R/T~M)Prob(~M/T) 

If the weights are sufficiently skewed, as they are in the above tables, a 
reversal of probability relations holds in the subsets of R under the further 
partitions of T and ~T by M and ~M. The following diagram illustrates the 
set-up described by the tables above. The set of M's is represented by 
{a,b,c,d} and the ~M's by {e,f,g,h}. 
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The diagram illustrates the consistency of the triad 

a/a+b < c/c+d, and 
e/e+f < g/g+h, but 
a+e/a+b+e+f > c+g/c+d+g+h 

where the last inequality represents the consolidated data for the total pop
ulation in the example. 

4. Boundary conditions for Simpson set-ups 

The inequalities in the above example are preserved when the data 
are uniformly multiplied by any positive number. That suffices to show 
that there are infinitely many such set-ups. More generally, it is possible 
to have Prob(A/B) = zero and Prob(A/~B) » 1/n, with n = 1, and 

Prob(A/BC) > nProb(A/~BC), and 
Prob(A/B~C) > nProb(A/~B~C). 

Hence, it is not only inequalities that can be reversed in repartitions of a 
sample space, but also equalities can be perturbed when data are reparti-
tioned or consolidated.5 This latter fact has bearing upon the reliability of 
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causal inferences which aim to "screen off' spurious correlations by locating 
common causes for them. This is discussed below in Section 6.2. 

The diagnosis of Simpson's Paradox in its probabilistic form showed 
that the reversal effects were due to skewed weights. Such skewing can be 
arithmetically countered by normalising the data which represent propor
tions before they are used to represent percentages or probabilities. The 
effect of normalising data is to provide constant denominators for the 
ratios which are used to represent percentages and to compute weights in 
the representation of probabilities as weighted averages. In the example of 
the trial for the new drug, there is a difference in the percentages of 
patients who received the placebos and those who received the drug 
amongst both the males and females. The aim of normalising the data on 
treatments is to set up one-to-one correlations between the representation 
of treated males and untreated males, and similarly for females. Normal
ising data to provide constant denominators is a sufficient condition for 
the alignment of inequalities which are exhibited by consolidated data and 
are represented in 2x2 tables to agree with the alignments of inequalities 
which are exhibited by the 2x2x2 tables from which the 2X2 tables are 
derived.6 For example, when the data from the drug trial are normalised 
on treatments, the drug does not appear to be effective for males, for 
females, nor for the total population. However, while normalising data 
may be sufficient to block the reversals which characterise the paradoxi
cal cases, it does not always lead to the right conclusion as to what the 
actual probability relationships are. This is illustrated by the fact that there 
is more than one partition which "cross grains" the partition of recoveries 
by treatments in the example, and different patterns of probability 
relations will be exhibited by subsets of the data under different reparti
tions. Again, for example, keeping the figures for treatments and recoveries 
constant, a repartition by age might show positive correlations between 
recoveries for patients who are treated and are under fifty years of age, and 
similarly for those who are fifty years of age or older. Normalising the 
data on treatments can then show a positive correlation between treat
ments and recoveries for those under fifty, those fifty or over, and for the 
combined populations. The following tables, based on the same figures for 
recoveries in the total population, illustrates this possibility. Let 'U' 
represent the property of being under 50 years of age, and '~U' the property 
of being 50 or older. 
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RU ~RU R~U ~R~U 

T 20 15 85 75 

~T 10 20 30 30 

Here, treatment appears more favourable for recovery in both members of 
the partition {U, ~U}. If we "normalise" the tables to put the T's in one-
one correspondence with the -T's, we obtain the following tables: 

RU ~RU R~U ~R~U 

T 20 15 85 75 

~T 12 23 80 80 

Again, treatment appears favourable for recovery in both tables and the 
combined table taken from them. While normalising data is sufficient to 
prevent reversals of relations between percentages and probabilities when 
data are consolidated, it is insufficient for deciding what the correct relations 
are. Normalised data from different partitions of the same raw data can imply 
incompatible conclusions. 

5. Two spurious problems 

It has been mooted that Simpson's Paradox provides counter-examples 
to classically valid arguments and to the Sure Thing Principle in decision 
theory. While the alleged counter-examples are fallacious, they do illus
trate how easy it is to fall into the traps which paradoxical data facilitate. 

5.1. Arguments of the following form are valid in the propositional 
calculus. Premises: If p then r. If q then r. Conclusion: If p or q then r. Now 
consider the following dictionary. 

p = A male patient takes the drug, 
q = A female patient takes the drug. 
r = Taking the drug is less favourable for recovery than not taking 

the drug. 

It can appear on the basis of the tables and probabilities given in the 
examples of the drug trial and the urn model that this dictionary provides 
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a counter-model to the PC-valid argument form.7 A closer look at the 
structure of the alleged counter-model and the data dispels this appearance. 

A plausible reading of the suggested counter-argument assigns it the 
following form with (1) and (2) true, but (3) false. 

(1) If x is male, then Prob(Rx/Tx) < Prob(Rx/~Tx) 
(2) If x is female, then Prob(Rx/Tx) < Prob(Rx/~Tx) 
(3) If x is male or x is female, then Prob(Rx/Tx) < Prob(Rx/~Tx) 

Is this, taken in conjunction with the tables provided, an instance of and a 
counter-model to the form that is classically valid? No. That it is not a 
counter-model is apparent when the probability values from the model are 
explicitly provided. The ratios to which the conditional probabilities are 
equivalent can be represented as percentages. Then we have the following: 

If x is male, then .27 < .33. 
If x is female, then .64 < .66. 
But, if x is male or x is female, then .54 > .44. 

The contents of the consequents are determined by the sets selected by the 
restrictive clauses of the antecedents and the rules governing the function 
Prob(../—). The propositional variable r does not have a univocal inter
pretation under the readings proposed for 'Taking the drug is less 
favourable for recovery than not taking the drug'. As r does not have a 
univocal interpretation on the proposed reading, the informal formulation 
of the argument is not an instance of the valid-argument form. 

Nonetheless, the argument does appear to be an instance of a valid 
form, and for many, it is intuitively surprising that the premises can be 
true and the conclusion can be false. A possible explanation for this is that 
within a broad, though limited, range of cases, the probability relations 
posited in the premises do entail a like alignment of the probability 
relations in the conclusion where data are consolidated. E.g., as noted in 
Section 4, when data are normalised, reversals of probability relations 
cannot occur. The case where data are "normal" is a special instance of a 
more inclusive class of arithmetical constraints on data which, if satisfied, 
are sufficient for the preservation of probability relations when data are 
consolidated.8 If data that feature in set-ups where probabilistic inferences 
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are intuitively drawn often or typically do fall within those arithmetical 
constraints, the inferences from probability relations that are supported by 
data from elements of partitions to like-probability relations when data are 
consolidated in conclusions will be truth-preserving (for those cases). In 
these cases, the weights that feature in the representations of the relevant 
conditional probabilities as weighted averages are not sufficiently skewed 
to reverse the probability alignments when data are consolidated. The general 
case, however, includes the cases that fall within the boundary conditions 
for reversals of probability relations when data are consolidated or repar-
titioned. This explains the intuition that the data from the example support 
a counter-model to a valid argument form by taking the intuition to be based 
upon a disposition to over-generalise from cases where the weights do not 
perturb probability relations to the many cases where they do perturb them. 
Of course, it is an empirical matter whether the correct explanation of the 
apparent counter-example is due to an over-generalisation or some other 
quirk of intuitive reasoning in which useful but rough heuristic rules can 
lead to untoward conclusions.9 

5.2. The Sure Thing Principle (hereafter, STP) asserts that 

If you would definitely prefer g to/, either knowing that the event C 
obtained, or knowing that the event C did not obtain, then you defi
nitely prefer g to/.10 

Now consider the urn model described above and the following two-player 
zero-sum game. Players select one of two options. Player 1 goes first and 
makes choices on the basis of STP, if it is applicable. Player 2 is required 
to take whichever option remains open. Balls are returned to the urn after they 
are drawn. The options are as follows: 

Option 1: Draw balls at random from the urn until you get one 
that contains a ~T. Bet one unit that it contains an R. 

Option 2: Draw balls at random from the urn until you get one 
that contains a T. Bet one unit that it contains an R. 

Before you exercise either option, you are told whether the selected 
ball contains an M or a ~M. 
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On a given round of the game, if both players turn up balls which have an 
R, or which have a ~R, the round is cancelled and another round with bets 
in place is played. A player gains a win when his selected ball contains an 
R and the other player's ball contains a ~R. The players' aim is to adopt 
the option that maximises their chances of drawing balls that are inscribed 
with R's. Player 1 reasons as follows. Suppose he is told a given ball has 
an M. Then Option 1 gives him a .33 chance of it having an R compared 
with Option 2's .27 chance of its having an R. Next, suppose he is told that 
a selected ball has a ~M. Then Option 1 gives him a .66 chance of it 
having an R compared with Option 2's .64 chance of it having an R. Ac
cordingly, STP appears to apply, and Player 1 selects Option 1. Player 2 is 
thus required to take Option 2. However, STP appears to give Player 1 bad 
advice. Fifty-four percent of the balls inscribed with a T are inscribed with 
an R, and only 44% of those inscribed with a ~T are inscribed with an R. 
Playing Option 1, Player 1 is more likely to have his R's matched by 
Player 2, thereby cancelling the round, and is less likely to match Player 
2's R's, thereby losing the round. This remains the case despite the corre
lations of Rs with Ms and with -Ms. Has STP given Player 1 bad advice, 
or has he applied STP inadvisably? 

For STP to be applicable to his preferences, Player 1 needs to prefer 
Option 1 given M and given ~M. His reasoning adopts these preferences 
on the basis of the probability relations 

Prob(R/TM) < Prob(R/~TM) 
Prob(R/T~M) < Prob(R/~T~M). 

Do these rationally support a preference for Option 1 on being told that 
M, or ~M, in the setting of the game? No. It will help to see why the prob
ability relations do not support these preferences if we consider a different 
set-up than the one the players actually occupy in which Player l's reasoning 
would be sound. Then, this will be contrasted with a variant of the set-up 
the players actually occupy that is equivalent to it. The fallacy in Player 1 's 
reasoning that leads him to adopt the preferences that are required for STP 
to be applicable will emerge from the contrast between these two set-ups. 

Let balls from our model be placed in two urns. The first, Urn(M), 
has all and only balls that are inscribed with an M. The second, Urn(~M), 
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has all and only balls that are inscribed with a ~M. The tables that describe 
this set-up merely relable the tables from the medical example in Section 
2 where data are partitioned by gender. 

Urn(M) Urn(~M) 

R R R ~R 

T 15 40 T 90 50 

~T 20 40 ~T 20 10 

Player's options and the criteria for winning and losing are unchanged. 
The information that M, or ~M, indicates the urn from which a ball orig
inates. However, that information is not relevant to the players' choices. 
In this game, Option 1 (the ~T option) does dominate Option 2, and it has 
a positive expectation of showing a profit regardless of the urn from which 
a selected ball originates. The ratio of ~T's to R's is greater than the ratio 
of T's to R's in each urn. It is significant that this is not the set-up that the 
players actually occupy and it is a different game from the one that they are 
playing. 

Next, consider a set-up where balls from our model are again sorted 
into two urns. The first, Urn(T), contains all and only balls inscribed with 
a T, and the second, Urn(~T), contains all and only balls inscribed with a 
-T. Criteria for winning and losing are unchanged. Players' options are to 
play the game with balls drawn from Urn(~T), option 1, or from urn(T), 
option 2. This game is equivalent to the one the players actually are 
playing. In it, 54% of the balls in Urn(T) have R's, and 44% of the balls 
in Um(~T) have R's. Unlike the game where urns are homogenous with 
respect to M's and ~M's, the urns in this set-up have a mixture of M's and 
~M's. The relevance of that mixture is displayed by the representations of 
Prob(R/T) and Prob(R/~T) as weighted averages. The information that a 
ball has an M, or a ~M, does not perturb these ratios, and they are different 
ratios than those that feature in the set-up with Urn(M) and Urn(~M). 

The error in Player l's reasoning was to suppose that the information 
concerning M's prior to each play of the game placed him in a situation 
analogous to the game where drawings are from Urn(M) and urn(~M). The 
contents of these two urns preserve the skewed distributions that support 
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a dominance argument for Option 1. In that game, STP applies, and it gives 
good advice. In the game where drawings are from Urn(T) and Urn(~T), 
however, there is no sound dominance argument for Option 1 given M or 
given ~M. The mixtures in the redistribution correspond to different ratios 
of R's to T's and ~T's than the ratios that feature in the game with Urn(M) 
and Urn(~M). These ratios are not perturbed by the "news" that a selected 
ball has an M (or ~M). So, this set-up does not support a preference for 
Option 1 on being told that M or that ~M. STP is not applicable because 
rational players will not have the preferences that its applicability requires, 
i.e., in the game where balls are drawn from Urn(T) and Urn(~T), a pref
erence for Option 1 over Option 2 given M, and given ~M. 

6. Statistical inference, causal inference, 
and probabilistic analyses of causation. 

Data sets which have the structure of Simpson's paradox have turned 
up in actual studies and experiments in the empirical sciences, in accoun
tancy, in legal cases, and even in negotiations for salaries for baseball 
players in which their batting averages are relevant to the salaries they 
get." E.g., one player had a higher batting average than another in each of 
two years, but the latter had a higher batting average over the combined 
two-year period. Such data sets, as well merely hypothetical data sets 
which share their structure, are relevant to testing theories of statistical 
inference, theories of causal inference, and analyses of causation which 
crucially rely on probability relationships. 

6.1. Statistical inference. Theories of statistical inference aim to formulate 
rules for drawing inferences from data about the frequencies of kinds of 
events or attributes to conclusions concerning their probabilities. A core 
issue for such theories is to determine which reference classes support 
such inferences and which do not support them. In the example of the drug 
trial, the negative associations between the rates of recovery for treated 
males and for treated females would seem to support an inference that the 
probability of recovery for a patient is higher if he or she is left untreated. 
It was noted above that a partition of patients by age group could suggest 
the opposite conclusion. Alternatively, if recovery rates for patients were 
probabilistically independent of both age and gender, and the association 
between treatments and recoveries was otherwise resilient, the appropri-
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ate frequency data to use as basis for inference would be the positive as
sociation between treatments and recoveries. This is brought out by the 
urn model described above. There, the association between R's and T's is 
independent of any other letters inscribed on the balls. The probability of 
a ball which is inscribed with a T also being inscribed with an R is 
uniquely fixed by the ratio of balls inscribed with [TR] and [~TR]. This 
suggests the following constraint for the plausibility of statistical infer
ences from data to probability assignments: Inferences from proportions 
exhibited by data concerning A's and B's to conditional probability as
signments which correspond to those proportions, e.g., Prob(A/B), are 
plausible with respect to a set of factors F, only if Prob(A/B) = 
Prob(A/B&Fi), for all Fi in F. This condition is met by the urn example 
concerning distributions of letters on balls; there is insufficient data in the 
example from the drug trial to tell whether or not it is met with respect to 
gender and/or with respect to the patients' ages. The underlying problem 
of which reference class or classes to use as a basis for inference from data 
to probability-assignments persists even if the partition by age and gender 
is taken as a relevant alternative to either alone. Taking partitions which 
are fine-grained or "maximally specific" as a basis for inference from data 
to probability assignments is no less secure from error than relying on par
titions which are too coarse-grained and which mask relevant information. 
When a reversal of probability relations under one partition of a body of 
data is not matched by a different partition of the data (the typical case) 
the question arises as to whether to take the weighted average across the 
data to determine probabilities or whether to normalise the data for purposes 
of inference, thereby blocking the reversal. In the urn model described 
above, taking the weighted average gives the right answer for finding the 
probability of an R on a ball given that it is inscribed with a T. In other 
cases, normalising the data gives the right answer. Whether it does will often 
turn on contingent background information which sometimes is, and often 
is not, available to inquirers. 

6.2. Causal inference. When kinds of events or properties are probabilis
tically relevant to each other, we have prima facie reasons to think that 
they are causally relevant to each other. Simpson's Paradox serves as a 
piquant reminder of how difficult it can be to reliably infer and work out 
causal connections from probabilistic relationships. One example of this dif-
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ficulty is provided by Reichenbach's attempt to identify common causes 
of events which are correlated but are causally independent of each other.12 

His proposal is that correlated events are causally independent of each 
other provided that there is some event which "screens off' the correlation. 
Assume that B is positively probabilistically relevant to A, i.e., Prob(A/B) 
> Prob(A/~B). He says that C "screens off' B from A and is a common cause 
of them both just in case Prob(A/BC) = Prob(A/~BC). Recall that condi
tional probabilities can be represented as weighted averages. Accordingly, 
if the weights, Prob(B/C) and Prob(~B/C), are appropriately skewed, the 
screening-off condition can be fulfilled without C serving as a common cause 
of A and B. To find an appropriate skewing, it is sufficient to provide models 
which satisfy the following formulae: 

Let terms take only positive values in the interval [0, 1]. Let Prob(A/BC) 
= x, and Prob(A/~BC) = y. On Reichenbach's proposal, 

C screens off A from B (and B from A, as independence is symmetrical) 
if and only if Prob(A/B) > Prob(A/~B) and x = y. 

Representing Prob(A/B) and Prob(A/~B) as weighted averages, the screen
ing-off condition has the following form: 

x(a) + b(c) > y(d) + e(f), and x = y. 

The probabilistic constraints on the values for {a,b,c,d,e,f} are insufficient 
to guarantee uniqueness for the screening-off factor C. E.g., C's obtaining 
could be necessary and sufficient for D's obtaining so that C screens off A 
from B if and only if D does so as well. This allows for spurious screening-
off conditions or, unlikely, for multiple common causes. It also has the con
sequence that from an arithmetical perspective, any positive correlation 
between A and B can be associated with some condition C which "screens 
off' A from B. This follows form the boundary conditions described 
above. The moral to draw is not that screening off is trivial or arbitrary, 
but that one needs to specify which conditions which fulfil the screening-
off condition will, if they exist, count as relevant to establishing causal inde
pendence. The screening-off condition requires supplementation if it is to be 
taken as sufficient for identifying common causes of correlations of causally 
independent events or attributes. 
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6.3. Probabilistic analyses of causation. Reichenbach's screening-off con
dition is a special case of more general analyses of causation in terms of 
probabilistic relations. The intuition which such analyses of causation 
share is that causes increase the probability of their effects. Simpson's Paradox 
poses a problem for this basic intuition since it shows that probabilistic 
relevance can be due to the effects of averaging in which causal informa
tion is lost. For example, if smokers attempt to counter the cardio-vascular 
effects of their habit by taking regular exercise, and non-smokers are blase 
about exercising, there can be a negative correlation between smoking and 
heart disease, even if the incidence of heart disease is greater amongst the 
smokers who exercise compared with the non-smokers who exercise, and 
similarly for the smokers who do not exercise compared with the non-
smokers who do not exercise. Such examples suggest that probabilistic 
relevance to background factors can better serve as the basis for extrapo
lating causal relevance. E.g., B is causally relevant to A if and only if 
Prob(A/B and Fi) is greater than Prob(A/~B and Fi) for all relevant Fi. 
However, this proposal falls afoul in cases like that described by the urn 
model above. Suppose that a ball's being inscribed with an M or a ~M is 
taken to be the only potentially relevant background factor for the proba
bilities of its being inscribed with other symbols. Then we have the following: 

Prob(R/TM) < Prob(R/~TM) 
Prob(R/T~M) < Prob(R/~T~M) 

But it would be an error to infer either that ~T or T is causally relevant to 
R, or that Prob(R/~T) > Prob(R/T). Even if further constraints concerning 
the discreteness of causes and effects and their temporal order are 
provided to supplement the probabilistic relations, examples which have 
the structure of the urn model can be provided to meet these as well. Some
times the correlations in the cells of relevant partitions are the correct basis 
for inferring causal relations, and sometimes they are spurious correlations 
which should be ignored. It remains an outstanding problem for probabilis
tic analyses of causation to formulate supplementary conditions on probabil
istic relations for the purpose of using the latter to infer causal connections. 

7. Simpson's Paradox in dynamic settings 

In the previous section I noted that paradoxical set-ups have occurred 
in a wide range of actual settings. Further, I noted that when they do occur, 
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causal relationships can be masked by probability relationships and other 
correlations. For some cases, when these are disentangled, phenomena 
that are deeply puzzling or that even seem impossible (but for the fact that 
they occur) can become transparent. An example of phenomena that have 
puzzled biologists as well as ethicists is the occurrence of altruistic be
haviours in species. It is a matter of definition that altruistic behaviour 
disadvantages the individuals who engage in it while others reap its 
benefits. How, then, could it become a stable trait of the behaviour of a 
group in a set-up that evolves across time where the course of evolution 
punishes organisms that are less fit than those with whom they compete? 
Even if altruistic behaviour did emerge, wouldn't it be an unstable char
acteristic of the group that exhibited it? Wouldn't they, or their behaviour, 
be exploited by competitors and then driven to extinction or near-extinc
tion? Simpson set-ups provide models that allow for the evolution of 
altruism. Moreover, if some further conditions are imposed on those set
ups, altruism can become a stable feature of them. Elliott Sober describes 
a simplified model for the evolution of altruism in a biological setting. 
Once such models are at hand, it is a small matter to reinterpret them as 
models of possible social systems, e.g., economic or political systems. 
Mapping social phenomena onto such models or variants of them might 
be useful for explaining some social phenomena; also, they may be useful 
for institutional design. 

Sober describes a highly simplified and extreme case for illustrative 
purposes.13 Assume a total system which consists of equally numerous 
selfish elements (S's) and altruistic elements (A's) that form two distinct 
groups with initially skewed distributions of the two kinds of elements. 
Suppose that the average fitness of a population of elements declines as 
the percentage of its selfish members increases. The decline is experi
enced by both the S's and the A's. The S's gain a benefit from their 
interactions with A's, and the A's absorb the costs of their interactions with 
S's. The S's gains and losses in their interactions with each other tend to 
cancel out, and as fewer A's are available to be exploited as the percent
age of S's increases in a group, their fitness level declines as well. Let a 
single selfish element in a population of 99 A's have a fitness level of 4, 
and the 99 A's a fitness level of 3, where fitness is narrowly interpreted to 
represent the expected number of offspring in that arrangement. (Say the 
elements propagate uniparentally.) In an arrangement in which there are 
99 S's and only 1 A, the S level of fitness is 2, and the A level of fitness is 
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1. As the percentage of S's increases, the level of fitness for A's declines 
continuously from 3 (with 1% S's) to 1 (with 99% S's), and there is a cor
responding decline in the level of fitness for S's from 4 to 2. The average 
level of fitness for the total population declines from just over 3 to just 
under two as the ratio of S's to A's changes from 1:99 to 99:1. Now 
consider two groups, the first of which has just one S and 99 A's, and the 
second of which has one A and 99 S's. Let w represent the average fitness for 
elements in the two groups. The following table summarises this arrangement. 

Group 1 Group 2 Global average 

IS; w = 4 99S; w = 2 100S; w = 2.02 

99A;w = 3 l A ; w = l 100A; w = 2.98 

In this arrangement, the fitness level of S's is greater than that of A's in both 
groups, but it is lower than A's in the global average. Now suppose that 
parents die after reproducing, and that their reproduction exactly correlates 
with their levels of fitness. The census for offspring and their frequencies 
compared with frequencies for their parents are provided in the following 
table: 

Group 1 Group 2 Global ensemble 

Parent Freq. 1%S;99%A 99%S; 1%A 50%S; 50%A 

Offspring Census 4S; 297A 198S; 1A 202S; 298A 

Offspring Freq. 1.3%S;98.7%A 99.5%S; .5%A 40%S;60%A 

After one reproductive cycle, the frequency of A's has declined in each 
group, but it has increased in the global ensemble. What will happen after 
a succession of reproductive cycles? The reproduction rule limits the 
lonely A in Group 2 to simply replacing itself while S's double with each 
generation. A's' hold on frequency declines, approximately halving, with 
each successive generation. The frequency of S's in Group 1 also rises with 
each successive generation, and this is bad news for the A's in Group 1. 
They are ineluctably driven to a fixation point where their population will 
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stabilise at replacement while S's population continues to double in size 
with each generation. In this set-up, the early global bloom of altruism is 
nipped by the local and global winter of selfishness, never to bloom again. 

In order for reversal effects due to an initial skewing of elements to 
be sustained in a system, a skewing comparable to the skewing of the 
initial set-up has to be sustained as the system evolves. In a system in 
which S's have an advantage over A's and they are equally distributed, S's 
will quickly become dominant and drive the A's to extinction or near ex
tinction. However, if the system is structured so that there is an imbalance 
in the distribution and S's are clustered together with only a few A's 
amongst them, and A's are clustered together with few S's amongst them, 
it will be in the interest of the S's clustered with A's to keep other S's at 
bay, and this is an interest which they will share with the A's. Of course, 
even if they are successful at keeping other S's at bay, if their local 
numbers increase at a rate in excess of the increase for A's, as in the above 
tables for A's and S's, their comparative advantage over other S's will 
decline unless they redress the balance by expelling some of their numbers 
to form more clusters of S's. Alternately, S's might kill the offspring of 
other S's who are competitors in a bi-parental set-up, thereby preserving 
a skewing effect. A variety of possible mechanisms are able to preserve 
the skewing. Sober observes that "The groups must form new colonies 
rapidly enough to offset the within-group process that serves to displace 
the altruistic trait. Given favourable parameter values, altruism may come 
to exist at some stable intermediate frequency." He continues, "Also crucial 
is the question of how new colonies are established. If groups are founded 
by individuals who are alike, this will enhance and preserve intergroup 
variation and allow group selection to exert a more powerful influence on 
the advancement of altruism. If, on the other hand, migrants from different 
groups mix together and then found new groups, between-group variance 
will be diminished and the evolution of altruism will be more difficult."14 

Biological examples provide natural settings for exploring the effects 
of reproduction and replacement. Economic set-ups in which there is com
petition also have counter-parts of extinction, reproduction, and replacement. 
Simpson set-ups might occur in them; independently of whether they are 
found to occur in them, it may be possible (and desirable) to design systems 
to exploit such possibilities and to secure stable pockets of altruism in a largely 
open-market system. However, if such set-ups can promote altruism despite 
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evolutionary pressure against it, they have a structure that can also promote 
other (less desirable) traits against which there is evolutionary pressure, 
e.g., stupidity and ignorance. They also suggest how a minority political party 
might gain maximum effectiveness in competition with other parties. 

It is an empirical question whether Simpson set-ups occur in nature 
or society, and if they do, whether they are dynamically stable. Inquiry 
into whether they occur in large biological, social, or economic systems is 
in its infancy. One difficulty such inquiries face is intrinsic to Simpson set
ups: any body of data which is rich enough to support inferences to probability 
assignments can be repartitioned so that relations between proportions in 
the cells of the partition are reversed when the data are consolidated. This 
trivial arithmetical fact poses some deep difficulties for empirical inquiry 
and it exacerbates some already familiar difficulties. When a reversal is ob
served under partitions of data, it is apt to ask whether they are an artefact 
of the arithmetic or a stable feature of the kinds which are represented by 
the partitions? At this juncture applied problems of selecting the right ref
erence classes for statistical inferences, extrapolating causal relations from 
statistical data, and the classical problem of induction join hands to make 
the inquirer's job a high-risk occupation. 

Gary Malinas 
University of Queensland 
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