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ABSTRACT

A non-linear numerical model is developed for the computation of water level and
discharge for the propagation of a unidirectional two-layered tsunami wave. Four governing
equations, two for each layer, are derived from Euler’s equations of motion and continuity,
assuming a long wave approximation, negligible friction and no interfacial mixing. A
numerical model is developed using a staggered Leap-Frog scheme. The developed non-
linear model is compared with an existing validated linear model developed earlier by the
author for different non-dimensional wave amplitudes. The significance of non-linear terms
is discussed. It is found that for simulations of the interface wave amplitude, the effect
of non-linear terms is not significant. However, for the simulation of the top surface, the
effect of non-linear terms is significant for higher wave amplitudes, and insignificant for
lower wave amplitudes. Developed non-linear numerical model is used for the case of a
progressive internal wave in an inclined bay. It is found that the effect of an adverse bottom
slipe towards the direction of wave propagation is to amplify the wave. This amplification
depends on the steepness of slope as well as the ratio of densities of upper layer fluid to lower
layer fluid (α). Amplification increases with slope. For higher values of α, amplification
of the top and interface surface decreases, which is reasonable. It is also found that even
for a 4 percent density difference between upper layer and lower layer, amplification of
the top surface will be twenty times higher than amplification in the non-stratified case.
The model can be applied confidently to simulate the basic features of different practical
problems, similar to those investigated in this study.
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INTRODUCTION 

Tsunamis are generated due to disturbances of free surface caused not only by seismic fault 
motion, but also by landslides and volcanic eruptions (Imamura and Imteaz, 1995). Tsunamis are 
categorized as a long wave and as such, long wave theory has been applied for the governing 
equations of tsunami propagation considering a single layer (i.e. equal density throughout the 
depth). But even with respect to the density gradient in deep sea, it is necessary to consider the 
stratified layers. An exchange between fresh water and saline water is known to limit the amount of 
mixing that can occur at the mouth of an estuary. In the case of landslide generated flows it is 
imperative to consider the mudflow as stratified. Two-layered long waves or flows in cases where 
underwater landslides have generating tsunamis has been studied by Hampton (1972), Parker 
(1982) and Harbitz (1991). 

Analytical and experimental studies generally involve the flow of current over a horizontal 
bottom, which neglects the change in terrain over which atmospheric currents move and the change 
in height associated with avalanches. Studies on two-layered flow which consider current flowing 
over a non-horizontal bottom has been investigated by Benjamin (1968), Britter & Linden (1980) 
and Lin Po-Ching (1990). However, the use of small-scale physical model to design large structures 
may not reproduce the relative effects of viscosity, Reynolds number and some of the other design 
parameters. 

Simulating the behaviour of two-layered flow has also been attempted numerically, however, 
for simplicity non-linear terms are often ignored. Some examples of linear numerical model can be 
found in Akiyama et al. (1990), Kranenburg (1993) and Imamura & Imteaz (1995). But accurate 
results can not be expected until simulations account for non-linear terms. 

Jiang & Leblond (1992) developed a numerical model coupling a submarine landslide and the 
surface waves it generated. They have assumed the landslide as laminar flow of an incompressible 
viscous fluid and the water motion as irrotational. Long wave approximations were adopted for both 
water waves and mudslides. They have shown that three main waves are generated by a landslide. 
The first wave is a crest which propagates away from the mudslide site into deeper water. This crest 
is followed by a trough in the form of a forced wave which propagates with the speed of the 
mudslide front and the third wave is a relatively small trough which propagates shoreward. They 
have also found that two major parameters dominate the interaction between the slide and waves it 
produces: the density of sliding material and the depth of water at the mudslide site. The findings 
are similar to those of Imamura & Imteaz (1995). 

Considering non-linear terms an adequate numerical model for simulating two-layer flow on non- 
horizontal bottom is attempted. Moreover, the model was extended to actual or field condition. 

NOTATIONS 

p = Density of fluid 
M = Discharge per unit width of flow 
Il = Water surf ace elevation above still water level 

a = Density ratio of upper layer fluid to lower layer fluid 
h = Still water depth 
x = Distance in downstream direction 
t = Axis representing time 



g = Acceleration due to gravity 
i = Spatial node points in a finite difference scheme 
n = Temporal node points in a finite difference scheme 
l3 = Depths ratio of lower layer to upper layer 
k = Wave number 
L = Wave length 
a = wave amplitude 

THEORETICAL BACKGROUND 

A mathematical model for two-layer flow in a wide channel with non-horizontal bottom was 
’ set up assuming a hydrostatic pressure distribution, negligible friction and negligible interfacial 

mixing. Also uniform density and velocity distributions in each layer was assumed. Considering a 
two dimensional case as shown in Figure 1, using Euler’s equation of motion and continuity for each 
layer, by integrating the equations for specified limit of each layer and applying long wave 
approximation (i.e. vertical accelerations are negligible) and boundary conditions, following 
integrated governing equations were derived. The derivations are explained in details by Imteaz, 
M.A. ( 1994). 

For upper layer- 
Mass conservation equation, 

dMr+%-772) _(-) 
3x at- 

and momentum equation, 
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For lower layer- 
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and momentum equation, 
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Where, 
r-l1 = Water surf ace elevation above still water level of layer ‘1’ 
rl2 = Water surf ace elevation above still water level of layer ‘2’ 

Dr=rll+hl-r12 
DZ=h2+r12 
ht = Still water depth of layer ‘1’ 
h2 = Still water depth of layer ‘2’ 
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Figure 1 Schematic diagram of a two-layer profile 

NUMERICAL MODEL 

It is very difficult to solve the governing non-linear equations analytically, however, a finite 
difference scheme using a staggered leap-frog scheme can provide a numerical solution. This 
scheme has been used previously for the solution of linearized governing equations with good 
results (Imamura & Imteaz, 1995). This scheme is one of the explicit central difference scheme 
with the truncation error of second order. The staggered scheme considers that the computation 
points for the water surface elevation (IJ) does not coincides with the computation points for 
discharge (M). There are half step differences &At for temporal and %Ax for spatial) between 
computation points of two variables, rl and M (as shown in Figure 2). Finite difference equations 
for this scheme are as follows. 

Mass conservation equation for the upper layer, 
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At Ax 

Mass conservation equation for the lower layer, 
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Momentum equation for the upper layer, 
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Momentum equation for the lower layer, 
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Where ‘n’ denotes the temporal grid points and ‘i’ denotes the spatial grid points as shown in Figure 
2. To calculate ‘D’ values at the computation point of ‘M’, the average of four surrounding ‘D’ values 
is required. 

In the spatial direction all IJ 1, II* values at step ‘n-1/2’ and all Mr, M2 values at step ‘(n- 1)’ are 
assigned as initial conditions. For all later time steps at left and right boundaries, values of Ml and 
M2 are calculated by a characteristic method, which uses the values of previous time steps and wave 
celerity. The finite difference momentum equations for the upper and lower layer allows Mr and M2 
values at step ‘n’ to be calculated. Then using the latest values of Mz. and deduced finite difference 
continuity equation for lower layer all values of r)2 at step ‘(n+1/2)’ can be calculated. Then using 
the latest values of Q, Mr and deduced finite difference continuity equation for upper layer, all 
values of r-ii at step ‘(n+1/2)’ are calculated. Similarly using new values of qi, rl2, Mr, M2 as initial 
conditions, calculations can be proceeded in time direction up to desired step. As initial condition 
(i.e. at t = 0) all ~1 and Ml values are taken as zero. For interface, initial condition was found by 
substituting t = 0 in the known expression of Q, which gives, 

2x 
472=a2Sill(kX)=a2SiIl(-X) 

L 

A linear relationship between the water level and discharge is used to determine an expression for 
M2 i.e., 

M2 = &5&2(H2+~2) 

COMPARISON WITH LINEAR MODEL 

Simulations of the numerical model were performed for different values of initial interface 
wave amplitude, al. For these simulations, ~0.2, p=l .O, AX=10 m, AT=0.2 set, hr=25 m, h2=25 m 
have been chosen and kept constant for different simulations. Simulations were performed 
separately for a*= 2 m, 6 m and 8 m with periods of 4 set, 6 set and 8 sec. Results were compared 
with known linear model results using the same input parameters. Results are shown graphically in 
Figures 3,4 and 5 for a;! = 2 m, 6 m and 8 m respectively. From the figures it is seen that for a;? = 2 
m (a2&=0.08) linear and non-linear model results are almost identical. This indicates the 
insignificance of non-linear terms and confirms that for r-l/l-r < 0.1, the effect of non-linear terms is 
negligible. 
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Figure 2 Schematic diagram of the staggered leap-frog scheme 

For simulations with a:! = 6 m and 8 m, it is found that there is a significant difference between 
linear and non-linear model, proving that for q/h > 0.1 non-linear terms are significant. For the 
modelled interface differences arise as a result of the wave celerity. Due to inclusion of q in the 
wave celerity, 4{ g(h+q)} , non-linear wave celerity is greater than the linear wave celerity. For this 
reason it is seen that non-linear waves propagate with greater speed and become steeper as time 
progresses. The above mentioned reasoning also accounts for the marked difference between linear 
and non-linear top surface levels, q 1. It is observed that this difference increases with the value of 
interface amplitude, a2. For higher values of q, values of qi will increase. As can be seen any 
increase a;! of values will cause increase of qi values, (i.e increase of qi/h2 values) and for higher 
q i/h2 non-linear terms become more significant. 

APPLICATION OF THE MODEL 

A progressive internal wave into an inclined bay, which is related with a sudden exchange of water 
in the bay was considered as an application for the numerical model. This condition may occur due 



to an internal tide wave into the bay. For this condition a sloping bottom is assumed with a vertical 
wall at the downstream end. As an upstream boundary condition, the interface water surface is 
assumed to be known and a function of time. A downstream boundary condition involves setting the 
discharge of both layers, Ml and M2 as zero. 
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Figure 3 Comparison of linear and non-linear model for (a) top surface and (b) interface (a2=2 m) 
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Figure 4 Comparison of linear and non-linear model for (a) top surface and (b) interface (a2=6 m) 
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Figure 5 Comparison of linear and non-linear model for (a) top surface and (b) interface (a2=8 m) 



In general it was found that a sloping bottom amplifies wave as it propagates. So for longer travel 
distance amplification will be higher. Simulations were performed for different slopes and different 

‘a’ values. To show the effect of ‘a’, model results for a = 0.1, 0.4, keeping other parameters 
constant have shown in Figure 6(a) and 6(b). In these cases slope was assumed as 0.1, 
computational length 200 m, u/s hz= 25 m, at d/s hz= 5 m and hi= 10 m (constant). From these 

figures it is clear that when ‘o? increases the amplification of top surface decreases and vice versa. 
For interface amplification decreases as ‘a’ increases, which is opposite as discussed by Imamura & 
Imteaz (1995) for the case of free transmission (no vertical wall at d/s end). This is due to presence 
of vertical wall and rigorous interaction at d/s end by the reflected upper layer wave. To see the 
effect of stratification, model was again simulated for a=1 .O (i.e. same density for both the layers) 
keeping other conditions same as in Figure 6(a) and 6(b). From Figure 7(a) it is found that 
amplification of top surface is very low for this case, which is not real, as in reality there is always 
some stratification. Figure 8 shows the ratio of top surface amplitudes of stratified case to non- 
stratified case for several density difference in percent. It is shown that even for a 4% density 
difference between upper layer and lower layer, amplification of top surface will be twenty times 
higher than the amplification in non-stratified case. This warns serious error in calculation if 
uniform water density is considered for the case of Tsunami and long waves. 

To show the effect of slope change on amplification, simulation was carried out for two different 
slopes, keeping other parameters (AX, AT, a, u/s and d/s hi, u/s h2) constant. At d/s h2 can not be 
constant to allow the variation of slope and to keep the h2 at u/s, computational length constant. 
Computational length should be keep constant, the amplification at the d/s end is the cumulative 
effect of slope used, so change in computational length will affect the result. For the same a Figure 
6(a) shows the amplification of top surface for slope equals to 0.1 and Figure 7(b) shows for slope 
equals to 0.075. It is found from these figures that as slope decreases amplification of both top 
surface and interface also decreases which is reasonable. Presented results are not indicating the sole 
effect of slope variation, because there is a change of depth ‘h2’ at right side boundary. At right side 
‘hi has to increase to provide decreasing slope in computation. But ‘h&’ ratio also affects the 
amplification of top surface. In the above-mentioned cases, change of h2/hi at right side boundary 
causes opposite the effect of slope changes. 

a=0.1,Sl0pe=0.1 a = 0.4,Slopa = 0.1 

. . . . . . . ;;’ 

: . _ . . . . . . . .j.. . _ 
% 2. 

f . 
.-P-‘---; 

, - _ . . . . . -_.LG.y.” ~’ 
..+p, 

= - a.C...::. ‘p.. . .A.;. _ 

E : 

~’ 
: \ 

.H _ _ c 
- -_-- 

s OF--- 

\..-- :5* _.-- ._ /’ . ~ .~ .~ ;: 
-..........-- 

. =-----+w 
#/’ J 

\____.’ _/- / 
_, _ . . . . . . . . ..b....~~~_.~*..-~.. . . . . . . . . . . . . . : 

-2 . . . .‘. . . ‘I* * * *‘. . *. ’ 
0 50 100 150 200 0 50 100 150 

Distance (m) Distance (m) 

(a> @I 

Figure 6 Amplification of the top surface for (a) a= 0.1 and (b) a=0.4 having slope=O.l 

CONCLUSION 

A numerical model using a staggered leap-frog scheme has been used to ascertain the effect of 
including non-linear terms in the governing equations of two-layered flow. Comparison has been 



made against the linear model of Imteaz, M.A. (1994). Non-linear terms were found to be 
insignificant for low (< 0.1) q/h2 ratio, however non-linear terms are highly significant for higher 
n/h2 ratio. Therefore in the cases of high q/h2 ratio and where amplitude amplifies due to slope or 
vertical wall, non-linear model should be used to simulate the actual condition. 

The developed model was applied to the case of rapid exchange of water in the bay, considering 
non-horizontal bottom, two-layer flow and vertical wall at the shore. In this case constant bottom 
slope and horizontal interface was assumed, but model can handle for cases of any arbitrary bottom 
and any arbitrary interface as well as top surface. Effects of sloping bottom and relative density of 
two layers were investigated. It was found that, presence of adverse slope to the direction of wave 
propagation causes to amplify the propagating wave as wave propagates, which is reasonable. 
Again it was found that as ‘o? increases amplification of top surface decreases and vice versa, which 
is reasonable. It must also be noted that the phenomena of shoaling for a single layer flow can not 
be used as a comparison for the investigated two layer flow. 
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