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We investigate a direct test of teleportation efficacy based on a Mach-Zehnder interferometer. The analysis
is performed for continuous-variable teleportation of both discrete and continuous observables.
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[. INTRODUCTION The measurement of either fidelity or the conditional vari-
ance involves a “third” person, Victo(the verifiej, who

Information is not independent of the physical laws usedprepares the input states and examines the teleported states to
to store and processJit]. The unique properties of quantum determine the quality of the teleportation. For example, Vic-
mechanics lead to radically different ways of communicatingtor may prepare photons in particular polarization states and
and processing informatiof2]. The study of “quantum in- then check if they are still in the same states after teleporta-
formation” is currently one of the fastest growing areas oftion [4,5]. For continuous-variable experiments, the signal
physics. and noise properties of the input and output are compared

Quantum teleportatiof8—7] is a method by which quan- [7,15].
tum information can be passed through a classical channel Another way of testing the efficacy of teleportation is to
and successfully retrieved at another location. The sharing direate a pair of quantum correlated objects, teleport one of
entanglement between the send&iice) and receive(Bob)  them, then test directly to what extent they are still quantum
is essential for teleportation as it provides the “quantumcerrelated. An example of this is polarization entanglement
key” needed to retrieve the quantum informati@]. In this ~ SWappind 6] in which one of an entangled pair of photons is
way, an unknown quantum state of an object can be tranggaleported and then the degree of Bell entanglement that re-

ferred through a classical channel, with neither Bob nor Al_mains between them is determined by measuring the visibil-

ice knowing the state. As well as being a quantum commulty of their photon correlations. The direct analog of this

S : . e experiment using continuous-variable teleportation has also
nication tool, teleportation has also been identified as Leen proposeflL6]. Tests based on the swapping of Einstein
qguantum computational primitivd9]. Teleportation was : '

. . . : Podolsky, and RoseEPR-type entanglement have also
originally described for discrete variables but now has beerﬂ)een proposeftL7,18. Another possibility is to teleport one

e>§tended to cqntinL_lous variables such as the quadrature aqy, of spatial superposition and then measure the preser-
plitudes of optical field$10]. _ _ vation of the superposition directly through their interference
The efficacy of teleportation can be characterized in &naracteristics. These types of tests are important for three
number of distinct ways. Traditionally fidelity is used for this reasons{i) They directly observe the preservation of quan-
purpose[11]. Fidelity, F, gives a measure of the quality of tum correlations rather than just inferring thefin) such spe-
the teleported state by evaluating the overlap between theific situations highlight aspects of the physics of the telepor-
input state,|), and the teleported output state, via F tation process not obvious from considering more general
=(y|p|y). Fidelity is state-dependent, i.e., the fidelity of the figures of merit; andiii) from a practical point of view it
reconstructed state depends both on the quality of the telavould seem unlikely that teleportation could be successfully
porter and on the class of input states from which the unincorporated in any quantum information application unless
known state is picked. interference and entanglement effects can be maintained
For continuous-variable teleporters, criteria similar toabove some threshold level.
those used to evaluate quantum nondemolition measure- A spatial superposition test can be applied to single pho-
ments have been propos®,13. The most general of these ton polarization states using a Mach-Zehnder interferometer
is the amplitude conditional variance between the input andl19]. An interesting feature of such a test is that it is possible
output beam$12,14. The conditional variance measures thefor Alice and Bob to verify that their teleporter is operating
amount of uncorrelated noise that is added to the quanturgorrectly without knowing the input states. In this paper, we
state in the teleportation process. As such, it is a measure generalize this test to cover a broad range of input states,
the quality of the teleporter itself, independent of the state tancluding continuous-variable states. We will begin, in Sec.
be teleported. A continuous-variable teleporter introducesl, by introducing the model for a teleporter we will use
noise with Gaussian statistics, thus the conditional variancehroughout the paper. In Sec. Ill, we will review the opera-
characterizes the added noise to all orders. Hence, once thien of the Mach-Zehnder interferometer as a teleportation
conditional variance is known, the fidelity with which any tester for single photon, polarization superposition inputs.
state will be teleported can be calculated. Section IV will examine more general low photon number
states and in Sec. V we will generalize the technique to input
states with continuous degrees of freedom. In Sec. VI we
*Email address: ralph@physics.ug.edu.au will examine the relationship between our interferometric
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() inoar Xi=a,+al and X_ =i(a,—a!) both have uncertainties
amplifier a, | € much greater than the quantum limit, i.4(X;)?>1. This
Dour means that simultaneous measurements of the conjugate
guadratures can extract all the information carriecpyvith
negligible penalty. The quantum noise added due to the si-
Vs multaneous measurements will be negligible compared to the
amplified quadrature uncertainties. It is thus possible to con-
vert and then transmit the information carried in this beam
(b) linear over any available classical channgadio, copper wires,
amplifier etc). However, it is convenient, and no less general, to retain
an optical classical channel. Further discussion and a simple
proof of the classical nature of this channel can be found in
Appendix A.

When Bob receives the classical beam he attempts to re-
trieve the quantum state of the input by simply attenuating
the beam with a beam splitter of transmissiriThe output
field is a,= Vea,— V1—ev,, wherev, is the vacuum
mode incident on the unused port of the beam splitter. The
final output field is thus

AMw) V1=7,

TH
/\ t
Qi 1y LA Qoul @) =N (w)ajp(w)+ ——U17 V2 +NMw) ——va,
m’% Ay y ﬁ g N 7a N 7]a
aiﬂ —» aout (2)
PBS TV PBS

where the total classical channel gain is given dbfw)

FIG. 1. Schematics of the all optical teleporter(&a classical _ /—G(w)Sﬂa and we have assumed the classical channel
teleporter is show(i.e.., with no entanglementin (b) the inclus.ion limit G—o ande—0. In practice, we are only interested in
of entanglem_en(tEPF@ IS ShOV_V”- In(c) the separate teleportation of finite bandwidths. For photon counting experiments this usu-
the two polarlzatlor_l modes is r_epresented._TV_and TH are the teleélly means frequency filters will be placed in front of the
porters for the vertical and horizontal polarization components, reaetectors For continuous-variable experiments only a finite
spectively. PBS stands for polarizing beam splitter. range of RF frequencies will be analyzed. We will assume

that the optical amplifier, and thus has a flat response over
"Re detection bandwidth. Hence, setting unity gain=()

and negligible loss §,=1) we obtain the usual result

(©

measure and the other teleportation measures. In Sec. VII
will discuss and conclude.

Il. THE TELEPORTER agu=aintvi—v,, 3

The teleporter we will consider in this paper is an all\\hereby two vacuum noise penalties are imposed by classi-
optical device using continuous-variablgqueezing en- teleportatior 10,12,

tanglement as a quantum resouf26]. This model is chosen  5yantum teleportation can be achieved by replacing the
for its versatility in being able to teleport all the input statesjndependent vacuum inputs; andv,, with Einstein, Pod-

considered in this paper. In an experimental situation, MOr)sky, and RosefEPR entangled beam@1], b; andb,, as
input specialized devices may be used. Consider first thepown in Fig. 1b). Such beams have the very strong corre-

“classical teleportation” device depicted in Fig(&. By |ation property that both their difference amplitude quadra-
classical we mean we attempt to transfer the quantum mfort-

; ; ; . re varianceA (X, — X»)?, and their sum phase quadrature
mation through a classical channel without the assistance of. A Xy - 2b2) P g -
variance, A(X,; + X,,)°, are less than the quantum limit

entanglement. The input light fielé,-n(t),_ is sent through @ (=1) such beams can be generated by subthreshold nonde-
linear optical amplifier by Alice. In Fourier space the OUtpUtgenerate parametric amplificati¢81] or by the mixing of

of a linear amplifier can be written as independent squeezed sourd@®,12. For nondegenerate
parametric amplification these beams can be represented by
ac(@)=\7,G(w)ap(w) +\[G(w)—1]v]

FVG() (1= 7a)va, @  Pr@= Vi (@vat VrplH(w) = 1Joit V1= e,
b2(w)=nb2H(w)vd+ nb2[H(w)—1]Jv3T+1— yb2vb2,

whereG(w) is the(frequency-dependenamplifier gain and

v, andv, are vacuum noise inputs due to the gain and in- (4
ternal losses #,) of the amplifier, respectively. If the gain is

sufficiently large G>1) thena, can be regarded as a clas- whereH (w) is the parametric gain and as before #is and
sical field. This is because the conjugate quadrature variabless are efficiencies and resultant vacuum inputs, respectively.
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The strength of the squeezing entanglement can be charac- E
terized byVq,= (VH— vH—1)2, which varies from not en-
tangled ¥.,=1) to strongly entangled\,—0) as the
parametric gain increases. We will also refer to the percent-
age of entanglement squeezing as—(.,)xX100%. The
output field is now given by

JGa, +G-1b]

Aou @) =N (@) ajn(®)

1- 174
t \
\/—bl(“’)_ bZ("’)) o) \/— Va, FIG. 2. Schematic of the linear amplifier used in the teleporters.
Ta 7a The PA's stand for parametric amplifiers which are pumped in phase
(5) (E) and out of phase-{ E) with the field.

+

which, because of the strong correlations betwegandb,, c= i(a- +hby)
reduces to 2 " v
2ol ©) =N (©)an(w) + [N () VH(w) ~ VH(w) - 110} d= a—by). @®
+[VH(@) =MH(w)—1]v, (6) V2

The beams are amplified by degenerate parametric amplifiers
in the absence of losse{= 7,1 = 7p>=1). Again we as- of equal gains but with ar phase shift between their pump
sume(and will do so for the remainder of the papéat all  (E) phases. This results in the outputs
gains are flat across the detection bandwidth. In the limit

of very high parametric gainH—, Vg,—0) and unity ¢'=Ge+G-1c',
classical channel gailZn\(=1) the output becomes identical 9
to the input @,,— a;y). This is ideal quantum teleportation d’'=Gd—\G—1d".

as the only direct link between the input and output is the o )

classical fielda., yet arbitrarily accurate reconstruction of Récombining these beams on a beamsplitter then produces
the input state is, in principle, possible with a sufficiently the desired output,= JGay,+ G~ 1b] .

strong EPR correlation. The uncertainty principle is not com-

promised because the variances of each of the quadratures of Ill. THE MACH-ZEHNDER INTERFEROMETER

b, by themselves are very noisy. Thus the information about AND THE TELEPORTER

a;, carried on the classical field is buried in this noise and Wi ine the eff f the tel ter d ibed
cannot be extracted by using the classical field alone. An € now examine the €etlicacy ot the teleporter describe

important operating point is the classical channel ge(;ﬂ in the previous section as characterized using an interferom-

o . . L eter. In this section we will consider idealized single photon
(;utézlt fi(j,—-l)d/\i/sﬁg.;i\\i\g:\ht:?/ls gain, in the absence of losses, thepoIarization superpositions as inputs to illustrate the basic

physics. In the next section, we will consider more general
polarization-number inputs. In the following section, con-
aoutzy\oplain+(\/1—)\§pt)v4, (7) tinuous _variat_)le inputs will be considered. _ o
Consider first the setup shown schematically in Fig) 3
. L . . [see also Fig. @)]. Basically we place a teleporter in one
i.e., it is simply an attenuated version of the inpu6]. The 51 of 4 Mach-zehnder interferometer, inject a single photon
teleporter can be generalized to deal with arbitrary polarizagiate in an arbitrary polarization superposition state into one
tions of the input field by decomposing the field into or- ot then use the interference visibility at the output ports to
thogonal polarization componenftssing a polarizing beam-  characterize the efficacy of teleportation. A useful feature of
sphtter)_ and teleporting the individual components separatelyyig setup is that the visibility does not depend on the input
[see Fig. Lc)]. _ _ .. state of the single photon, so we can assess how well the
_ The question remains as to how the linear amplifier ing|eporter is working without knowing which particular po-
Fig. 1 could be constructed. This is not trivial as in standardgization state is going into it. Let us see how this works.

optical amplifiers the source of the vacuum mode is NOt  The input for one port of the interferometer is in the ar-
available for modification. For example, in a laser amp“f'erbitrary polarization superposition state

the physical origin of the vacuum input {) is collisionally

or phonon-induced dipole fluctuations of the gain medium |#)a=x|1,00+y|0,1), (10
[23]. One solution is shown schematically in Fig. 2. The

input beam is mixed with the EPR beam, at a 50:50 beam where |n,,,n,)=|ny)n®|Nn,),, N, and n, are the photon
splitter. The output beams are numbers in the horizontal and vertical polarizations respec-

012319-3



T. C. RALPH
(a) bh,v
C C
ah‘v h.v »A hy.T
teleporter
d
h,
N\ . > ah,v,out
\/
bh,v‘out
(b) P
C ¢
ah’v hy > hyv.T
teleporter
lrw
d d
h hv,A
N\ o - > ah,v,out
v
gh,v bh,v,out

FIG. 3. Schematics of interferometric test arrangements.

tively, and|x|?+|y|?=1. The input of the other port is in the
vacuum staté¢),=|0,0). The operators in the Heisenberg
picture for the four input mode&wo spatial times two po-
larization are a, and a, (superposition and b, and b,

PHYSICAL REVIEW A 65 012319

<agutaout> :<¢|a<¢|b<¢|f(ah,outT+ av,outT)
X (ah,out+ av,out)|¢>a| ¢>b| ¢>f
=0.251+N)%+(AVH—VH-1)2,

<bgutbout> :<¢|a<¢|b<¢|f(bh,outT+ bv,outT)
X (bh,out+ bv,out)|¢>a| ¢>b| (b)f
=0.251-M\)2+(ANVH—VH-1)2

In the limit of very strong entanglement squeezinde
—0), we find from Eq(12) thatcy, , r— ¢y, for unity gain
(A=1), i.e., perfect teleportation. For the same conditions
(and only for these conditionghe visibility of the Mach-
Zehnder outputs,

(14

_ <agutaout> B <bgulbout>

= (@l @ou + (Do) (19

goes to 1, indicating the state of the teleported arm exactly
matches that of the unteleported arm. Notice that the expec-
tation value§Eq. (14)], and thus the visibility, do not depend
on the actual input stat@mo dependence anandy). Hence

we can demonstrate that the teleporter is operating ideally

(vacuum. We propagate these operators through the Macheven if we do not know the state of the input. Classical limits

Zehnder interferometefincluding the teleporter After the
first beam splitter we can write

1

C e —
h,v \/5

1
dh,u :_(ah,v - bh,v) .
V2

(ah,v + bh,v)!

(11)

One of the beam&) is then teleported. Under conditions for
which losses can be neglected, we can use(&qto obtain

ChoT=ACho+ (MVH=VH=1)b]
+(VH=AVH=1)by,, .

12

can be set by examining the visibility obtained with no en-
tanglement H=1). In Fig. 5, we plot the visibility versus
feedforward gain in the teleporter for the cases of no en-
tanglement0%), 50% entanglement squeezing, and 90% en-
tanglement squeezing. Maximum visibility occurs for the
gain condition

VaH-3
VaH+1'

giving Viaxe= V1/5 as the maximum visibility that can be
obtained in the absence of entanglement. Increasing en-
tanglement leads to increasing maximum visibility.

In the experiments we have imagined so far, the level of
visibility has been determined not only by the ability of the
teleporter to reproduce the input polarization states of the
photons (the mode overlap but also the efficiency with

A (16)

The fields are recombined in phase at the final beamsplittef/Nich input photons to the teleporter lead to correct output

giving the outputs

ah,u, t:_(ch,v,T+ dh,v)v
ou \/E

13

1
bh,v,out: (Ch,v,T_dh,v)'
V2

photons(the power balangelt is of interest to try to separate
these effects. We can investigate just state reproduction if we
allow attenuation to be applied to beainthus “balancing”

the Mach-Zehnder interferometer by compensating for the
loss introduced by the teleportesee Fig. 8)]. The attenu-
ated beand becomes

dn o a=V7dn, + V1= 7G5,

whereg is another vacuum field angl is the intensity trans-

(17)

The expectation values for photon counting at the two outimission of the attenuator. The expectation values of the out-

puts of the interferometer are

puts are now
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overall phase is randomized by the teleporter then very low
visibility will result from our interferometric test. At the end
of Sec. IV, we will examine an interesting consequence of
this additional sensitivity.

We now consider the effect of propagation loss in the two
arms of the entangled source. Hence, referring back to Eq.
(5), we setny1= 2= 7p#+ 1. We neglect for the moment
the possibility of internal loss in the amplificatidne., 7,
=1) or unequal loss in the two arms. With loss pregénit
not balancing the interferomejethe maximum visibility is
achieved with the gain condition

Van,(H-1)+1

max— .
Va(1—np) +4p,H+1

A (20)

In Fig. 7(a), we plot maximum visibility as a function of loss
for various levels of entanglement squeezing. Visibility is
reduced quite rapidly. If balancing of the interferometer is
allowed, the gain condition for maximum visibility remains
that found for no los$Eq. (19)] but the balancing condition
becomesy=(5—4n,)\%. Once again, visibility drops off
rapidly with increasing losgsee Fig. Tb)] tending eventu-
ally to the classical limit as the loss completely wipes out the
entanglement.

The effect of loss in the amplificatiofor measurement
stage (7,# 1) produces very similar results to those in Fig.
7, as does indeed loss in only the entanglement arm sent to
Alice (b,). However, if loss is only present in the entangle-

FIG. 4. Schematics of different input state-measurement techment arm sent to Bobsf,; =1,7,,# 1) things are rather dif-

nigues.

<agutaout>zo-25( \/;‘l' 7\)24—(}\ \/ﬁ_ M)Z,
(bl bowd =0.25 =)+ (A VH— VH-1)2.

In Fig. 6, we plot visibility versus gain, using the attenuation
7 to optimize the visibility (7<1). Now we can always
achieve unit visibility for any finite level of entanglement by
operating at gain,

(18)

H-1

)\opt:

H

2

and balancing the interferometer by setting=Agy;.

high visibility is achieved because at gaigy, the teleporter
behaves like pure attenuatipsee Eq.(7)]. That is the pho-

(19

ferent. The unbalanced visibility is still reduced with increas-
ing loss but when the interferometer is balanced one can still
achieve unit visibility by operating at the gain condition

V7p2(H—1)
Nop=—""—"F7—"—". (21)

JH

Although the visibility is maintained, the efficiency is of
course dropping. In the limit of strong lossy,,—0, the
efficiency goes to zero and no photons are teleported.

IV. MORE GENERAL POLARIZATION INPUT STATES

So far we have assumed that the input state is a single
photon number state. That is, there is unit probability that
one, and only one, photon arrives per measurement interval.
Such states are yet to be demonstrated experimentally,

ton flux of the teleported field is reduced, but no “spuriousthough candidate sources have been propdsi-29.
photons” are added to the field. Thus, at this gain, all outputiowever, the results of the previous section do not actually
photons from the teleporter are in the right state, but variou§ely on the input being in a number state. An examination of

input photons are “lost.” S _ .
This contrast between state-reproduction and efficienchoton number which is important. Thus any input state with

has been a topic of vigorous debf2d,25. It is of note that

Eq. (14) shows that it is only thexpectation valuef the

an average photon number of one count per measurement

our interferometric test can separate the two effects. It shoultterval will give identical visibilities to those of the previous
also be noted that our test is sensitive not only to the relativé€ction. An example is the low photon number coherent state
phase of the polarization superposition, but also the overali$)=|an,a,), in which |ap|*+]a,|?=1. Such a state can
phase of the teleported field. The overall phase is define@Pproximately be produced by strongly attenuating a stable
with respect to the field in the unteleported arm of the interlaser beam. We can generalize Ety) for arbitrary average
ferometer and is a constituent of the mode overlap. If thenput photon numbern) to obtain
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1 1
(a)
90% 90%
0.8 0.8
50% 0.6 9
0.6 I 50%
Visibility V'S't\’/'"ty
V 0.4 0.4 0%
0%
0.2 0.2
0.2 0.4 0.6 0.8 1 1.2 1.4 0 0.2 Effpl“l 0.6 0.8 !
Gain A iciency
FIG. 5. Visibility versus gain for the setup shown in FigaB
and various levels of entangleme®bo, 50%, and 90% .
(b)
(8bu@ou) =N0-251+0)?+ (\VH- VH-1)?, 0.8
(22 Visibilty ¢
— isibility
(bgubou) =n0.251— 1)+ (A VH-VH-1)°. o
Maximum visibility now occurs for the gain condition 0.2
\/7_ 0 0.2 0.4 0.6 0.8 1
4H+n—-4 Efficiency n,
Nmax= — ==, (23
VAH+n, FIG. 7. The effect of loss on the visibility. Ia) the maximum

visibility is plotted versus the transmission efficiency of the en-

gVING Vinaxe= /:n/(ﬁ+ 4) for the maximum classical vis- tarlgled beams for_various Ie_vels of entang_lem(é)%, 50%, and
ibility. As might be expected, higher maximum visibilities 900/0). In (b) balancing of the interferometer is allowgplot is for
can be achieved with only a classical channel as the averagr’g/(’ entanglement
photon number increases and the input becomes more like a . o
classical field. For average photon numbers less than 1, tH%ondegener_ate parametric _ampllflédow_nco_nverter can
maximum achievable visibility is reduced. This is basically aproduce pairs of photons in the polarization-number en-
signal-to-noise effect. The penalty in classical teleportatiorjfangled state
arises from amplification of vacuum fluctuations; intro-
duced in the “measurement” process. For low photon num- | #)aa 10,02l 0.0a + x(|1.0a| 1,02 +0,1)]0. 1),
bers this noise is large compared to the signal leading to low (24)
visibility. For large photon numbers the noise can become
negligible compared to the signal leading to high visibilities.\wherea anda’ are the two, spatially separated fields and
Figure 8 illustrates the change iy, andVyayas a function s the conversion efficiency. We have assunyedl and ne-
of entanglement for various values of the input photonglected higher-order terms jp As beforeais the input field
number. to the interferometer plus teleporter and is transformed as per

Single photon number states can be realized conditionallgq. (13). We can either analyze the raw visibility of the
by using number entangled states. It is instructive to investiputputs or the conditional visibility. Beamby itself is in the
gate this special cassee Fig. 40)]. A low efficiency, a  unpolarized mixed state, given by the reduced density opera-

tor
1
50% 90%
e pa~0,0/(0,0+x2(10.(0,1+|1,0(1.0). (29
0.6 The raw count rates are thus calculated usifea)
V'S'\?"'ty =Tr pa'a]. As would be expected, the raw visibility is as
0.4 0% predicted by Eq(22) with n=y2. Becausgy is small, clas-
0.2 sical teleportation visibilities will be low. However, with
teleportation entanglement they can, in principle, reach unity.

The relationship between interferometer visibilities and the
fidelity of pure state teleportation will be discussed in Sec.
VI. Here it is interesting to note that fidelity cannot be used

FIG. 6. Visibility versus gain with “attenuation balancing” to judge teleportation of the mixed state of Eg5). The
[setup shown in Fig. ®)] for various levels of entangleme(@%, fidelity between mixed input and output states is defined by
50%, and 90% [30]

0.2 0.4 0.6 0.8 1 1.2 1.4
Gain A
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F=Tr[\p3 Pours - (26) @)

0.8

If pa=pout» thenF=1. But this can easily be arranged by a .

i i ; ; e Otimum 0.6
cheating Alice and Bob without using entanglement. This is Gain
becauseany unpolarized mixed state with average photon hma 0.4
numbery? will have a density operator equal pg. Only by
making measurements of the joint stateaodnda’ before 0.2 i 15 o 80
and after the teleporter and calculating a global fidelity can a
high fidelity be considered proof of quantum teleportation. In Entanglement Squeezing %
contrast, a local interferometric test on ordyunambigu- (b)

ously judges the quality of the teleporter. This is due to the
sensitivity of the teleporter to the overall phase of the field.
As a result, high visibilities are only possible when Alice and 0.7
Bob share entanglement. Maximum "~
Conditional visibilities can be obtained by making the co- V'i'/b"'ty os
incidence COUHtS{ ¢|a,a’<¢|ba/Ta/agutaoutJ ¢>b|¢>a,a’ and e 0.4
(Blaar(Blba’ Ta'bboul #)p $)aar - Now counts are only 0.3
recorded if a photon has simultaneously been detected in
peama’. This guarantges that OnIY counts_corresponding to FIG. 8. Gain for maximum visibility §2_.,) and maximum vis-
times when a pho,to,r? IS launched into the 'merferometer_ arﬂ)ility thus achieved ¥ ,,o0 Vversus level of entanglement for vari-
recorded. The visibilities then correspond to those obtalneg)us average input photon numbers=(0.25,1.0,4.0)
in Sec. Il with single photon input statg31,32. This result T
is conceptually different from the case of an average of one
photon per measurement interval because it can be arrang
to a high probability, that only one photon is ever present a?
one time in the interferomet¢B3].

here the absolute quadrature andlgis arbitrary. Although

& homodyne detection itself can be ideal, the splitting of
he beams at the beamsplitters inevitably introduces vacuum
noise (this must occur because orthogonal quadratures con-

stitute conjugate observab)e3hus the detection results are
V. CONTINUOUS VARIABLE INPUTS

We now consider a very different type of input state and N t +
detection technique. Our input beam will now potentially be Xa (@)= ?[aout(w)_"aout(w)+vdl+vd1]v
a “bright” beam. However, our interest will center only on 2
the state of the “side bands” of the beam at some RF fre-
guencies*+ w around the central frequency. We will require B i . .
thatw is sufficiently large that the power in the side bands at Xa(w)= 7[aout(w)_aout(w)+vdl_vdl]'
that frequency are of the order of one photon per second. 2
Typically, for solid-state lasersy)10 MHz will suffice. In-

stead of considering the polarization state of the light, as in . 1 : :
the previous sections, we will now consider the field state of Xp (w)= 7[bout(w)+ Boul @) +va2+ v 4],
the side bands, as characterized by their distribution of 2

power between phase and amplitude fluctuations. The total

power in the side bands at the outputs can be measured using i

optical homodyne techniques and constructed visibilities. Xp ()= —=[bf(®) ~bou(®) +va—vi,],  (28)
These visibilities behave identically to those in the photon \/5

counting case provided the average photon number in the

side bands is equal to. This is quite surprising given the Where the arbitrary anglé has been set to zero for simplic-

incompleteness of the formal analogy between single photofty. The penalty vacuum noise is represented as usualdy

polarization states and single mode continuous variabl&onsider adding the photocurrents from each beam with a

states. /2 phase shift. This could be achieved by imposing a delay
The proposed setup is shown in Figc@ It is identical to ~ of 7 to one of the currents such thato=7/2. This gives

that for the single photon input except for the homodynephotocurrents

detection systems at the outputs instead of photon counters.

The output beams are divided in half at beamsplitters and A(w)=X; +iX, = \/E(aoupL vgl),

sent to homodyne detectors which detect orthogonal quadra- (29)

ture amplitudes, i.e., B(w) = X +iXo — \/E(bouﬁrvgz).
Xt (w)=e"%a(w)+e ’a(w),
_ _ (27)  These photocurrents could then be fed into spectrum analyz-
X (w)=e'0T™g( @) +e (0T™2aT (), ers which give the photon number spectra
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Va(w)= (X +iX5 |2 =2(al (o) 2l @) +2, VI. RELATIONSHIP TO OTHER MEASURES
(30 We will now examine the relationship of the visibilities
VB(w)=<|Xg+ixg|2>=2<bgut(w)bou[(w)>+2. measured in our interferometric arrangement with the other

measures for teleportation proposed and used in the litera-
We can then define, in analogy with the photon counting casture. We will first derive a quite general direct relationship

[Eqg. (15)],the spectral visibility as between the conditional variance of the teleporter and the
measured visibility and then show by example how telepor-
(&l (w)ag))— (bl (@b ®))  Vo—Vg tation fidelities for particular input states can be calculated.

The amplitude conditional variance between the input and

=7 T = —.
(Boul @)ouf @) +(Douf( @)boul( @) VatVe—4 output of the teleporter is given by

(31)

Note that for an arbitrary field we can also write 1 - _
g w=5[Vau1-CH+Ve(1-CT)L, (33
(ah(@)an(w)=(3|X" +iX7[) =5V +V7)=3,
(320  whereV,,=(|6X.,4%) are the variances for the amplitude
(6X™) and phase §X~) quadrature fluctuations of the out-

whereV* =(|X*|?) andV~=(|X"|?). Equation(32) allows  put state. The correlation functiog, is defined by
us to construct visibilities directly from individually mea-

sured orthogonal quadrature spectral variances. Also it al- [(8XE OXE, |2
lows us to compare the visibilities obtained here with those Cr=— (34)
of the previous sections. In order to make such comparisons VinVout

with the photon counting visibilities, we observe that
(al (w)aj(w)) is the photon number in the upper frequency For the output field given by Ed5) we get
component of the field only. Thus the total average

photon_ number of upper a_nd_ lower side bands - 7o H 2 N2(1-py)
(assuming a frequency-symmetric input sfai® n(* w) Ve, =| A s —Vpa(H—1) +—a
=2<aiﬁ,(w)ain(w)>. This is similar to the summing of the )

average photon numbers for both polarization modes in the M1 (H—1)

discrete case. For equivalent average photon nunilisys A V 7a — V77n2H (35
(22) with n(= w)=n] all the predictions of the low photon )

number visibilities are exactly reproduced in the continuous +(1— ppp) + A (1—7a)

variable case, including the ability to rebalance the interfer- b2 Na

ometer and obtain unit visibilities.
The preceding analysis has shown that interferometrigmportantly this result is independent of the input field. From
tests of quantum teleportation for unknown continuous varithis result it can then be shown that in fact
able states of a fixed average photon number can also be
performed. Let us consider a couple of examples. For an — —
. . . . . AN n
arbitrary input field there will be some particular value éf Vg, =— +1—\2— = (1+2\2). (36)
for which the conjugate spectral variances reach maximum Y 2
and minimum valuesy ., and V,,;,, respectively. A mini-
mum uncertainty state obeys the equaity;,,V,i»=1. Itis  Thus provided the gain of the teleporter)(and the average

convenient to discuss our examples in terms of these quadraiwoton number of the inpullTO are known, then a measure-
tures. Suppose our input field is quantum noise limited bunent of the visibility immediately gives one a value for the
with a small classical signal imposed at an arbitrary quadragongitional variancé34]. Although derived for the particular
ture angle. This is equivalent to a coherent state of a particUg|eportation model of Sec. Il it can be shown that this result
lar amplitude but unknown phase. For this inplt.=Vs  [Eq.(36)] is quite general, always applying provided: the
+1 andV.;,=1, whereVs is the signal power. IN;=2,  noise added by the teleporter is Gaussian @ndhe gain of
then spectral visibilities identical to the single photon count-the teleporter is equal for both quadratures and is linear.
ing visibilities will be observed. Alternatively the input state  Once the conditional variance of the teleporter is known,
may be squeezed at some arbitrary angle such thahen the fidelities that would be achieved when teleporting
Vi DV IV =1/(2—3) andV,,,=(2— 3), then  specific classes of states can be calculated. As a first ex-
again spectral visibilities will be identical to the single pho- ample, consider a single photon number state, polarization
ton counting visibilities. qubits, as discussed in Sec. Ill. The teleportation fidelity can
These results are significant as reliable teleportation obe calculated provided all the normally ordered moments of
spectral components is technologically less challenging thathe output state are knowisee Appendix B It is straight-
single photon experiments and are thus likely to form a sigforward to show that the normally ordered moments are
nificant part of future quantum information research. given in terms of the conditional variance by
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1 2m
<aTmam>:(§(vcu+>\2—1)) m! @)

1.1

4 \Visibility
: \Fidelity

1 2(m—-1)
+ mk(E(VCU+)\2—1)) }(m—l)!.

37

In Fig. 9a), we plot the visibility and inferred fidelity for

single photon number states. Note that the fidelity is calcu-

lated for the situation where the qubits are teleported directly )

(not the case of the teleporter in the interferometéfe see Gain A

that there is little apparent relationship between the two (0)

plots. However, it is standard in qubit teleportation experi-

ments to disregard the efficiency of the teleporter and con-

sider only the fidelity of state reconstruction when the tele-

portation is successful.e., conditional on the arrival of a

photon [4]. In Fig. 9b), fidelity inferred in this way is com- 0.7 Visibility

pared with the visibility of a balanced interferometer. Now a .

relationship is seen with qualitatively similar behavior of the ' Fidelity

fidelity and visibility.
For our second example, we will consider the most ex- k|G, 9. Comparison of visibility of the interferometric test ar-

perimentally relevant states for the short to medium termyangement with fidelity which would be obtained in a standard tele-

continuous variable coherent states. Furuseta. [7] iden-  portation experiment. Input state is a single photon polarization

tified the boundary between classical and quantum teleportaubit. In (b) the results are corrected for efficiency by rebalancing

tion of coherent states at a fidelity of 0.5. At about the samehe interferometer and calculating an efficiency-independent fidel-

time we[12] concluded that a second, qualitatively differentity. No corrections are done ifa).

limit was given by a conditional variance of 1.0 at unity gain

[35]. Tuis secondd Iimglcorredspondfs tOha fidelifty of 0-6$7H =0.5, while a visibility of V=0.5 corresponds to a condi-

Since then, considerable evidence for the significance of thi i - i deli

second limit has been presented in terms of the ability of thefiog.aGIG;/.arlance OfVe,=10 and Infers a fideliy ofF

teleporter to reproduce quantum properties of the state gg far, continuous variable teleportation experiments have

[14,15, the quality requirements on the entanglementyny explored the region close to unity gain. We have seen
[14,13, and the uniqueness of the teleported sta@. The  hat the interferometric test highlights the interest of other

existence of dual boundaries for entanglement-assisted phgain conditions. In particular, with rebalancing very high vis-
nomena is not unusual. For example, for discrete polarizatiofhjjities may be obtained with finite entanglement squeezing.
entanglement the boundary for nonseparability is & coinciywhat is the significance of these visibilities? The conditional
dence visibility of 0.5 in all bases. On the other hand, viola-yariance corresponding to substitution of the rebalanced vis-
tion of a Bell inequality requires visibilities greater than ibility into Eq. (36) is an “efficiency corrected” conditional
0.71. Similarly, the requirements for violation of the continu- yriance which depends on nonoptimal aspects of the proto-
ous variable EPR conditioj86] are more stringent than the ¢o| jmplementation, e.g., loss, but does not depend on the
nonseparability criterion for continuous variab[@]. ~ actual level of squeezing entanglement used. This could be a
The determination of these boundaries from the visibili-yseful characterization. The fidelity that would then be in-

ties, measured as described in Sec. V, is straightforwarderred is an efficiency-corrected fidelity similar to that dis-

using the relationship of Eq36). The fidelity that could be
achieved with the teleporter can then be inferred using the Fcorr:<\/;a'|p|\/;a>v (39
relationship

where 7 is the attenuation applied in rebalancing the inter-
) , ferometer. In other words, we infer the overlap that would be
- 2 exp( 2[ef* (1)) ) 38) obtained between the output of the teleporter and an attenu-
2+V,, 2+Ve, ' ated version of the input state.

. . . VIl. CONCLUSION
which can be derived from Ref7] with a the coherent

amplitude of the input state. If the input states have unity We have examined an interferometric test of the efficacy
average photon number, then the following correspondencesf teleportation. Unique characteristics of this arrangement
apply at unity gain: a visibility of’=0.333 corresponds to a are(i) it does not require the tester to know the input state of
conditional variance ol ,=2 and infers a fidelity ofF  the light, only the average powsd(i) the ability of the tele-
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porter to reconstruct both the relative and global phase of thehannel can be demonstrated easily via the no-cloning theo-
field is tested directly; andii) one can directly test the state rem[39], which states that a quantum system cannot be du-
reconstruction ability of the teleporter separately from or to-plicated without penalty. If the quantum natureayfis sig-
gether with its efficiency. nificant in the teleportation process, then the no-cloning
The teleportation efficacy is characterized by the visibility theorem would predict that duplication af would lead to a
between the two outputs of a Mach-Zehnder interferometesignificant degradation in the quality of the teleported state.
when the teleporter to be tested is placed in one of the arm#n optimum continuous variable cloner can be constructed
We have contrasted the results obtained with no entangldrom the combination of a linear amplifier of gain 2 followed
ment and varying levels of squeezing entanglement usingy a 50:50 beamsplitter. Applying this & produces the two
continuous variable teleportation. A clear classical lithé.,  clonesa, anda, given by
with no entanglemeito the visibility was demonstrated and

its dependence on input average photon number investigated. , 1 t

For an average photon count of one per measurement inter- a=act T(Ucﬁvcz),

val, the classical limit wa¥’< \/1/5. Higher classical visibili- 2

ties could be obtained with greater photon flux. The classical 1 (A1)

limit was lower with smaller photon flux. High visibilities
(close to 1 could only be obtaine@or low photon flux with
high levels of entanglement and low levels of loss. These are
the requirements for high efficiency teleportation. Howeverwhere thev's are vacuum modes. Suppose Bob uagsor
decreased photon flux in the teleported amduced effi-  the reconstruction. He will produce the output
ciency) can be compensated by rebalancing the unteleported
arm of the interferometer. In this way, state reconstruction ag,=\aj,+ (A \/ﬁ— VH— 1)v§+(\/ﬁ—>\\/H —1)vy
can be tested separately from efficiency. We find that, pro-
vided losses are small, ideal state reconstruction can be \/— 1 +
achieved for any level of entanglement squeezing. This is tVe ﬁ(vclﬂ’d)' (A2)
characterized by unit visibility in the balanced interferometer
with finite levels of entanglement. Losses reduce visibilitiesThe final term is due to the cloning process. But in the clas-
but the general trends remain the same. sical channel limit we have—0 and hence this final term

A generalization of the technique to continuous variablecan be neglected and E@2) reduces to Eq(6). Arbitrarily
inputs was presented. With suitable interpretation it wasyood reconstruction of the input beam is still possible. The
found that the visibilities exhibited identical behavior to their ggme result holds if Bob were to use the other clae, for
discrete variable counterparts. the reconstruction. Thus the cloning procedure does not

We have discussed the relationship of the interferometri%hange the quantum properties of the output and smust
visibility to other figures of merit. Of considerable signifi- ya considered a classical channel.

cance is the quite direct relationship between the visibility
and the amplitude conditional variance of the teleporter. We APPENDIX B
showed by example how, once the value of the conditional
variance had been obtained from visibility measurements, The fidelity for a pure input stater) is given by
fidelities for arbitrary input states could be inferred.

We believe that tests of the kind outlined in this paper Fi=(olpilo), (B1)
represent an important technique for characterizing quantury,
teleportation.

_ T
a’c’—ac+ ﬁ(v&—vcz),

here p; is the density operator of the output state in the
Schralinger picture. First note that the action of the tele-
porter[as described by Eq13)] is independent of the polar-

ACKNOWLEDGMENTS ization basis used to express it. That is, the Heisenberg equa-

. . ) tions will have identical form for any two orthogonal
We wish to thank A. G. White and G. J. Milburn for

; . . polarization modes. Thus the labdisandv can equally be
helpful discussions. This work was supported by the Austrajierpreted as meaning horizontal and vertical or right and
lian Research Council.

left circular, etc. This means we only need to evaluate the
fidelity for some particular input polarization. The invariance
APPENDIX A with change of basis then implies that the same result will
hold for all input polarizations. For simplicity, we choose

nela is described by an operator. This is a standard feature-o. The fidelity then becomes

of the treatment of classical channels in the Heisenberg pic-

ture,not a consequence of our particular choice of an optical ~ F;=(1|n(0|,pi hpi.|0),|1)n=(1|pi n|1){0|p; ,|0),

classical channel or our particular choice of teleporter model. (B2)

The different treatments of classical channels between the

Heisenberg and Schdinger pictures are contrasted for quan- where the ouput density operator can be factorized into con-
tum limited feedback in Ref38]. Thata, is truly a classical tributions from the two polarization modep; = p; hpi ., ,
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provided polarization cross-talk in the polarizing beamsplit-From this result the following recursive relationship between
ters can be neglected. Thus the problem is reduced to findinipe diagonal element probabilities and the moments can be
the first and second diagonal elementsppf and p; ,, re-  obtained:
spectively.

The diagonal elements of the density operator can be ob-
tained from the normally ordered moments of the Heisenberg
operators in the following way: suppose a Salinger pic-

1 than
pn:m a a)!

ture density operator has the following general form: 1 n!
Pr1=T (@™ a" )~
p=Pol0){0]+ pa| 1)(1[+ p2|2){2|+ - - - pa|n)(n| ' '
+ (nondiagonal elements (B3) ron (n—=21)! n!
Pn—2= 1 (@"a’)=——Pn-1= 57 Pals

where we assume we can truncate at some sufficiently large
photon numbem. The normally ordered moments are given
by (a"™a™ =Tr{a"™a™p} and are easily calculated from Eq.
(B3) to be

(BS)

p1=((a'a)—2p,—3ps—---np,,
(a'a)=py+2p,+3ps+---npy,
. Po=1—P1—P2—P3— " Pn-
a'?a?)=2p,+6ps+---n(n—1)p,,
< )=2P2 6P ( Pr (B4) Of course the operator moments are equivalent whether cal-
culated in the Schidinger or Heisenberg pictures. Calcula-
tion of the various moments in the Heisenberg picture pro-
ceeds as described in Sec. VI. Substitution into the general
formula given by Eq(B5) allows us to numerically calculate

(a™a®)=6ps+24p,+ - -n(n—1)(n—2)py,

(a™a"=nlp,. the required coefficients.
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