
Proving Temporal Properties of Z Specifications
Using Abstraction

Graeme Smith and Kirsten Winter

Software Verification Research Centre
University of Queensland 4072, Australia

{smith, kirsten}@svrc.uq.edu.au

Abstract. This paper presents a systematic approach to proving tem-
poral properties of arbitrary Z specifications. The approach involves (i)
transforming the Z specification to an abstract temporal structure (or
state transition system), (ii) applying a model checker to the temporal
structure, (iii) determining whether the temporal structure is too ab-
stract based on the model checking result and (iv) refining the temporal
structure where necessary. The approach is based on existing work from
the model checking literature, adapting it to Z.

1 Introduction

Specifications in Z [Spi92], and related languages such as Object-Z [Smi00], often
involve predicates of arbitrary complexity and have infinite state spaces. Conse-
quently, tool support for proving properties of such specifications has focussed
on theorem proving [KSW96,Saa97,TM95], rather than automated techniques
such as model checking [CGP00] which are limited with respect to the notation
supported and the size of the state space of the specification.

To extend the limits of model checking, much research in the past decade has
focussed on abstraction as a means of state space reduction [CGL94,LGS+95].
A system model with a large, or infinite, state space is transformed to one with
a reduced state space suitable for model checking. This is done based on the
notion of abstract interpretation (originally developed to derive abstract seman-
tics of programming languages [CC79]). In essence, abstraction is the inverse
of downward simulation data refinement [DB01]. Hence, any properties which
are preserved by such refinement and can be proved true for the abstract model
are also true for the concrete model. Properties preserved by downward sim-
ulation are of the form that something is true on all abstract behaviours. A
property which states something is true on one, or a limited number, of abstract
behaviours is not, in general, preserved.

For abstraction to be practically useful, two further issues need to be ad-
dressed. Firstly, the derivation of the abstract model needs to be at least system-
atic, and at best automatic. Otherwise, we are left with a significant intellectual
task and lose the primary benefit of model checking. Secondly, we need to deal
with the case where a property of interest is proved false for the abstract model.

D. Bert et al. (Eds.): ZB 2003, LNCS 2651, pp. 260–279, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN --Dateioptionen: Kompatibilität: PDF 1.2 Für schnelle Web-Anzeige optimieren: Ja Piktogramme einbetten: Ja Seiten automatisch drehen: Nein Seiten von: 1 Seiten bis: Alle Seiten Bund: Links Auflösung: [600 600] dpi Papierformat: [595.276 841.889] PunktKOMPRIMIERUNG --Farbbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 150 dpi Downsampling für Bilder über: 225 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Mittel Bitanzahl pro Pixel: Wie Original BitGraustufenbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 150 dpi Downsampling für Bilder über: 225 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Mittel Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 600 dpi Downsampling für Bilder über: 900 dpi Komprimieren: Ja Komprimierungsart: CCITT CCITT-Gruppe: 4 Graustufen glätten: Nein Text und Vektorgrafiken komprimieren: JaSCHRIFTEN -- Alle Schriften einbetten: Ja Untergruppen aller eingebetteten Schriften: Nein Wenn Einbetten fehlschlägt: Warnen und weiterEinbetten: Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] Nie einbetten: []FARBE(N) --Farbmanagement: Farbumrechnungsmethode: Alle Farben zu sRGB konvertieren Methode: StandardArbeitsbereiche: Graustufen ICC-Profil: (iZ RGB ICC-Profil: sRGB IEC61966-2.1 CMYK ICC-Profil: U.S. Web Coated (SWOP) v2Geräteabhängige Daten: Einstellungen für Überdrucken beibehalten: Ja Unterfarbreduktion und Schwarzaufbau beibehalten: Ja Transferfunktionen: Anwenden Rastereinstellungen beibehalten: JaERWEITERT --Optionen: Prolog/Epilog verwenden: Ja PostScript-Datei darf Einstellungen überschreiben: Ja Level 2 copypage-Semantik beibehalten: Ja Portable Job Ticket in PDF-Datei speichern: Nein Illustrator-Überdruckmodus: Ja Farbverläufe zu weichen Nuancen konvertieren: Nein ASCII-Format: NeinDocument Structuring Conventions (DSC): DSC-Kommentare verarbeiten: NeinANDERE -- Distiller-Kern Version: 5000 ZIP-Komprimierung verwenden: Ja Optimierungen deaktivieren: Nein Bildspeicher: 524288 Byte Farbbilder glätten: Nein Graustufenbilder glätten: Nein Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Warning /ParseDSCComments false /DoThumbnails true /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize true /ParseDSCCommentsForDocInfo false /EmitDSCWarnings false /CalGrayProfile ((iZ) /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue true /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.2 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends false /GrayImageDownsampleType /Bicubic /PreserveEPSInfo false /GrayACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /sRGB /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 150 /EndPage -1 /AutoPositionEPSFiles false /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.5 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 600 /AutoFilterGrayImages true /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 150 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [595.276 841.890] /HWResolution [600 600]>> setpagedevice

Proving Temporal Properties of Z Specifications Using Abstraction 261

In this case, nothing can be deduced about the concrete model which (like a
refinement) may have additional properties due to a decrease in nondetermin-
ism. These issues have been addressed by the model checking community (e.g.,
[GS97,SS99,CGJ+00]) and, in this paper, we draw on these results to provide a
practical approach to abstraction for Z.

Our goal is to present a systematic approach to abstraction of Z specifications
that could be supported by a theorem prover. The approach is not specific to
any particular theorem prover, nor is the abstract model produced aimed at
any particular model checker. The approach could be used with any suitable
combination of such tools. We begin in Section 2 with a summary of the relevant
results from the model checking community. In Section 3, we present an approach
to abstraction for Z specifications and illustrate it by an example in Section 4. In
Section 5, we show, via the example, how to deal with properties that are proved
false for the abstract system. Future directions are discussed in Section 6.

2 Background

Abstraction as a means of state space reduction has been a topic of research in
the model checking community for some time. Early work provided a theoretical
framework for abstraction. For example, Clarke, Grumberg and Long [CGL94]
provide a method for transforming finite state programs to an abstract transi-
tion system. They prove that the properties of the abstract model expressed in
a restricted temporal logic which only allows properties that state that some-
thing is true on all abstract behaviours (namely the universal fragment of CTL*,
∀CTL*) are also properties of the program, and hence that the abstract model
can be used to verify the program. A similar approach is described by Loiseaux
et al. [LGS+95] for a slightly more expressive temporal logic (a restricted version
of the µ-calculus).

The general idea is to group states in the concrete model into equivalence
classes and map these via an abstraction function, Abs, to states of the abstract
model (see Figure 1).

2.1 Finding the Abstraction Function

The abstraction function should be chosen in such a way that the property
of interest can easily be proved in the abstract model. A number of papers,
including that of Clarke, Grumberg and Long [CGL94], suggest guidance for
finding such functions (e.g., [Jac94,WVF97]). For example, Jackson [Jac94] in
his approach for abstracting Z specifications, suggests using the properties to be
proved as a basis for defining a suitable abstraction function. Assume we want
to prove that a variable y : N is less than 10. Of course, we could split the state
space into the equivalence classes y < 0, y = 0 and y > 0. However, for this
property it is more useful to use the equivalence classes y < 10, y = 10 and
y > 10.

262 G. Smith and K. Winter

Concrete model

Abstract model

Abs Abs

Fig. 1. Abstraction using equivalence classes of states

However, none of the approaches mentioned above provide a systematic way
of defining an abstraction function. This problem is overcome by Graf and Säıdi
[GS97]. They present an automated approach to abstraction which does not
require an abstraction function to be defined in advance. Instead, it requires a
set of predicates on which to base the abstraction process.

From these predicates, Graf and Säıdi form a set of monomials. A monomial
is a conjunction of, for each predicate, either the predicate or its negation. For
example, given the predicates p1 and p2, the monomials are p1 ∧ p2, p1 ∧ ¬ p2,
¬ p1 ∧ p2 and ¬ p1 ∧ ¬ p2. Since the monomials partition the complete concrete
state space, they can be used as the equivalence classes of the concrete states.

Choosing the predicates can be based on the user’s understanding of the
system. However, Graf and Säıdi offer general guidance for choosing them.

– Using predicates which appear in the property to be proved results in an
abstract model where states either satisfy these predicates or not.

– Using the predicates in the guards of transitions simplifies the abstraction
process. Since the information of enabledness of transitions is encoded in the
abstract state space the possible transitions of the abstract model are easily
determined.

– In general, atomic predicates, e.g., x = 2 and y = 3 rather than x = 2 ⇒
y = 3, result in a better level of abstraction.

The second point listed above, using the predicates in the guards, is essen-
tial. Otherwise, properties proved for the abstract model may not be true for
the concrete model, i.e., we do not have a proper abstraction. For example, in
Figure 2 since the equivalence class containing concrete states s1 and s2 does
not reflect the guard of the transition, we are able to prove that the abstract
model always progresses to state t2. The corresponding property on the concrete
model, that it always progresses to state s3, is however not true.

Proving Temporal Properties of Z Specifications Using Abstraction 263

t t

ss

s

21

2

31

AbsAbs

Fig. 2. Equivalence classes not reflecting transition guards

2.2 False Counter-Example Detection and Refinement

When we model-check an abstract model, the model checker might successfully
prove the property of interest. In this case, we know the property holds for our
concrete model as well. However, if the model checker disproves the property by
producing a counter-example, we cannot determine anything about the concrete
model. The model checker has effectively proved that something is not true on
at least one abstract behaviour. Such properties on one, or a limited number of
behaviours, are not necessarily true of our concrete model. Hence, the counter-
example may also be a counter-example of the concrete model, or it may only
be a counter-example of the less deterministic abstract model. In the latter case,
we call it a false counter-example.

The counter-examples produced by most existing model checkers are a se-
quence of states starting from an initial state. These sequences are either finite
or, if infinite, involve a loop back to a previous state (see Figure 3).

S
0 1

S S
2

S
3

S
4

S
0 1

S S
2

S
3

S
4

Fig. 3. Finite and infinite (looping) counter-examples

If we get a false counter-example, the abstract model needs to be refined
closer to the concrete model. Clarke et al. [CGJ+00] introduce algorithms for
automatically detecting false counter-examples of the kinds in Figure 3. This is
done based on the fact that a false counter-example contains an abstract state
whose corresponding concrete state is not reachable in the concrete model.

264 G. Smith and K. Winter

Given a false counter-example, they also automatically derive a refinement of
the abstract model in which the false counter-example is avoided. This is done by
finding the last abstract state in the false counter-example whose corresponding
equivalence class of concrete states is reachable in the concrete model. This
equivalence class is split based on whether or not a state is reachable via the
counter-example (see Figure 4 in which s4 and s5 are separated from s6).

6s

5s

4s

9s

8s

7s

2

Split

Abs Abs Abs

t1

s

3tt

1s

2s

3

Fig. 4. Splitting of equivalence classes

For deriving the abstract model, Clarke et al. follow the approach of Graf
and Säıdi [GS97] of using a set of predicates. However, rather than using them to
generate an abstract model, they use them to generate an abstraction function
which is then used to compute the abstract model.

3 Abstraction of Z Specifications

An operation in Z does not have a guard, but a precondition outside of which the
operation can occur changing the state arbitrarily. Such arbitrary state changes
make it impossible to prove most interesting temporal properties (over all be-
haviours). We restrict our approach, therefore, to Z specifications where opera-
tions are totalised. That is, for each possible pre-state, the operation explicitly
specifies a post-state which in some cases may be an error state.

The precondition of such a totalised operation is equivalent to true. Hence,
whether the operation is interpreted as having a precondition (in the Z sense) or
guard is irrelevant (the operation can occur from any pre-state). In this work, we
choose to treat them as having guards. This is done to extend the applicability
of our approach to Object-Z (where operations are guarded [Smi00]) as well as
non-standard (behavioural) interpretations of Z with guarded operations [DB01].

We follow the approach of using a set of predicates to derive an abstract
Z specification. Since all operation guards are true, we use only the atomic
predicates in the property to be proved. (For Object-Z or guarded interpretations

Proving Temporal Properties of Z Specifications Using Abstraction 265

of Z, we would also need to use the atomic predicates in the operation guards
to avoid the problem illustrated in Figure 2.) Using the monomials of these
atomic predicates, we form equivalence classes of the state space of the concrete
model. An explicit abstraction function then relates these equivalence classes to
single abstract states. This abstraction function is used to derive an abstract
model. The soundness of our process will be proven with respect to Z downward
simulation laws [DB01].

For expressing system properties, we adopt Linear Temporal Logic (LTL)
[Eme90], the temporal operators of which are explained below.

G φ Now and at all points in the future, it is the case that φ is true.
F φ At some point in the future, it will be the case that φ is true.
X φ In the next state, it will be the case that φ is true.
φ U ψ At some point in the future, it will be the case that ψ is true, and from

now until then it is always the case that φ is true.

An LTL property holds for a specification, if it holds for all paths, i.e., sequences
of states, that the specified system can undergo.

3.1 The Abstraction Process

Properties expressed in LTL are preserved by downward simulation data refine-
ment [DB01]. This is because the properties have to hold for all paths that the
specified system can undergo. Since downward simulation only eliminates paths
(by reducing nondeterminism) and does not allow new ones to be added, prop-
erties which are true on all paths of an abstract specification, will be true on all
paths of a refinement of that specification.

Hence, a suitable abstraction will be one that can be refined to the orig-
inal specification using downward simulation. Under a guarded interpretation
of operations, a Z specification with state schema CState, initial state schema
CInit and operations COp1 . . .COpn is a downward simulation of an abstract
specification with state schema AState, initial state schema AInit and opera-
tions AOp1 . . .AOpn , if there is a retrieve relation Retr such that the following
conditions hold [DB01].

Initialisation ∀CInit • ∃AInit • Retr
Applicability ∀AState; CState •

Retr ⇒ (preAOpi ⇔ preCOpi) for i ∈ 1..n
Correctness ∀AState; CState; CState ′ •

Retr ∧ COpi ⇒ (∃AState ′ • Retr ′ ∧ AOpi) for i ∈ 1..n

These conditions are used to show the soundness of our abstraction process
below.

Assume the monomials, built from the atomic predicates of the property to
be proved, are p1, . . . , pn . Then the state schema of the abstract specification is:

266 G. Smith and K. Winter

AState
s : State

where State ::= s1 | . . . | sn , and the abstraction function is defined by a
schema:

Abs
AState
CState

p1 ⇒ s = s1
. . .
pn ⇒ s = sn

Informally, the abstraction function is a mapping {p1 �→ s1, . . . , pn �→ sn}.
The initial state schema and operations of the abstract system are derived

such that the original specification refines the abstract specification under a
retrieve relation which is the inverse of the abstraction function (and hence
defined by the same schema, i.e., Retr = Abs).

The initialisation condition for downward simulation requires that there is an
abstract initial state related to each concrete initial state. Since the monomials
partition the concrete state space, they represent all concrete states. Therefore,
there will be an abstract state corresponding to each concrete initial state. To
ensure that this abstract state is also an abstract initial state, we define the
abstract initial state schema as:

AInit
AState

∃CInit • Abs

With this definition of AInit , the initialisation condition becomes:

∀CInit • ∃AState | (∃CInit • Abs) • Abs
≡ ∀CInit • ∃AState • (∃CInit • Abs) ∧ Abs
� ∀CInit • ∃AState; CInit • Abs ∧ Abs
≡ ∀CInit • ∃AState; CInit • Abs

If there are no initial concrete states then the above is immediately true. If there
is a concrete initial state then there is an abstract state related to it due to the
abstraction function being based on monomials (and hence ∃AState; CInit •
Abs is true).

For each operation, we require that the applicability and correctness condi-
tions hold. This will be true when an abstract operation starts and ends only in
states which are related to those equivalence classes containing concrete states

Proving Temporal Properties of Z Specifications Using Abstraction 267

that serve as start and end points of the corresponding concrete operation1.
Hence, an abstract operation AOpi is defined as:

AOpi
∆AState

∃CState; CState ′ • COpi ∧ Abs ∧ Abs ′

The applicability condition becomes:

∀AState; CState • Abs ⇒
((∃AState ′ • ∃CState; CState ′ • COpi ∧ Abs ∧ Abs ′) ⇔ preCOpi)

≡ ∀AState; CState • Abs ⇒
((∃CState; CState ′ • COpi ∧ Abs ∧ (∃AState ′ • Abs ′)) ⇔ preCOpi)

Since there is an abstract state related to each concrete state due to the abstrac-
tion function being based on monomials, the above is equivalent to:

∀AState; CState • Abs ⇒
((∃CState; CState ′ • COpi ∧ Abs) ⇔ preCOpi)

≡ ∀AState; CState • Abs ⇒
((∃CState • Abs ∧ (∃CState ′ • COpi)) ⇔ preCOpi)

≡ ∀AState; CState • Abs ⇒
((∃CState • Abs ∧ preCOpi) ⇔ preCOpi)

Since preCOpi is true under our restriction that operations be totalised, the
above is trivially true. (For Object-Z or guarded interpretations of Z, preCOpi
would not necessarily be true. In this case, since the monomials defining the ab-
straction function would be based on atomic predicates in the operation guards,
the same operations would be enabled from any two concrete states related to
the same abstract state. Hence, the above would be true.)

The correctness condition becomes:

∀AState; CState; CState ′ • Abs ∧ COpi ⇒
(∃AState ′ • Abs ′ ∧ (∃CState; CState ′ • COpi ∧ Abs ∧ Abs ′))

� ∀AState; CState; CState ′ • Abs ∧ COpi ⇒
(∃AState ′ • Abs ′ ∧ COpi ∧ Abs ∧ Abs ′)

≡ ∀AState; CState; CState ′ • Abs ∧ COpi ⇒
Abs ∧ COpi ∧ (∃AState ′ • Abs ′ ∧ Abs ′)

≡ ∀AState; CState; CState ′ • Abs ∧ COpi ⇒ (∃AState ′ • Abs ′)
� ∀CState ′ • (∃AState ′ • Abs ′)

Since there is an abstract state related to each concrete state due to the abstrac-
tion function being based on monomials, the above is true.
1 However, not all of the concrete states in the equivalence class need to satisfy this

condition.

268 G. Smith and K. Winter

3.2 Handling Inputs and Outputs

The approach as presented so far only works for specifications without inputs
and outputs. We could have accounted for inputs and outputs by basing our
abstraction function on a refinement definition which included them [DB01].
Instead, we embed them in the specification state. Since LTL properties only
involve state variables, this embedding allows us to prove properties about inputs
and outputs in our approach.

The embedding is done in such a way that no new properties are introduced
on the existing state variables. Each input and output variable appears as a
distinct state variable whose name is the same as that of the original variable2

and whose type is the declared type of the input or output variable extended
with an undefined element ⊥.

Initially, all outputs are equal to ⊥ and the values of inputs are unconstrained.
For each operation, if an input or output is declared by the operation (before
the embedding) then no additional constraints are placed on it. In the case of
an output, the originally declared variable is renamed to a post-state (primed)
variable. If an input or output is not declared by an operation, its value in the
pre-state, in the case of inputs, and post-state, in the case of outputs, is ⊥. This
will be illustrated in the example in the next section.

The new specification after the embedding has no new paths modulo the
embedded variables. Nor does it have fewer paths than the original specification.
Although inputs are set to particular (unspecified) values initially and after each
operation, post-states exist for all possible values allowing the specification to
proceed as before. The unspecified nature of the inputs models the fact that it
is the environment of the specified system that is choosing them. Hence, it only
makes sense to use inputs in assumptions of a property we wish to prove, e.g.,
on the left-hand side of an implication.

4 Unique Number Allocator Example

To illustrate our approach, we introduce a simple example of an infinite state
system. The system is a unique number allocator which accepts requests for a
strictly positive number and sends them to the requester. It is specified as having
two variables: used denoting the numbers that it has already allocated, and alloc
denoting the number, if any, it has allocated but not yet sent.

Allocator
used : P N1
alloc : F N1

#alloc � 1

Initially, no numbers have been allocated.
2 The original specification must not use the same name for inputs or outputs in

different operations unless they have the same type.

Proving Temporal Properties of Z Specifications Using Abstraction 269

Init
used = ∅

alloc = ∅

The operation Request specifies that whenever alloc is empty and used �=
N1, a request for a new number can be made. A new number (not previously
allocated) is placed in alloc and added to used . When alloc is not empty or
used = N1, the operation leaves the state unchanged.

Request
∆Allocator

alloc = ∅ ∧ used �= N1 ⇒
(∃n : N1 • n �∈ used ∧ alloc′ = {n} ∧ used ′ = used ∪ {n})

alloc �= ∅ ∨ used = N1 ⇒ alloc′ = alloc ∧ used ′ = used

The operation Send specifies that whenever alloc is not empty, its element
may be sent (and removed from alloc). When alloc is empty the operation out-
puts the value zero to indicate an error and leaves the state unchanged.

Send
∆Allocator
n! : N

alloc = {n!} ⇒ alloc′ = ∅ ∧ used ′ = used
alloc = ∅ ⇒ n! = 0 ∧ alloc′ = alloc ∧ used ′ = used

We embed the inputs and outputs, in this case just the output n! : N, in the
specification as follows.

AllocatorIO
Allocator
n! : N

⊥

InitIO
Init

n! = ⊥

RequestIO
Request

n!′ = ⊥

SendIO
Send [n!′/n!]

where N
⊥ is the set of natural numbers extended with the undefined value ⊥.

Note that we only restrict the value of n! initially and after operations. Hence,
n! is renamed to n!′ in the operation Send above.

One property that we want for the unique number allocator is that we never
send a given value v : N1 twice. This can be expressed in LTL as follows.

G (n! �= v ∨ X (G n! �= v))

270 G. Smith and K. Winter

That is, it is always the case that either n! �= v or (if n! = v) in the next state,
it will always be the case that n! �= v .

The property only has one atomic predicate n! �= v and hence the set of
monomials is {n! �= v ,n! = v}. Following the process in Section 3 gives the
abstract state schema:

AState
s : State

where State ::= s1 | s2 and abstraction function:

Abs
AState
AllocatorIO

n! �= v ⇒ s = s1
n! = v ⇒ s = s2

The initial state schema is:

AInit
AState

∃ used , alloc : P N1; n! : N
⊥ | #alloc � 1 ∧ n! = ⊥ •

n! �= v ⇒ s = s1 ∧
n! = v ⇒ s = s2

which simplifies to:

AInit
AState

s = s1

The abstract operations similarly simplify to:

ARequest
∆AState

s ′ = s1

ASend
∆AState

true

Finally, the property is also abstracted to:

G (s = s1 ∨ X (G s = s1))

The entire abstraction process is systematic and potentially automatable.
The simplifications of the abstract schemas could be done using a theorem prover
either automatically, or in the case of more complicated specifications, with

Proving Temporal Properties of Z Specifications Using Abstraction 271

some user guidance. The conversion of the abstract specification into the input
format of a model checker is also potentially automatable since its state schema
comprises a single variable with a finite set of values (representing possible states)
and its operations define transitions between these values. In other words, the
abstract specification defines a simple temporal structure (or state transition
system) as shown in Figure 5.

�� ��

��� �� �� �� ��

��� � �� �� ��

Fig. 5. Temporal structure of the abstract specification of the unique number allocator

Hence, we should be able to model check the abstract specification to see if
our desired property holds. What we will find, and what will become evident from
Figure 1, is that our abstract specification is too abstract to prove this property.
Hence, the model checker will return a counter-example for the abstract system
which is not a counter-example for our original specification. Dealing with such
counter-examples is the topic of the next section.

5 False Counter-Example Detection and Refinement

As we are targeting the use of standard model checkers, we assume counter-
examples returned by model checking are either a finite or infinite (looping)
sequence of states as shown in Figure 3. To determine whether or not they are
false counter-examples, we follow an approach that is inspired by the work of
Clarke et al. [CGJ+00]. We show here the process to follow for finite sequences
of states. Clarke et al. argue that the process for infinite (looping) sequences of
states is a minor variation on that for finite sequences.

5.1 False Counter-Example Detection

Assume our counter-example is a sequence of states 〈t0, . . . , tm〉 where t0, . . . , tm :
State. We need to find a sequence of operations in the original (concrete) spec-
ification that passes through concrete states related to the abstract states in
the counter-example. If such a sequence of operations cannot be found we can
conclude that the corresponding states are not reachable in the concrete model
and thus, the counter-example is a false counter-example.

The initial concrete states related to the abstract state t0 are given by the
schema C0.

272 G. Smith and K. Winter

C0
CInit

∃ s : State • s = t0 ∧ Abs

The concrete states related to t1 that can be reached from a state in C0 are
given by the schema C1.

C1
CState

∃ s : State • s = t1 ∧ Abs
∃CState ′ • (∃C0 • COp1 ∨ . . . ∨ COpn) ∧ θCState = θCState ′

This schema defines the states that are related to t1 and which are post-states
of one of the operations COp1, . . . ,COpn when the pre-state is C0. Note that
the final conjunct of the second predicate equates the post-state variables to the
variables of the schema’s declaration part. The conjunct is out of the scope of
the existentially quantified variables satisfying C0.

Following this pattern, for any abstract state ti (1 � i � m) the concrete
states related to ti that can be reached from the initial state via concrete states
related to t1, . . . , ti−1 are given by the schema Ci .

Ci
CState

∃ s : State • s = ti ∧ Abs
∃CState ′ • (∃Ci−1 • COp1 ∨ . . . ∨ COpn) ∧ θCState = θCState ′

If such a schema evaluates to false, there is no reachable concrete state related
to the abstract state and hence we have a false counter-example.

5.2 The Example Revisited

The abstract specification of the unique number allocator in Section 4 is too
abstract. It does not have the property that s can never equal s2 twice (corre-
sponding to the concrete property that n! can never equal some v : N1 twice).
Hence, if we tried to check this property with a model checker a counter-example
would be returned. Model checkers generally return the counter-example that is
found first (i.e., the shortest one). In the example, this is 〈s1, s2, s2〉 (see Fig-
ure 5).

Proving Temporal Properties of Z Specifications Using Abstraction 273

Applying the above process to this counter-example, schema C0 would be:

C0
InitIO

∃ s : State •
s = s1 ∧
n! �= v ⇒ s = s1 ∧
n! = v ⇒ s = s2

which simplifies to:

C0
InitIO

since n! does not equal v in InitIO ; it equals ⊥.
Schema C1 would then be:

C1
AllocatorIO

∃ s : State •
s = s2 ∧
n! �= v ⇒ s = s1 ∧
n! = v ⇒ s = s2

∃Allocator ′
IO •

(∃ InitIO • RequestIO ∨ SendIO) ∧ θAllocator ′
IO = θAllocatorIO

which simplifies to:

C1
AllocatorIO

false

since initially (when alloc = ∅), RequestIO requires n!′ to equal ⊥ and SendIO
requires that it equals 0. Hence, 〈s1, s2, s2〉 is a false counter-example.

This process is again potentially automatable using a theorem prover to
perform the simplifications either automatically or with some user guidance.
False counter-example detection would also be possible using the algorithms
underlying a Z animator such as Possum [DHT97].

5.3 Abstraction Refinement

Once a false counter-example has been detected, we need to refine the abstract
model to avoid this counter-example during subsequent model checking. Simi-
larly to the approach of Clarke et al. [CGJ+00], we need to split the abstract

274 G. Smith and K. Winter

state that is related (via the abstraction function) to the last reachable concrete
state (see Figure 4). We separate those states of the corresponding equivalence
class that can perform a transition to the next equivalence class from those that
cannot. This separation results in two new equivalence classes which are then
mapped into two new abstract states.

In our approach, the last reachable concrete state is defined by the schema
Ci where Ci+1 is the first schema whose predicate simplifies to false. We split
the corresponding abstract state ti into two: one state where there is a transition
to the state ti+1 and another where there is no transition to the state ti+1.

This manifests itself as replacement of the value of ti by two new values sn+1
and sn+2 in type State, and a change in the abstraction function. The predicate
p ⇒ s = ti will be replaced by two new predicates:

p ∧ (∃CState ′ • (COp1 ∨ . . . ∨ COpn) ∧ q) ⇒ s = sn+1

and

p ∧ (�CState ′ • (COp1 ∨ . . . ∨ COpn) ∧ q) ⇒ s = sn+2

The first predicate models the case where the concrete state satisfies the mono-
mial p corresponding to abstract state ti and there is a transition via a concrete
operation to a concrete state satisfying the monomial q corresponding to ab-
stract state ti+1. The second predicate models the case where there is no such
transition.

Given this new abstraction function, the refined abstract specification and
property can then be constructed as before.

5.4 Refining the Example

If we apply the above to our example and the counter-example of Section 5.2,
the last reachable state is defined by the schema:

C0
InitIO

and we need to split the abstract state s = s1 by changing the definition of State
to:

State ::= s3 | s4 | s2

and replacing the predicate n! �= v ⇒ s = s1 in Abs by:

n! �= v ∧ (∃Allocator ′
IO • (RequestIO ∨ SendIO) ∧ n = v) ⇒ s = s3

which simplifies to n! �= v ∧ alloc = {v} ⇒ s3 and:

n! �= v ∧ (�Allocator ′
IO • (RequestIO ∨ SendIO) ∧ n = v) ⇒ s = s4

Proving Temporal Properties of Z Specifications Using Abstraction 275

which simplifies to n! �= v ∧ alloc �= {v} ⇒ s4.
Following the abstraction process as before, the abstract initial state schema

will simplify to:

Ainit
AState

s = s4

and the operations to:

ARequest
∆AState

s = s3 ⇒ s ′ = s3
s ∈ {s2, s4} ⇒ s ′ ∈ {s3, s4}

ASend
∆AState

s = s3 ⇒ s ′ = s2
s = s4 ⇒ s ′ = s4

This abstract specification defines the temporal structure in Figure 6.

��

��

��

��� � �� �� ��

��� �� � � ����� � ���� �� ��

��� �� � � ����� �� ���� �� ��

Fig. 6. First refinement of the abstract specification of the unique number allocator

This structure avoids the above counter-example by not allowing a transition
from the initial state s4 to s2. A transition to s2 can only occur from s3 which
is related to concrete states where alloc = {v}. However, the property, now
abstracted to:

G (s ∈ {s3, s4} ∨ X (G s ∈ {s3, s4}))

can still not be proved. In fact, three more refinements are necessary.
The first refinement, in response to the false counter-example 〈s4, s3, s2, s2〉,

results in splitting s2 into states s5 and s6 related to the concrete states where
n! = v ∧ alloc = {v} and n! = v ∧ alloc �= {v} (the former of which is
unreachable, i.e., has no ingoing transitions). The reachable sub-graph of the
temporal structure is shown in Figure 7.

The second refinement, in response to the false counter-example
〈s4, s3, s6, s3, s6〉, results in splitting s6 into states s7 and s8 related to the con-
crete states where n! = v ∧ alloc �= {v} ∧ v ∈ used and n! = v ∧ alloc �= {v} ∧

276 G. Smith and K. Winter

��

��

��

��� �� � � ����� � ���� �� ��

��� �� � � ����� �� ���� �� ��

��� � � � ����� �� ���� �� ��

Fig. 7. Second refinement of the abstract specification of the unique number allocator

v �∈ used (the latter of which is unreachable). The reachable sub-graph of the
temporal structure is shown in Figure 8.

��

��

��
��� �� � � ����� � ���� �� ��

��� �� � � ����� �� ���� �� ��

��� � � � ����� �� ��� � � � ���� � �� ��

Fig. 8. Third refinement of the abstract specification of the unique number allocator

The final refinement, in response to the false counter-example
〈s4, s3, s7, s4, s3, s7〉, results in splitting s4 into states s9 and s10 related
to the concrete states where n! �= v ∧ alloc �= {v} ∧ v �∈ used and
n! �= v ∧ alloc �= {v} ∧ v ∈ used . The reachable sub-graph of the corresponding
temporal structure is shown in Figure 9.

The abstracted property:

G (s ∈ {s3, s9, s10} ∨ X (G s ∈ {s3, s9, s10}))

can be proved in this case and hence the process terminates.
As the example shows, a number of refinements may be required before a

property can be proved (or a real counter-example found). However, the pro-
cess of false counter-example detection and refinement is systematic and hence
potentially automatable with theorem prover support for simplifying predicates.

Proving Temporal Properties of Z Specifications Using Abstraction 277

��

��

��
��� �� � � ����� � ���� �� ��

��� � � � ����� �� ��� � � � ���� � �� ��
��� �� � � ����� �� ��� � � �� ���� � �� ��
��� �� � � ����� �� ��� � � � ���� � �� ���

���

Fig. 9. Final refinement of the abstract specification of the unique number allocator

6 Conclusion and Future Work

In this paper, we have suggested a methodology for model checking Z specifica-
tions through an iterative process that employs abstraction and stepwise refine-
ment of large or even infinite models. As the first step of this process, we derive
an abstraction function from the set of atomic predicates given in the property
to be proved. This abstraction function allows us to generate an abstract model
which can be treated by a model checker. By means of Z downward simulation
laws, we proved that the derived abstraction function satisfies the conditions for
a retrieve relation. Therefore, the generation of the abstract model is sound, i.e.,
all properties preserved by downward simulation and that hold in the abstract
model are also properties of the concrete model.

However, if a property is not satisfied in the abstract model the output
counter-example indicating the violation might be a false counter-example hav-
ing no corresponding execution in the concrete model. In this case, the false
counter-example is used to refine the abstract model into a model closer to the
concrete model. This refined model will avoid the false counter-example and can
be model checked again. We iterate these last two steps of model checking and
refining the model until the property is either satisfied by the model or a real
counter-example is found.

Other work on abstraction techniques for Z or related languages has been
published. Jackson [Jac94] (for Z) as well as Wehrheim [Weh99] (for CSP-OZ),
suggest some general user guidance on how to find a suitable abstraction func-
tion. However, they do not provide any systematic support for the generation
of such an abstraction function. Mota et al. [MBS02] go further in that they
suggest an algorithm for generating an abstraction function for the language
CSPZ . Whereas our approach for this generation works syntactically based on
a combination of Z predicates, their approach is based on comparing states and
the enabledness of operations in all executable paths of a given specification.
States with the same operations enabled are considered as belonging to the same
equivalence class. This procedure immediately raises the question of efficiency
for more complex examples in which arbitrarily many executions, or executions
that do not show any behavioural pattern that repeatedly occurs, have to be

278 G. Smith and K. Winter

analysed. Moreover, Mota et al. do not handle false counter-example detection
and the corresponding refinement of the abstract model.

The techniques we have adapted have been automated in the model check-
ing community. We claim that our approach for Z is potentially automatable.
The major difficulty arising is that arbitrarily complex predicates need to be
simplified. While in many cases this could be done automatically with the aid
of theorem prover tactics, there may still be a need for some user guidance. In
any case, we need to consider modifications aimed at producing better abstrac-
tions and abstraction refinements and also examine the general efficiency of our
approach.

Our approach is restricted to Z specifications with totalised operations since,
without totalisation, arbitrary state changes result in specifications without
many interesting temporal properties. This restriction allowed us to treat op-
erations as being guarded, rather than as having preconditions outside of which
their occurrence can change the state arbitrarily. This means our approach can
also be used with guarded interpretation of Z [DB01] and with Object-Z [Smi00].
Using a structured notation like Object-Z would allow us to additionally use
specification decomposition as a means of reducing complexity. This has been
examined by Winter and Smith [WS03] and could be combined with this work
to increase its effectiveness in dealing with large specifications.

Acknowledgements. This work was supported by a University of Queensland
External Support Enabling Grant.

References

[CC79] P. Cousot and R. Cousot. Systematic design of program analysis frame-
work. In 6th ACM Symposium on Principles of Programming Languages,
1979.

[CGJ+00] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-
guided abstraction refinement. In A.P. Sistla E.A. Emerson, editor, Com-
puter Aided Verification (CAV’00), volume 1855 of LNCS. Springer-Verlag,
2000.

[CGL94] E. Clarke, O. Grumberg, and D. Long. Model checking and abstraction.
ACM Transactions on Programming Languages and Systems, 16(5):1512–
1542, 1994.

[CGP00] E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 2000.
[DB01] J. Derrick and E. Boiten. Refinement in Z and Object-Z, Foundations and

Advanced Applications. Springer-Verlag, 2001.
[DHT97] P. Strooper D. Hazel and O. Traynor. Possum: An animator for the SUM

specification language. In W. Wong and K. Leung, editors, Asia Pacific
Software Engineering Conference (APSEC 97), pages 42–51. IEEE Com-
puter Society, 1997.

[Eme90] E. A. Emerson. Temporal and modal logic. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, volume B, pages 996–1072. El-
sevier Science Publishers, 1990.

Proving Temporal Properties of Z Specifications Using Abstraction 279

[GS97] S. Graf and H. Säıdi. Construction of abstract state graphs with PVS.
In Int. Conf. on Computer Aided Verification (CAV 97), volume 1254 of
LNCS, pages 72–83. Springer-Verlag, 1997.

[Jac94] D. Jackson. Abstract model checking of infinite specifications. In
M. Naftalin, T. Denvir, and M. Bertran, editors, Formal Methods Europe
(FME’94), volume 873 of LNCS, pages 519–531. Springer-Verlag, 1994.

[KSW96] Kolyang, T. Santen, and B. Wolff. A structure preserving encoding of Z
in Isabelle/HOL. In J. von Wright, J. Grundy, and J. Harrison, editors,
Theorem Proving in Higher Order Logics (TPHOLs 96), volume 1125 of
LNCS, pages 283–298. Springer-Verlag, 1996.

[LGS+95] C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani, and S. Bensalem. Property
preserving abstractions for the verification of concurrent systems. Formal
Methods in System Design, 6(1), 1995.

[MBS02] A. Mota, P. Borba, and A. Sampaio. Mechanical abstraction of CSPZ pro-
cesses. In L.-H. Eriksson and P. Lindsay, editors, Formal Methods Europe
(FME’2002), volume 2391 of LNCS, pages 163–183. Springer-Verlag, 2002.

[Saa97] M. Saaltink. The Z-Eves system. In J. Bowen, M. Hinchey, and D. Till,
editors, International Conference of Z User (ZUM 97), volume 1212 of
LNCS, pages 72–85. Springer-Verlag, 1997.

[Smi00] G. Smith. The Object-Z Specification Language. Advances in Formal Meth-
ods. Kluwer Academic Publishers, 2000.

[Spi92] J.M. Spivey. The Z Notation: A Reference Manual. Prentice Hall, 2nd
edition, 1992.

[SS99] H. Säıdi and N. Shankar. Abstract and model check while you prove. In
N. Halbwachs and D. Peled, editors, Computer Aided Verification (CAV
99), volume 1633 of LNCS, pages 443–454. Springer-Verlag, 1999.

[TM95] I. Toyn and J. McDermid. CADiZ: An architecture for Z tools and its
implementation. Software - Practice and Experience, 25(3):305–330, 1995.

[Weh99] H. Wehrheim. Data abstraction for CSP-OZ. In J. Woodcock and J. Wing,
editors, World Congress on Formal Methods (FM’99), volume 1709 of
LNCS. Springer-Verlag, 1999.

[WS03] K. Winter and G. Smith. Compositional verification for Object-Z. In 3rd
International Conference of Z and B Users (ZB 2003), LNCS. Springer-
Verlag, 2003. This volume.

[WVF97] J. M. Wing and M. Vaziri-Farahani. A case study in model checking soft-
ware systems. Science of Computer Programming, 28:273–299, 1997.

	Introduction
	Background
	Finding the Abstraction Function
	False Counter-Example Detection and Refinement

	Abstraction of Z Specifications
	The Abstraction Process
	Handling Inputs and Outputs

	Unique Number Allocator Example
	False Counter-Example Detection and Refinement
	False Counter-Example Detection
	The Example Revisited
	Abstraction Refinement
	Refining the Example

	Conclusion and Future Work

