

ON SHANKS' ALGORITHM FOR COMPUTING THE CONTINUED FRACTION OF $\log _{b} a$

TERENCE JACKSON ${ }^{1}$ AND KEITH MATTHEWS ${ }^{2}$

${ }^{1}$ Department of Mathematics
University of York, Heslington
York YO105DD, England
UK
thj1@york.ac.uk
${ }^{2}$ Department of Mathematics
University of Queensland
Brisbane, Australia, 4072
krm@maths.uq.edu.au

Abstract

We give a more practical variant of Shanks' 1954 algorithm for computing the continued fraction of $\log _{b} a$, for integers $a>b>1$, using the floor and ceiling functions and an integer parameter $c>1$. The variant, when repeated for a few values of $c=10^{r}$, enables one to guess if $\log _{b} a$ is rational and to find approximately r partial quotients.

1. Shanks' ALGORITHM

In his article [1], Shanks gave an algorithm for computing the partial quotients of $\log _{b} a$, where $a>b$ are positive integers greater than 1 . Construct two sequences $a_{0}=a, a_{1}=$ b, a_{2}, \ldots and $n_{0}, n_{1}, n_{2}, \ldots$, where the a_{i} are positive rationals and the n_{i} are positive integers, by the following rule: If $i \geq 1$ and $a_{i-1}>a_{i}>1$, then

$$
\begin{align*}
a_{i}^{n_{i-1}} & \leq a_{i-1}<a_{i}^{n_{i-1}+1} \tag{1.1}\\
a_{i+1} & =a_{i-1} / a_{i}^{n_{i-1}} . \tag{1.2}
\end{align*}
$$

Clearly (1.1) and (1.2) imply $a_{i}>a_{i+1} \geq 1$. Also (1.1) implies $a_{i} \leq a_{i-1}^{1 / n_{i-1}}$ for $i \geq 1$ and hence by induction on $i \geq 0$,

$$
\begin{equation*}
a_{i+1} \leq a_{0}^{1 / n_{0} \cdots n_{i}} . \tag{1.3}
\end{equation*}
$$

Also by induction on $j \geq 0$, we get

$$
\begin{equation*}
a_{2 j}=a_{0}^{r} / a_{1}^{s}, \quad a_{2 j+1}=a_{1}^{u} / a_{0}^{v}, \tag{1.4}
\end{equation*}
$$

where r and u are positive integers and s and v are non-negative integers.
Two possibilities arise:
(i) $a_{r+1}=1$ for some $r \geq 1$. Then equations (1.4) imply a relation $a_{0}^{q}=a_{1}^{p}$ for positive integers p and q and so $\log _{a_{1}} a_{0}=p / q$.
(ii) $a_{i+1}>1$ for all i. In this case the decreasing sequence $\left\{a_{i}\right\}$ tends to $a \geq 1$. Also (1.3) implies $a=1$, unless perhaps $n_{i}=1$ for all sufficiently large i; but then (1.2) becomes $a_{i+1}=a_{i-1} / a_{i}$ and hence $a=a / a=1$.
If $a_{i-1}>a_{i}>1$, then from (1.1) we have

$$
\begin{equation*}
n_{i-1}=\left\lfloor\frac{\log a_{i-1}}{\log a_{i}}\right\rfloor . \tag{1.5}
\end{equation*}
$$

Let $x_{i}=\log _{a_{i+1}} a_{i}$ if $a_{i+1}>1$. Then we have
Lemma 1. If $a_{i+2}>1$, then

$$
\begin{equation*}
x_{i}=n_{i}+1 / x_{i+1} . \tag{1.6}
\end{equation*}
$$

Proof. From (1.2), we have

$$
\begin{align*}
\log a_{i+2} & =\log a_{i}-n_{i} \log a_{i+1} \tag{1.7}\\
1 & =\frac{\log a_{i}}{\log a_{i+1}} \cdot \frac{\log a_{i+1}}{\log a_{i+2}}-n_{i} \cdot \frac{\log a_{i+1}}{\log a_{i+2}} \tag{1.8}\\
& =x_{i} x_{i+1}-n_{i} x_{i+1} \tag{1.9}
\end{align*}
$$

from which (1.6) follows.

From Lemma 1.1 and (1.5), we deduce
Lemma 2. (a) If $\log _{a_{1}} a_{0}$ is irrational, then

$$
x_{i}=n_{i}+1 / x_{i+1} \text { for all } i \geq 0
$$

(b) If $\log _{a_{1}} a_{0}$ is rational, with $a_{r+1}=1$, then

$$
x_{i}= \begin{cases}n_{i}+1 / x_{i+1}, & \text { if } 0 \leq i<r-1 \\ n_{r-1}, & \text { if } i=r-1\end{cases}
$$

In view of the equation $\log _{a_{1}} a_{0}=x_{0}$, Lemma 2 leads immediately to

Corollary 1.

$$
\log _{a_{1}} a_{0}= \begin{cases}{\left[n_{0}, n_{1}, \ldots\right],} & \text { if } \log _{a_{1}} a_{0} \text { is irrational; } \tag{1.10}\\ {\left[n_{0}, n_{1}, \ldots, n_{r-1}\right],} & \text { if } \log _{a_{1}} a_{0} \text { is rational and } a_{r+1}=1\end{cases}
$$

Remark. It is an easy exercise to show that for $j \geq 0$,

$$
\begin{equation*}
a_{2 j}=a_{0}^{q_{2 j-2}} / a_{1}^{p_{2 j-2}}, \quad a_{2 j+1}=a_{1}^{p_{2 j-1}} a_{0}^{q_{2 j-1}} \tag{1.11}
\end{equation*}
$$

where p_{k} / q_{k} is the k-th convergent to $\log _{a_{1}} a_{0}$.
Example 1. $\log _{2}$ 10: Here $a_{0}=10, a_{1}=2$. Then $2^{3}<10<2^{4}$, so $n_{0}=3$ and $a_{2}=10 / 2^{3}=$ 1.25.

Further, $1.25^{3}<2<1.25^{4}$, so $n_{1}=3$ and $a_{3}=2 / 1.25^{3}=1.024$.

Also, $1.024^{9}<1.25<1.024^{10}$, so $n_{2}=9$ and

$$
\begin{aligned}
a_{4} & =1.25 / 1.024^{9} \\
& =1250000000000000000000000000 / 1237940039285380274899124224 \\
& =1.0097419586 \cdots
\end{aligned}
$$

Continuing in this fashion, we obtain Table 1 and $\log _{2} 10=[3,3,9,2,2,4,6,2,1,1, \ldots]$.

i	n_{i}	a_{i}	p_{i} / q_{i}
0	3	10	$3 / 1$
1	3	2	$10 / 3$
2	9	1.25	$93 / 28$
3	2	1.024	$196 / 59$
4	2	$1.0097419586 \cdots$	$485 / 146$
5	4	$1.0043362776 \cdots$	$2136 / 643$
6	6	$1.0010415475 \cdots$	$13301 / 4004$
7	2	$1.0001628941 \cdots$	$28738 / 8651$
8	1	$1.0000637223 \cdots$	$42039 / 12655$
9	1	$1.0000354408 \cdots$	$70777 / 21306$
10		$1.0000282805 \cdots$	
11		$1.0000071601 \cdots$	

Table 1.

2. Some Pseudocode

In Table 2 we present pseudocode for the Shanks algorithm.
It soon becomes impractical to perform the calculations in multiprecision arithmetic, as the numerators and denominators a_{i} grow rapidly. If we truncate the decimal expansions of the a [i] to r places and represent a positive rational a as $g(a) / 10^{r}$, where $g(a)=\left\lfloor 10^{r} a\right\rfloor$, the ratio aa/bb will be calculated as $\left\lfloor 10^{r} g(a a) / g(b b)\right\rfloor$. Working explicitly in integers, using the $g(a)$, then results in algorithm 1, also depicted in Table 2 , with $c=10^{r}$, where int (x, y) equals $\lfloor x / y\rfloor$, when x and y are integers.

As shown in the next section, the A [i] decrease strictly until they reach c . Also $\mathrm{m}[0]=\mathrm{n}$ [0] and we can expect a number of the initial m [i] will be partial quotients. Naturally, the larger we take c, the more partial quotients will be produced.

Shanks' algorithm	algorithm 1
```input: integers a>b>1 output: n[0],n[1],... s:= 0 a[0]:= a; a[1]:= b aa:= a[0]; bb:= a[1] while(bb > 1){ i:=0 while(aa }\geq\mathrm{ bb){ aa:= aa/bb i:= i+1 } a[s+2]:= aa n[s]:= i t:= bb bb:= aa aa:= t s:= s+1 }```	```input: integers a>b>1, c>1 output: m[0],m[1],... s:= 0 A[0]:= a*c; A[1]:= b*c aa:= A[0]; bb:= A[1] while(bb > c){ i:=0 while(aa \geq bb){ aa:= int(aa*c,bb) i:= i+1 } A[s+2]:= aa m[s]:= i t:= bb bb:= aa aa:= t s:= s+1 }```

Table 2.

## 3. Formal description of algorithm 1

We show in Theorem 2.1 below, that algorithm 1 will give the correct partial quotients when $\log _{a_{1}} a_{0}$ is rational and otherwise gives a parameterised sequence of integers which tend to the correct partial quotients when $\log _{a_{1}} a_{0}$ is irrational.

Algorithm 1 is now explicitly described. We define two integer sequences $\left\{A_{i, c}\right\}, i=$ $0, \ldots, l(c)$ and $\left\{m_{j, c}\right\}, j=0, \ldots, l(c)-2$, as follows.

Let $A_{0, c}=c \cdot a_{0}, A_{1, c}=c \cdot a_{1}$. Then if $i \geq 1$ and $A_{i-1, c}>A_{i, c}>c$, we define $m_{i-1, c}$ and $A_{i+1, c}$ by means of an intermediate sequence $\left\{B_{i, r, c}\right\}$, defined for $r \geq 0$, by $B_{i, 0, c}=A_{i-1, c}$ and

$$
\begin{equation*}
B_{i, r+1, c}=\left\lfloor\frac{c B_{i, r, c}}{A_{i, c}}\right\rfloor, r \geq 0 \tag{3.1}
\end{equation*}
$$

Then $c \leq B_{i, r+1, c}<B_{i, r, c}$, if $B_{i, r, c} \geq A_{i, c}>c$ and hence there is a unique integer $m=$ $m_{i-1, c} \geq 1$ such that

$$
B_{i, m, c}<A_{i, c} \leq B_{i, m-1, c}
$$

Then we define $A_{i+1, c}=B_{i, m, c}$. Hence $A_{i+1, c} \geq c$ and the sequence $\left\{A_{i, c}\right\}$ decreases strictly until $A_{l(c), c}=c$.

There are two possible outcomes, depending on whether or not $\log _{b}(a)$ is rational:
Theorem 2. (1) If $\log _{a_{1}} a_{0}$ is a rational number $p / q$ with $p>q \geq 1$ and $\operatorname{gcd}(p, q)=1$, then
(a) $a_{0}=d^{p}, a_{1}=d^{q}$ for some positive integer $d$;
(b) if $p / q=\left[n_{0}, \ldots, n_{r-1}\right]$, where $n_{r-1}>1$ if $r>1$, then
(i) $A_{r+1, c}=c, a_{r+1}=1$;
(ii) $A_{i, c}=c \cdot a_{i}$ for $0 \leq i \leq r+1$;
(iii) $m_{i, c}=n_{i}$ for $0 \leq i \leq r-1$.
(2) If $\log _{a_{1}} a_{0}$ is irrational, then
(a) $m_{0, c}=n_{0}$;
(b) $l(c) \rightarrow \infty$ and for fixed $i, A_{i, c} / c \rightarrow a_{i}$ as $c \rightarrow \infty$ and $m_{i, c}=n_{i}$ for all large $c$.

Proof. 1(a) follows from the equation $a_{1}^{p}=a_{0}^{q}$.
$1(\mathrm{~b})$ is also straightforward on noticing that $a_{i}$ is a power of $d$ and that we are implicitly performing Euclid's algorithm on the pair $(p, q)$.

For 2(a), we have

$$
\begin{equation*}
a_{1}^{n_{0}}<a_{0}<a_{1}^{n_{0}+1} \tag{3.2}
\end{equation*}
$$

and $A_{0, c}=c \cdot a_{0}, A_{1, c}=c \cdot a_{1}$. Also by induction on $0 \leq r \leq n_{0}$,

$$
\begin{align*}
B_{1, r, c} & \geq c a_{1}^{n_{0}-r}  \tag{3.3}\\
B_{1, r, c} & \leq \frac{c a_{0}}{a_{1}^{r}} \tag{3.4}
\end{align*}
$$

Inequality (3.3) with $r \leq n_{0}-1$ gives $B_{1, r, c} \geq A_{1, c}$, while inequality (3.4) with $r=n_{0}$ gives

$$
B_{1, n_{0}, c} \leq \frac{c a_{0}}{a_{1}^{n_{0}}}<c a_{1}=A_{1, c},
$$

by inequality (3.2). Hence $m_{0, c}=n_{0}$.
For 2(b), we use induction on $i \geq 1$ and assume $l(c) \geq i$ holds for all large $c$ and that $A_{i-1, c} / c \rightarrow a_{i-1}$ and $A_{i, c} / c \rightarrow a_{i}$ as $c \rightarrow \infty$. This is clearly true when $i=1$.

By properties of the integer part symbol, equation (3.1) gives

$$
\begin{equation*}
\frac{c^{r} A_{i-1, c}}{A_{i, c}^{r}}-\frac{\left(1-\frac{c^{r}}{A_{i, c}^{r}}\right)}{1-\frac{c}{A_{i, c}}}<B_{i, r, c} \leq \frac{c^{r} A_{i-1, c}}{A_{i, c}^{r}} \tag{3.5}
\end{equation*}
$$

for $r \geq 0$.
Hence for $r<n_{i-1}$, inequalities (3.5) give

$$
B_{i, r, c} / c \rightarrow a_{i-1} / a_{i}^{r} \geq a_{i-1} / a_{i}^{n_{i-1}-1}>a_{i} .
$$

Then, because $A_{i, c} / c \rightarrow a_{i}$, it follows that $B_{i, r, c}>A_{i, c}$ for all large $c$.
Also $B_{i, n_{i-1}, c} / c \rightarrow a_{i-1} / a_{i}^{n_{i-1}}<a_{i}$, so $B_{i, n_{i-1}, c}<A_{i, c}$ for all large $c$. Hence $m_{i-1, c}=n_{i-1}$ for all large $c$. Also $A_{i+1, c}=B_{i, n_{i-1}, c}>c$, so $l(c)>i+1$ for all large $c$. Moreover $A_{i+1, c} / c \rightarrow a_{i-1} / a_{i}^{n_{i-1}}=a_{i+1}$ and the induction goes through.

Example 3. Table 3 lists the sequences $m_{0, c}, \ldots, m_{l(c)-2, c}$ for $c=2^{u}, u=1, \ldots, 30$, when $a_{0}=3, a_{1}=2$.

```
 1,1,
 1,1,1,
 1,1,1,1,
 1,1,1,2,
 1,1,1,2,
 1,1,1,2,3,
 1,1,1,2,2,2,
 1,1,1,2,2,2,1,
 1,1,1,2,2,2,1,2,
 1,1,1,2,2,3,2,3,
 1,1,1,2,2,3,2,
 1,1,1,2,2,3,1,2, 1, 1,1, 2,
 1,1,1,2,2,3,1,3, 1, 1,3, 1,
 1,1,1,2,2,3,1,4, 3, 1,
 1,1,1,2,2,3,1,4, 1, 9,1,
 1,1,1,2,2,3,1,5,24, 1,2,
 1,1,1,2,2,3,1,5, 3, 1,1, 2,7,
 1,1,1,2,2,3,1,5, 2, 1,1, 5,3, 1,
 1,1,1,2,2,3,1,5, 2, 2,1, 3,1,16,
 1,1,1,2,2,3,1,5, 2,15,1, 6,2
 1,1,1,2,2,3,1,5, 2, 9,5, 1,2,
 1,1,1,2,2,3,1,5, 2,13,1, 1,1, 6, 1, 2, 2,
 1,1,1,2,2,3,1,5, 2,17,2, 7,8,
 1,1,1,2,2,3,1,5, 2,19,1,49,2, 1,
 1,1,1,2,2,3,1,5, 2,22,4, 8,3, 4, 1,
 1,1,1,2,2,3,1,5, 2,22,2, 1,3, 1, 3, 8,
 1,1,1,2,2,3,1,5, 2,22,1, 6,3, 1, 1, 3, 4, 2,
 1,1,1,2,2,3,1,5, 2,23,2, 1,1, 2, 1,12,17,
 1,1,1,2,2,3,1,5, 2,23,3, 2,2, 2, 2, 1, 3, 2,
 1,1,1,2,2,3,1,5, 2,23,2, 1,7, 2, 2,14, 1, 1, 6,
```

Table 3.

In fact $\log _{2} 3=[1,1,1,2,2,3,1,5,2,23,2, \ldots]$.

## 4. A heuristic algorithm

We can replace the $\lfloor x\rfloor$ function in equation (3.1) by $\lceil x\rceil$, the least integer exceeding $x$.
This produces an algorithm with similar properties to algorithm 1, with integer sequences $\left\{A_{i, c}^{\prime}\right\}, i=0, \ldots, l^{\prime}(c)$ and $\left\{m_{j, c}^{\prime}\right\}, j=0, \ldots, l^{\prime}(c)-2$. Here $A_{0, c}=A_{0, c}^{\prime}=a_{0} \cdot c, A_{1, c}=A_{1, c}^{\prime}=$ $a_{1} \cdot c$ and $m_{0, c}=m_{0, c}^{\prime}=n_{0}$. Then if $i \geq 1$ and $A_{i-1, c}^{\prime}>A_{i, c}^{\prime}>c$, we define $m_{i-1, c}^{\prime}$ and $A_{i+1, c}^{\prime}$ by means of an intermediate sequence $\left\{B_{i, r, c}^{\prime}\right\}$, defined for $r \geq 0$, by $B_{i, 0, c}^{\prime}=A_{i-1, c}^{\prime}$ and

$$
\begin{equation*}
B_{i, r+1, c}^{\prime}=\left\lceil\frac{c B_{i, r, c}^{\prime}}{A_{i, c}^{\prime}}\right\rceil, r \geq 0 \tag{4.1}
\end{equation*}
$$

Then $c \leq B_{i, r+1, c}^{\prime}<B_{i, r, c}^{\prime}$, if $B_{i, r, c}^{\prime} \geq A_{i, c}^{\prime}>c$.

For

$$
B_{i, r+1, c}^{\prime} \leq \frac{c B_{i, r, c}^{\prime}}{A_{i, c}^{\prime}}+1
$$

and

$$
\begin{aligned}
\frac{c B_{i, r, c}^{\prime}}{A_{i, c}^{\prime}}+1 \leq B_{i, r, c}^{\prime} & \Leftrightarrow c B_{i, r, c}^{\prime}+A_{i, c}^{\prime} \leq A_{i, c}^{\prime} B_{i, r, c}^{\prime} \\
& \Leftrightarrow \frac{A_{i, c}^{\prime}}{A_{i, c}^{\prime}-c} \leq B_{i, r, c}^{\prime} .
\end{aligned}
$$

The last inequality is certainly true if $B_{i, r, c}^{\prime} \geq A_{i, c}^{\prime}>c$.
Hence there is a unique integer $m^{\prime}=m_{i-1, c}^{\prime} \geq 1$ such that

$$
B_{i, m^{\prime}, c}^{\prime}<A_{i, c}^{\prime} \leq B_{i, m^{\prime}-1, c}^{\prime} .
$$

Then we define $A_{i+1, c}^{\prime}=B_{i, m^{\prime}, c}^{\prime}$. Hence $A_{i+1, c}^{\prime} \geq c$ and the sequence $\left\{A_{i, c}^{\prime}\right\}$ decreases strictly until $A_{l^{\prime}(c), c}^{\prime}=c$.

If we perform the two computations simultaneously, the common initial elements of the sequences $\left\{m_{j, c}\right\}$ and $\left\{m_{k, c}^{\prime}\right\}$ are likely to be partial quotients of $\log _{b}(a)$. With $c=10^{r}$ we expect roughly $r$ partial quotients to be produced.

If $l(c)=l^{\prime}(c)$ and $A_{j, c}=A_{j, c}^{\prime}$ and $m_{j, c}=m_{j, c}^{\prime}$ for $j=0, \ldots, l(c)-2$, then $\log _{b} a$ is likely to be rational.

In practice, to get a feeling of certainty regarding the output when $c=10^{r}$, we also run the algorithm for $c=10^{t}, r-5 \leq t \leq r+5$.
 $c=2^{r}, 1 \leq r \leq 31$. It seems likely that only partial quotients are produced for all $r \geq 1$.

$$
\begin{aligned}
1: & 1 \\
2: & 1 \\
3: & 1,1,1 \\
4: & 1,1,1 \\
5: & 1,1,1,2 \\
6: & 1,1,1,2 \\
7: & 1,1,1,2,2 \\
8: & 1,1,1,2,2 \\
9: & 1,1,1,2,2 \\
10: & 1,1,1,2,2 \\
11: & 1,1,1,2,2 \\
12: & 1,1,1,2,2 \\
13: & 1,1,1,2,2,3,1 \\
14: & 1,1,1,2,2,3,1 \\
15: & 1,1,1,2,2,3,1 \\
16: & 1,1,1,2,2,3,1,5 \\
17: & 1,1,1,2,2,3,1,5 \\
18: & 1,1,1,2,2,3,1,5 \\
19: & 1,1,1,2,2,3,1,5,2 \\
20: & 1,1,1,2,2,3,1,5 \\
21: & 1,1,1,2,2,3,1,5,2 \\
22: & 1,1,1,2,2,3,1,5,2 \\
23: & 1,1,1,2,2,3,1,5,2 \\
24: & 1,1,1,2,2,3,1,5,2 \\
25: & 1,1,1,2,2,3,1,5,2 \\
26: & 1,1,1,2,2,3,1,5,2 \\
27: & 1,1,1,2,2,3,1,5,2 \\
28: & 1,1,1,2,2,3,1,5,2,23 \\
29: & 1,1,1,2,2,3,1,5,2,23 \\
30: & 1,1,1,2,2,3,1,5,2,23,2 \\
31: & 1,1,1,2,2,3,1,5,2,23,2
\end{aligned}
$$

TABLE 4. $a=3, b=2, c=2^{r}, 1 \leq r \leq 31$.

Example 5. Table 5 lists the common values of $m_{i, c}$ and $m_{i, c}^{\prime}$, when $a=34, b=2$ and $c=10^{r}, 1 \leq r \leq 20$. Partial quotients are not always produced, as is seen from lines 9,14 and 17 .

```
1: 1,2,2
2: 1,2,2,1,1
3: 1,2,2,1,1,2
4: 1,2,2,1,1,2
5: 1,2,2,1,1,2,3,1
6: 1,2,2,1,1,2,3,1,8,1
7: 1, 2, 2, 1,1,2, 3,1,8,1,1
8: 1, 2, 2, 1,1, 2, 3, 1, 8, 1,1,2
9: 1, 2, 2, 1, 1,2, 3, 1, 8, 1, 1, 2, 2, 1, 13, 3, 2, 32,7
10:1,2,2,1,1,2,3,1,8,1,1,2,2,1
11:1,2,2,1,1,2,3,1,8,1,1,2,2,1,12,1
12:1,2,2,1,1,2,3,1,8,1,1,2,2,1,12,1
13:1,2,2,1,1,2,3,1,8,1,1,2,2,1,12,1,13
14:1,2,2,1,1,2,3,1,8,1,1,2,2,1,12,1,13,3,3
15:1,2,2,1,1,2,3,1,8,1,1, 2, 2, 1, 12,1,13,3,2
16:1,2,2,1,1,2,3,1,8,1,1,2,2,1,12,1,13,3,2,2
17:1,2,2,1,1,2,3,1,8,1,1,2,2,1,12,1,13,3,2, 2, 18, 1, 1, 1, 1, 1
18:1,2,2,1,1,2,3,1,8,1,1,2,2,1,12,1,13,3,2,2,17,1
19:1,2,2,1,1,2,3,1,8,1,1,2,2,1,12,1,13,3,2,2,17,1
20:1,2,2,1,1,2,3,1,8,1,1,2,2,1,12,1,13,3,2,2,17,1
```

TABLE 5. $a=34, b=12, c=10^{r}, r=1, \ldots, 20$.

## 5. Acknowledgement

The second author is grateful for the hospitality provided by the School of Mathematical Sciences, ANU, where research for part of this paper was carried out.

## References

1. D. Shanks, A logarithm algorithm, Math. Tables and Other Aids to Computation 8 (1954), 60-64.

2000 Mathematics Subject Classification: 11D09.
Keywords: Shanks' algorithm, continued fraction, log, heuristic algorithm
(Concerned with sequence A028507.)
Received November 19, 2002; revised version received December 6, 2002. Published in Journal of Integer Sequences December 10, 2002.

Return to Journal of Integer Sequences home page.

