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Abstract. We give a more practical variant of Shanks’ 1954 algorithm for computing the
continued fraction of logb a, for integers a > b > 1, using the floor and ceiling functions and
an integer parameter c > 1. The variant, when repeated for a few values of c = 10r, enables
one to guess if logb a is rational and to find approximately r partial quotients.

1. Shanks’ algorithm

In his article [1], Shanks gave an algorithm for computing the partial quotients of logb a,
where a > b are positive integers greater than 1. Construct two sequences a0 = a, a1 =
b, a2, . . . and n0, n1, n2, . . ., where the ai are positive rationals and the ni are positive integers,
by the following rule: If i ≥ 1 and ai−1 > ai > 1, then

a
ni−1

i ≤ ai−1 < a
ni−1+1
i (1.1)

ai+1 = ai−1/a
ni−1

i . (1.2)

Clearly (1.1) and (1.2) imply ai > ai+1 ≥ 1. Also (1.1) implies ai ≤ a
1/ni−1

i−1 for i ≥ 1 and
hence by induction on i ≥ 0,

ai+1 ≤ a
1/n0···ni

0 . (1.3)

Also by induction on j ≥ 0, we get

a2j = ar
0/a

s
1, a2j+1 = au

1/a
v
0, (1.4)

where r and u are positive integers and s and v are non–negative integers.
Two possibilities arise:
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(i) ar+1 = 1 for some r ≥ 1. Then equations (1.4) imply a relation aq
0 = ap

1 for positive
integers p and q and so loga1

a0 = p/q.
(ii) ai+1 > 1 for all i. In this case the decreasing sequence {ai} tends to a ≥ 1. Also

(1.3) implies a = 1, unless perhaps ni = 1 for all sufficiently large i; but then (1.2)
becomes ai+1 = ai−1/ai and hence a = a/a = 1.

If ai−1 > ai > 1, then from (1.1) we have

ni−1 =

⌊

log ai−1

log ai

⌋

. (1.5)

Let xi = logai+1
ai if ai+1 > 1. Then we have

Lemma 1. If ai+2 > 1, then

xi = ni + 1/xi+1. (1.6)

Proof. From (1.2), we have

log ai+2 = log ai − ni log ai+1 (1.7)

1 =
log ai

log ai+1

·
log ai+1

log ai+2

− ni ·
log ai+1

log ai+2

(1.8)

= xixi+1 − nixi+1, (1.9)

from which (1.6) follows. ¤

From Lemma 1.1 and (1.5), we deduce

Lemma 2. (a) If loga1
a0 is irrational, then

xi = ni + 1/xi+1 for all i ≥ 0.

(b) If loga1
a0 is rational, with ar+1 = 1, then

xi =

{

ni + 1/xi+1, if 0 ≤ i < r − 1;
nr−1, if i = r − 1.

In view of the equation loga1
a0 = x0, Lemma 2 leads immediately to

Corollary 1.

loga1
a0 =

{

[n0, n1, . . .], if loga1
a0 is irrational;

[n0, n1, . . . , nr−1] , if loga1
a0 is rational and ar+1 = 1.

(1.10)

Remark. It is an easy exercise to show that for j ≥ 0,

a2j = a
q2j−2

0 /a
p2j−2

1 , a2j+1 = a
p2j−1

1 a
q2j−1

0 (1.11)

where pk/qk is the k–th convergent to loga1
a0.

Example 1. log2 10: Here a0 = 10, a1 = 2. Then 2
3 < 10 < 24, so n0 = 3 and a2 = 10/2

3 =
1.25.
Further, 1.253 < 2 < 1.254, so n1 = 3 and a3 = 2/1.25

3 = 1.024.
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Also, 1.0249 < 1.25 < 1.02410, so n2 = 9 and

a4 = 1.25/1.0249

= 1250000000000000000000000000/1237940039285380274899124224

= 1.0097419586 · · ·

Continuing in this fashion, we obtain Table 1 and log2 10 = [3, 3, 9, 2, 2, 4, 6, 2, 1, 1, . . .].

i ni ai pi/qi

0 3 10 3/1
1 3 2 10/3
2 9 1.25 93/28
3 2 1.024 196/59
4 2 1.0097419586 · · · 485/146
5 4 1.0043362776 · · · 2136/643
6 6 1.0010415475 · · · 13301/4004
7 2 1.0001628941 · · · 28738/8651
8 1 1.0000637223 · · · 42039/12655
9 1 1.0000354408 · · · 70777/21306
10 1.0000282805 · · ·
11 1.0000071601 · · ·

Table 1.

2. Some Pseudocode

In Table 2 we present pseudocode for the Shanks algorithm.
It soon becomes impractical to perform the calculations in multiprecision arithmetic, as

the numerators and denominators ai grow rapidly. If we truncate the decimal expansions of
the a[i] to r places and represent a positive rational a as g(a)/10r, where g(a) = b10rac,
the ratio aa/bb will be calculated as b10rg(aa)/g(bb)c. Working explicitly in integers, using
the g(a), then results in algorithm 1, also depicted in Table 2, with c = 10r, where int(x,y)
equals bx/yc, when x and y are integers.
As shown in the next section, the A[i] decrease strictly until they reach c. Also m[0]=n[0]

and we can expect a number of the initial m[i] will be partial quotients. Naturally, the larger
we take c, the more partial quotients will be produced.
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Shanks’ algorithm algorithm 1
input: integers a>b>1 input: integers a>b>1, c> 1
output: n[0],n[1],. . . output: m[0],m[1],. . .
s:= 0 s:= 0

a[0]:= a; a[1]:= b A[0]:= a*c; A[1]:= b*c

aa:= a[0]; bb:= a[1] aa:= A[0]; bb:= A[1]

while(bb > 1){ while(bb > c){
i:=0 i:=0

while(aa ≥ bb){ while(aa ≥ bb){
aa:= aa/bb aa:= int(aa*c,bb)

i:= i+1 i:= i+1

} }
a[s+2]:= aa A[s+2]:= aa

n[s]:= i m[s]:= i

t:= bb t:= bb

bb:= aa bb:= aa

aa:= t aa:= t

s:= s+1 s:= s+1

} }

Table 2.

3. Formal description of algorithm 1

We show in Theorem 2.1 below, that algorithm 1 will give the correct partial quotients
when loga1

a0 is rational and otherwise gives a parameterised sequence of integers which tend
to the correct partial quotients when loga1

a0 is irrational.
Algorithm 1 is now explicitly described. We define two integer sequences {Ai,c}, i =

0, . . . , l(c) and {mj,c}, j = 0, . . . , l(c)− 2, as follows.
Let A0,c = c · a0, A1,c = c · a1. Then if i ≥ 1 and Ai−1,c > Ai,c > c, we define mi−1,c and

Ai+1,c by means of an intermediate sequence {Bi,r,c}, defined for r ≥ 0, by Bi,0,c = Ai−1,c

and

Bi,r+1,c =

⌊

cBi,r,c

Ai,c

⌋

, r ≥ 0. (3.1)

Then c ≤ Bi,r+1,c < Bi,r,c, if Bi,r,c ≥ Ai,c > c and hence there is a unique integer m =
mi−1,c ≥ 1 such that

Bi,m,c < Ai,c ≤ Bi,m−1,c.

Then we define Ai+1,c = Bi,m,c. Hence Ai+1,c ≥ c and the sequence {Ai,c} decreases strictly
until Al(c),c = c.
There are two possible outcomes, depending on whether or not logb(a) is rational:

Theorem 2. (1) If loga1
a0 is a rational number p/q with p > q ≥ 1 and gcd(p, q) = 1,

then

(a) a0 = dp, a1 = dq for some positive integer d;
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(b) if p/q = [n0, . . . , nr−1], where nr−1 > 1 if r > 1, then
(i) Ar+1,c = c, ar+1 = 1;
(ii) Ai,c = c · ai for 0 ≤ i ≤ r + 1;
(iii) mi,c = ni for 0 ≤ i ≤ r − 1.

(2) If loga1
a0 is irrational, then

(a) m0,c = n0;

(b) l(c)→∞ and for fixed i, Ai,c/c → ai as c →∞ and mi,c = ni for all large c.

Proof. 1(a) follows from the equation ap
1 = aq

0.
1(b) is also straightforward on noticing that ai is a power of d and that we are implicitly

performing Euclid’s algorithm on the pair (p, q).
For 2(a), we have

an0

1 < a0 < an0+1
1 (3.2)

and A0,c = c · a0, A1,c = c · a1. Also by induction on 0 ≤ r ≤ n0,

B1,r,c ≥ can0−r
1 , (3.3)

B1,r,c ≤
ca0

ar
1

. (3.4)

Inequality (3.3) with r ≤ n0 − 1 gives B1,r,c ≥ A1,c, while inequality (3.4) with r = n0

gives

B1,n0,c ≤
ca0

an0

1

< ca1 = A1,c,

by inequality (3.2). Hence m0,c = n0.
For 2(b), we use induction on i ≥ 1 and assume l(c) ≥ i holds for all large c and that

Ai−1,c/c → ai−1 and Ai,c/c → ai as c →∞. This is clearly true when i = 1.
By properties of the integer part symbol, equation (3.1) gives

crAi−1,c

Ar
i,c

−
(1− cr

Ar
i,c
)

1− c
Ai,c

< Bi,r,c ≤
crAi−1,c

Ar
i,c

. (3.5)

for r ≥ 0.
Hence for r < ni−1, inequalities (3.5) give

Bi,r,c/c → ai−1/a
r
i ≥ ai−1/a

ni−1−1
i > ai.

Then, because Ai,c/c → ai, it follows that Bi,r,c > Ai,c for all large c.
Also Bi,ni−1,c/c → ai−1/a

ni−1

i < ai, so Bi,ni−1,c < Ai,c for all large c. Hence mi−1,c = ni−1

for all large c. Also Ai+1,c = Bi,ni−1,c > c, so l(c) > i + 1 for all large c. Moreover
Ai+1,c/c → ai−1/a

ni−1

i = ai+1 and the induction goes through. ¤

Example 3. Table 3 lists the sequences m0,c, . . . ,ml(c)−2,c for c = 2u, u = 1, . . . , 30, when
a0 = 3, a1 = 2.
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1,1,

1,1,1,

1,1,1,1,

1,1,1,2,

1,1,1,2,

1,1,1,2,3,

1,1,1,2,2,2,

1,1,1,2,2,2,1,

1,1,1,2,2,2,1,2,

1,1,1,2,2,3,2,3,

1,1,1,2,2,3,2,

1,1,1,2,2,3,1,2, 1, 1,1, 2,

1,1,1,2,2,3,1,3, 1, 1,3, 1,

1,1,1,2,2,3,1,4, 3, 1,

1,1,1,2,2,3,1,4, 1, 9,1,

1,1,1,2,2,3,1,5,24, 1,2,

1,1,1,2,2,3,1,5, 3, 1,1, 2,7,

1,1,1,2,2,3,1,5, 2, 1,1, 5,3, 1,

1,1,1,2,2,3,1,5, 2, 2,1, 3,1,16,

1,1,1,2,2,3,1,5, 2,15,1, 6,2

1,1,1,2,2,3,1,5, 2, 9,5, 1,2,

1,1,1,2,2,3,1,5, 2,13,1, 1,1, 6, 1, 2, 2,

1,1,1,2,2,3,1,5, 2,17,2, 7,8,

1,1,1,2,2,3,1,5, 2,19,1,49,2, 1,

1,1,1,2,2,3,1,5, 2,22,4, 8,3, 4, 1,

1,1,1,2,2,3,1,5, 2,22,2, 1,3, 1, 3, 8,

1,1,1,2,2,3,1,5, 2,22,1, 6,3, 1, 1, 3, 4, 2,

1,1,1,2,2,3,1,5, 2,23,2, 1,1, 2, 1,12,17,

1,1,1,2,2,3,1,5, 2,23,3, 2,2, 2, 2, 1, 3, 2,

1,1,1,2,2,3,1,5, 2,23,2, 1,7, 2, 2,14, 1, 1, 6,

Table 3.

In fact log2 3 = [1, 1, 1, 2, 2, 3, 1, 5, 2, 23, 2, . . .].

4. A heuristic algorithm

We can replace the bxc function in equation (3.1) by dxe, the least integer exceeding x.
This produces an algorithm with similar properties to algorithm 1, with integer sequences

{A′
i,c}, i = 0, . . . , l′(c) and {m′

j,c}, j = 0, . . . , l′(c)−2. Here A0,c = A′
0,c = a0 ·c, A1,c = A′

1,c =
a1 · c and m0,c = m′

0,c = n0. Then if i ≥ 1 and A′
i−1,c > A′

i,c > c, we define m′
i−1,c and A′

i+1,c

by means of an intermediate sequence {B ′
i,r,c}, defined for r ≥ 0, by B ′

i,0,c = A′
i−1,c and

B′
i,r+1,c =

⌈

cB′
i,r,c

A′
i,c

⌉

, r ≥ 0. (4.1)

Then c ≤ B′
i,r+1,c < B′

i,r,c, if B′
i,r,c ≥ A′

i,c > c.
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For

B′
i,r+1,c ≤

cB′
i,r,c

A′
i,c

+ 1

and
cB′

i,r,c

A′
i,c

+ 1 ≤ B′
i,r,c ⇔ cB′

i,r,c + A′
i,c ≤ A′

i,cB
′
i,r,c

⇔
A′

i,c

A′
i,c − c

≤ B′
i,r,c.

The last inequality is certainly true if B ′
i,r,c ≥ A′

i,c > c.
Hence there is a unique integer m′ = m′

i−1,c ≥ 1 such that

B′
i,m′,c < A′

i,c ≤ B′
i,m′−1,c.

Then we define A′
i+1,c = B′

i,m′,c. Hence A′
i+1,c ≥ c and the sequence {A′

i,c} decreases strictly
until A′

l′(c),c = c.
If we perform the two computations simultaneously, the common initial elements of the

sequences {mj,c} and {m
′
k,c} are likely to be partial quotients of logb(a). With c = 10r we

expect roughly r partial quotients to be produced.
If l(c) = l′(c) and Aj,c = A′

j,c and mj,c = m′
j,c for j = 0, . . . , l(c)− 2, then logb a is likely to

be rational.
In practice, to get a feeling of certainty regarding the output when c = 10r, we also run

the algorithm for c = 10t, r − 5 ≤ t ≤ r + 5.

Example 4. Table 4 lists the common values of mi,c and m′
i,c, when a = 3, b = 2 and

c = 2r, 1 ≤ r ≤ 31. It seems likely that only partial quotients are produced for all r ≥ 1.
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1: 1

2: 1

3: 1,1,1

4: 1,1,1

5: 1,1,1,2

6: 1,1,1,2

7: 1,1,1,2,2

8: 1,1,1,2,2

9: 1,1,1,2,2

10: 1,1,1,2,2

11: 1,1,1,2,2

12: 1,1,1,2,2

13: 1,1,1,2,2,3,1

14: 1,1,1,2,2,3,1

15: 1,1,1,2,2,3,1

16: 1,1,1,2,2,3,1,5

17: 1,1,1,2,2,3,1,5

18: 1,1,1,2,2,3,1,5

19: 1,1,1,2,2,3,1,5,2

20: 1,1,1,2,2,3,1,5

21: 1,1,1,2,2,3,1,5,2

22: 1,1,1,2,2,3,1,5,2

23: 1,1,1,2,2,3,1,5,2

24: 1,1,1,2,2,3,1,5,2

25: 1,1,1,2,2,3,1,5,2

26: 1,1,1,2,2,3,1,5,2

27: 1,1,1,2,2,3,1,5,2

28: 1,1,1,2,2,3,1,5,2,23

29: 1,1,1,2,2,3,1,5,2,23

30: 1,1,1,2,2,3,1,5,2,23,2

31: 1,1,1,2,2,3,1,5,2,23,2

Table 4. a = 3, b = 2, c = 2r, 1 ≤ r ≤ 31.

Example 5. Table 5 lists the common values of mi,c and m′
i,c, when a = 34, b = 2 and

c = 10r, 1 ≤ r ≤ 20. Partial quotients are not always produced, as is seen from lines 9,14
and 17.
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1: 1,2,2

2: 1,2,2,1,1

3: 1,2,2,1,1,2

4: 1,2,2,1,1,2

5: 1,2,2,1,1,2,3,1

6: 1,2,2,1,1,2,3,1,8,1

7: 1,2,2,1,1,2,3,1,8,1,1

8: 1,2,2,1,1,2,3,1,8,1,1,2

9: 1,2,2,1,1,2,3,1,8,1,1,2,2,1,13,3,2,32,7

10:1,2,2,1,1,2,3,1,8,1,1,2,2,1

11:1,2,2,1,1,2,3,1,8,1,1,2,2,1,12,1

12:1,2,2,1,1,2,3,1,8,1,1,2,2,1,12,1

13:1,2,2,1,1,2,3,1,8,1,1,2,2,1,12,1,13

14:1,2,2,1,1,2,3,1,8,1,1,2,2,1,12,1,13,3,3

15:1,2,2,1,1,2,3,1,8,1,1,2,2,1,12,1,13,3,2

16:1,2,2,1,1,2,3,1,8,1,1,2,2,1,12,1,13,3,2,2

17:1,2,2,1,1,2,3,1,8,1,1,2,2,1,12,1,13,3,2,2,18,1,1,1,1,1

18:1,2,2,1,1,2,3,1,8,1,1,2,2,1,12,1,13,3,2,2,17,1

19:1,2,2,1,1,2,3,1,8,1,1,2,2,1,12,1,13,3,2,2,17,1

20:1,2,2,1,1,2,3,1,8,1,1,2,2,1,12,1,13,3,2,2,17,1

Table 5. a = 34, b = 12, c = 10r, r = 1, . . . , 20.
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