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We investigate a direct test of teleportation efficacy based on a Mach-Zehnder interferometer. The analysis
is performed for continuous-variable teleportation of both discrete and continuous observables.
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I. INTRODUCTION

Information is not independent of the physical laws us
to store and process it@1#. The unique properties of quantum
mechanics lead to radically different ways of communicat
and processing information@2#. The study of ‘‘quantum in-
formation’’ is currently one of the fastest growing areas
physics.

Quantum teleportation@3–7# is a method by which quan
tum information can be passed through a classical cha
and successfully retrieved at another location. The sharin
entanglement between the sender~Alice! and receiver~Bob!
is essential for teleportation as it provides the ‘‘quantu
key’’ needed to retrieve the quantum information@8#. In this
way, an unknown quantum state of an object can be tra
ferred through a classical channel, with neither Bob nor
ice knowing the state. As well as being a quantum comm
nication tool, teleportation has also been identified a
quantum computational primitive@9#. Teleportation was
originally described for discrete variables but now has b
extended to continuous variables such as the quadrature
plitudes of optical fields@10#.

The efficacy of teleportation can be characterized in
number of distinct ways. Traditionally fidelity is used for th
purpose@11#. Fidelity, F, gives a measure of the quality o
the teleported state by evaluating the overlap between
input state,uc&, and the teleported output state,r, via F
5^curuc&. Fidelity is state-dependent, i.e., the fidelity of th
reconstructed state depends both on the quality of the
porter and on the class of input states from which the
known state is picked.

For continuous-variable teleporters, criteria similar
those used to evaluate quantum nondemolition meas
ments have been proposed@12,13#. The most general of thes
is the amplitude conditional variance between the input
output beams@12,14#. The conditional variance measures t
amount of uncorrelated noise that is added to the quan
state in the teleportation process. As such, it is a measur
the quality of the teleporter itself, independent of the state
be teleported. A continuous-variable teleporter introdu
noise with Gaussian statistics, thus the conditional varia
characterizes the added noise to all orders. Hence, once
conditional variance is known, the fidelity with which an
state will be teleported can be calculated.
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The measurement of either fidelity or the conditional va
ance involves a ‘‘third’’ person, Victor~the verifier!, who
prepares the input states and examines the teleported sta
determine the quality of the teleportation. For example, V
tor may prepare photons in particular polarization states
then check if they are still in the same states after telepo
tion @4,5#. For continuous-variable experiments, the sign
and noise properties of the input and output are compa
@7,15#.

Another way of testing the efficacy of teleportation is
create a pair of quantum correlated objects, teleport one
them, then test directly to what extent they are still quant
correlated. An example of this is polarization entanglem
swapping@6# in which one of an entangled pair of photons
teleported and then the degree of Bell entanglement tha
mains between them is determined by measuring the vis
ity of their photon correlations. The direct analog of th
experiment using continuous-variable teleportation has a
been proposed@16#. Tests based on the swapping of Einste
Podolsky, and Rosen~EPR!-type entanglement have als
been proposed@17,18#. Another possibility is to teleport one
arm of a spatial superposition and then measure the pre
vation of the superposition directly through their interferen
characteristics. These types of tests are important for th
reasons:~i! They directly observe the preservation of qua
tum correlations rather than just inferring them;~ii ! such spe-
cific situations highlight aspects of the physics of the telep
tation process not obvious from considering more gene
figures of merit; and~iii ! from a practical point of view it
would seem unlikely that teleportation could be successfu
incorporated in any quantum information application unle
interference and entanglement effects can be mainta
above some threshold level.

A spatial superposition test can be applied to single p
ton polarization states using a Mach-Zehnder interferom
@19#. An interesting feature of such a test is that it is possi
for Alice and Bob to verify that their teleporter is operatin
correctly without knowing the input states. In this paper,
generalize this test to cover a broad range of input sta
including continuous-variable states. We will begin, in Se
II, by introducing the model for a teleporter we will us
throughout the paper. In Sec. III, we will review the oper
tion of the Mach-Zehnder interferometer as a teleportat
tester for single photon, polarization superposition inpu
Section IV will examine more general low photon numb
states and in Sec. V we will generalize the technique to in
states with continuous degrees of freedom. In Sec. VI
will examine the relationship between our interferomet
©2001 The American Physical Society19-1
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T. C. RALPH PHYSICAL REVIEW A 65 012319
measure and the other teleportation measures. In Sec. VI
will discuss and conclude.

II. THE TELEPORTER

The teleporter we will consider in this paper is an
optical device using continuous-variable~squeezing! en-
tanglement as a quantum resource@20#. This model is chosen
for its versatility in being able to teleport all the input stat
considered in this paper. In an experimental situation, m
input specialized devices may be used. Consider first
‘‘classical teleportation’’ device depicted in Fig. 1~a!. By
classical we mean we attempt to transfer the quantum in
mation through a classical channel without the assistanc
entanglement. The input light field,âin(t), is sent through a
linear optical amplifier by Alice. In Fourier space the outp
of a linear amplifier can be written as

ac~v!5AhaG~v!ain~v!1A@G~v!21#v1
†

1AG~v!~12ha!va , ~1!

whereG(v) is the~frequency-dependent! amplifier gain and
v1 and va are vacuum noise inputs due to the gain and
ternal losses (ha) of the amplifier, respectively. If the gain i
sufficiently large (G@1) thenac can be regarded as a cla
sical field. This is because the conjugate quadrature varia

FIG. 1. Schematics of the all optical teleporter. In~a! a classical
teleporter is shown~i.e., with no entanglement!. In ~b! the inclusion
of entanglement~EPR! is shown. In~c! the separate teleportation o
the two polarization modes is represented. TV and TH are the t
porters for the vertical and horizontal polarization components,
spectively. PBS stands for polarizing beam splitter.
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15ac1ac

† and Xc
25 i (ac2ac

†) both have uncertainties
much greater than the quantum limit, i.e.,D(Xc

6)2@1. This
means that simultaneous measurements of the conju
quadratures can extract all the information carried byac with
negligible penalty. The quantum noise added due to the
multaneous measurements will be negligible compared to
amplified quadrature uncertainties. It is thus possible to c
vert and then transmit the information carried in this be
over any available classical channel~radio, copper wires,
etc.!. However, it is convenient, and no less general, to ret
an optical classical channel. Further discussion and a sim
proof of the classical nature of this channel can be found
Appendix A.

When Bob receives the classical beam he attempts to
trieve the quantum state of the input by simply attenuat
the beam with a beam splitter of transmission«. The output
field is aout5A«ac2A12«v2, where v2 is the vacuum
mode incident on the unused port of the beam splitter. T
final output field is thus

aout~v!5l~v!ain~v!1S l~v!

Aha

v1
†2v2D 1l~v!

A12ha

Aha

va ,

~2!

where the total classical channel gain is given byl(v)
5AG(v)«ha and we have assumed the classical chan
limit G→` and«→0. In practice, we are only interested
finite bandwidths. For photon counting experiments this u
ally means frequency filters will be placed in front of th
detectors. For continuous-variable experiments only a fin
range of RF frequencies will be analyzed. We will assu
that the optical amplifier, and thusl, has a flat response ove
the detection bandwidth. Hence, setting unity gain (l51)
and negligible loss (ha51) we obtain the usual result

aout5ain1v1
†2v2 , ~3!

whereby two vacuum noise penalties are imposed by cla
cal teleportation@10,12#.

Quantum teleportation can be achieved by replacing
independent vacuum inputs,v1 and v2, with Einstein, Pod-
olsky, and Rosen~EPR! entangled beams@21#, b1 andb2, as
shown in Fig. 1~b!. Such beams have the very strong cor
lation property that both their difference amplitude quad
ture variance,D(Xb1

1 2Xb2
1 )2, and their sum phase quadratu

variance,D(Xb1
2 1Xb2

2 )2, are less than the quantum lim
~51!. Such beams can be generated by subthreshold no
generate parametric amplification@21# or by the mixing of
independent squeezed sources@22,12#. For nondegenerate
parametric amplification these beams can be represente

b1~v!5Ahb1H~v!v31Ahb1@H~v!21#v4
†1A12hb1vb1 ,

b2(v)5hb2H(v)v41hb2[H(v)21]v3†112hb2vb2 ,

~4!

whereH(v) is the parametric gain and as before theh ’s and
v ’s are efficiencies and resultant vacuum inputs, respectiv

e-
-
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INTERFEROMETRIC TESTS OF TELEPORTATION PHYSICAL REVIEW A65 012319
The strength of the squeezing entanglement can be cha
terized byVent5(AH2AH21)2, which varies from not en-
tangled (Vent51) to strongly entangled (Vent→0) as the
parametric gain increases. We will also refer to the perce
age of entanglement squeezing as (12Vent)3100%. The
output field is now given by

aout~v!5l~v!ain~v!

1S l~v!

Aha

b1
†~v!2b2~v!D 1l~v!

A12ha

Aha

va ,

~5!

which, because of the strong correlations betweenb1 andb2,
reduces to

aout~v!5l~v!ain~v!1@l~v!AH~v!2AH~v!21#v3
†

1@AH~v!2lAH~v!21#v4 ~6!

in the absence of losses (ha5hb15hb251). Again we as-
sume~and will do so for the remainder of the paper! that all
gains are flat across the detection bandwidth. In the li
of very high parametric gain (H→`, Vent→0) and unity
classical channel gain (l51) the output becomes identica
to the input (aout→ain). This is ideal quantum teleportatio
as the only direct link between the input and output is
classical fieldac , yet arbitrarily accurate reconstruction o
the input state is, in principle, possible with a sufficien
strong EPR correlation. The uncertainty principle is not co
promised because the variances of each of the quadratur
b1 by themselves are very noisy. Thus the information ab
ain carried on the classical field is buried in this noise a
cannot be extracted by using the classical field alone.
important operating point is the classical channel gainlopt

5A(H21)/AH. With this gain, in the absence of losses, t
output field is given by

aout5loptain1~A12lopt
2 !v4 , ~7!

i.e., it is simply an attenuated version of the input@16#. The
teleporter can be generalized to deal with arbitrary polar
tions of the input field by decomposing the field into o
thogonal polarization components~using a polarizing beam
splitter! and teleporting the individual components separat
@see Fig. 1~c!#.

The question remains as to how the linear amplifier
Fig. 1 could be constructed. This is not trivial as in stand
optical amplifiers the source of the vacuum mode is
available for modification. For example, in a laser amplifi
the physical origin of the vacuum input (v1) is collisionally
or phonon-induced dipole fluctuations of the gain medi
@23#. One solution is shown schematically in Fig. 2. T
input beam is mixed with the EPR beam,b1, at a 50:50 beam
splitter. The output beams are
01231
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1

A2
~ain1b1!,

d5
1

A2
~ain2b1!. ~8!

The beams are amplified by degenerate parametric ampli
of equal gains but with ap phase shift between their pum
~E! phases. This results in the outputs

c85AGc1AG21c†,
~9!

d85AGd2AG21d†.

Recombining these beams on a beamsplitter then prod
the desired output:ac5AGain1AG21b1

† .

III. THE MACH-ZEHNDER INTERFEROMETER
AND THE TELEPORTER

We now examine the efficacy of the teleporter describ
in the previous section as characterized using an interfer
eter. In this section we will consider idealized single phot
polarization superpositions as inputs to illustrate the ba
physics. In the next section, we will consider more gene
polarization-number inputs. In the following section, co
tinuous variable inputs will be considered.

Consider first the setup shown schematically in Fig. 3~a!
@see also Fig. 4~a!#. Basically we place a teleporter in on
arm of a Mach-Zehnder interferometer, inject a single pho
state, in an arbitrary polarization superposition state into
port, then use the interference visibility at the output ports
characterize the efficacy of teleportation. A useful feature
this setup is that the visibility does not depend on the in
state of the single photon, so we can assess how well
teleporter is working without knowing which particular po
larization state is going into it. Let us see how this works

The input for one port of the interferometer is in the a
bitrary polarization superposition state

uf&a5xu1,0&1yu0,1&, ~10!

where unh ,nv&[unh&h^ unv&v , nh and nv are the photon
numbers in the horizontal and vertical polarizations resp

FIG. 2. Schematic of the linear amplifier used in the teleporte
The PA’s stand for parametric amplifiers which are pumped in ph
~E! and out of phase (2E) with the field.
9-3
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T. C. RALPH PHYSICAL REVIEW A 65 012319
tively, anduxu21uyu251. The input of the other port is in th
vacuum stateuf&b5u0,0&. The operators in the Heisenbe
picture for the four input modes~two spatial times two po-
larization! are ah and av ~superposition! and bh and bv
~vacuum!. We propagate these operators through the Ma
Zehnder interferometer~including the teleporter!. After the
first beam splitter we can write

ch,v5
1

A2
~ah,v1bh,v!,

~11!

dh,v5
1

A2
~ah,v2bh,v!.

One of the beams~c! is then teleported. Under conditions fo
which losses can be neglected, we can use Eq.~6! to obtain

ch,v,T5lch,v1~lAH2AH21!bh,v,1
†

1~AH2lAH21!bh,v,2 . ~12!

The fields are recombined in phase at the final beamspl
giving the outputs

ah,v,out5
1

A2
~ch,v,T1dh,v!,

~13!

bh,v,out5
1

A2
~ch,v,T2dh,v!.

The expectation values for photon counting at the two o
puts of the interferometer are

FIG. 3. Schematics of interferometric test arrangements.
01231
h-

er

t-

^aout
† aout&5^fua^fub^fu f~ah,out

†1av,out
†!

3~ah,out1av,out!uf&auf&buf& f

50.25~11l!21~lAH2AH21!2,

^bout
† bout&5^fua^fub^fu f~bh,out

†1bv,out
†!

3~bh,out1bv,out!uf&auf&buf& f

50.25~12l!21~lAH2AH21!2. ~14!

In the limit of very strong entanglement squeezing (Vent
→0), we find from Eq.~12! that ch,v,T→ch,v for unity gain
(l51), i.e., perfect teleportation. For the same conditio
~and only for these conditions! the visibility of the Mach-
Zehnder outputs,

V5
^aout

† aout&2^bout
† bout&

^aout
† aout&1^bout

† bout&
, ~15!

goes to 1, indicating the state of the teleported arm exa
matches that of the unteleported arm. Notice that the exp
tation values@Eq. ~14!#, and thus the visibility, do not depen
on the actual input state~no dependence onx andy). Hence
we can demonstrate that the teleporter is operating ide
even if we do not know the state of the input. Classical lim
can be set by examining the visibility obtained with no e
tanglement (H51). In Fig. 5, we plot the visibility versus
feedforward gain in the teleporter for the cases of no
tanglement~0%!, 50% entanglement squeezing, and 90%
tanglement squeezing. Maximum visibility occurs for th
gain condition

l5
A4H23

A4H11
, ~16!

giving Vmax,c5A1/5 as the maximum visibility that can b
obtained in the absence of entanglement. Increasing
tanglement leads to increasing maximum visibility.

In the experiments we have imagined so far, the leve
visibility has been determined not only by the ability of th
teleporter to reproduce the input polarization states of
photons ~the mode overlap!, but also the efficiency with
which input photons to the teleporter lead to correct out
photons~the power balance!. It is of interest to try to separate
these effects. We can investigate just state reproduction if
allow attenuation to be applied to beamd, thus ‘‘balancing’’
the Mach-Zehnder interferometer by compensating for
loss introduced by the teleporter@see Fig. 3~b!#. The attenu-
ated beamd becomes

dh,v,A5Ahdh,v1A12hgh,v , ~17!

whereg is another vacuum field andh is the intensity trans-
mission of the attenuator. The expectation values of the o
puts are now
9-4
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^aout
† aout&50.25~Ah1l!21~lAH2AH21!2,

~18!
^bout

† bout&50.25~Ah2l!21~lAH2AH21!2.

In Fig. 6, we plot visibility versus gain, using the attenuati
h to optimize the visibility (h<1). Now we can always
achieve unit visibility for any finite level of entanglement b
operating at gain,

lopt5AH21

H
~19!

and balancing the interferometer by settingh5lopt
2 . The

high visibility is achieved because at gainlopt the teleporter
behaves like pure attenuation@see Eq.~7!#. That is the pho-
ton flux of the teleported field is reduced, but no ‘‘spurio
photons’’ are added to the field. Thus, at this gain, all out
photons from the teleporter are in the right state, but vari
input photons are ‘‘lost.’’

This contrast between state-reproduction and efficie
has been a topic of vigorous debate@24,25#. It is of note that
our interferometric test can separate the two effects. It sho
also be noted that our test is sensitive not only to the rela
phase of the polarization superposition, but also the ove
phase of the teleported field. The overall phase is defi
with respect to the field in the unteleported arm of the int
ferometer and is a constituent of the mode overlap. If

FIG. 4. Schematics of different input state-measurement te
niques.
01231
t
s

y

ld
e
ll
d
-
e

overall phase is randomized by the teleporter then very
visibility will result from our interferometric test. At the end
of Sec. IV, we will examine an interesting consequence
this additional sensitivity.

We now consider the effect of propagation loss in the t
arms of the entangled source. Hence, referring back to
~5!, we sethb15hb25hb5” 1. We neglect for the momen
the possibility of internal loss in the amplification~i.e., ha
51) or unequal loss in the two arms. With loss present~but
not balancing the interferometer! the maximum visibility is
achieved with the gain condition

lmax5
A4hb~H21!11

A4~12hb!14hbH11
. ~20!

In Fig. 7~a!, we plot maximum visibility as a function of los
for various levels of entanglement squeezing. Visibility
reduced quite rapidly. If balancing of the interferometer
allowed, the gain condition for maximum visibility remain
that found for no loss@Eq. ~19!# but the balancing condition
becomesh5(524hb)l2. Once again, visibility drops off
rapidly with increasing loss@see Fig. 7~b!# tending eventu-
ally to the classical limit as the loss completely wipes out
entanglement.

The effect of loss in the amplification~or measuremen
stage! (ha5” 1) produces very similar results to those in Fi
7, as does indeed loss in only the entanglement arm se
Alice (b1). However, if loss is only present in the entangl
ment arm sent to Bob (hb151,hb25” 1) things are rather dif-
ferent. The unbalanced visibility is still reduced with increa
ing loss but when the interferometer is balanced one can
achieve unit visibility by operating at the gain condition

lopt5
Ahb2~H21!

AH
. ~21!

Although the visibility is maintained, the efficiency is o
course dropping. In the limit of strong loss,hb2→0, the
efficiency goes to zero and no photons are teleported.

IV. MORE GENERAL POLARIZATION INPUT STATES

So far we have assumed that the input state is a sin
photon number state. That is, there is unit probability t
one, and only one, photon arrives per measurement inte
Such states are yet to be demonstrated experiment
though candidate sources have been proposed@26–29#.
However, the results of the previous section do not actu
rely on the input being in a number state. An examination
Eq. ~14! shows that it is only theexpectation valueof the
photon number which is important. Thus any input state w
an average photon number of one count per measurem
interval will give identical visibilities to those of the previou
section. An example is the low photon number coherent s
uf&5uah ,av&, in which uahu21uavu251. Such a state can
approximately be produced by strongly attenuating a sta
laser beam. We can generalize Eq.~14! for arbitrary average
input photon number (n̄) to obtain

h-
9-5
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^aout
† aout&5n̄0.25~11l!21~lAH2AH21!2,

~22!

^bout
† bout&5n̄0.25~12l!21~lAH2AH21!2.

Maximum visibility now occurs for the gain condition

lmax5
A4H1n̄24

A4H1n̄,
, ~23!

giving Vmax,c5An̄/(n̄14) for the maximum classical vis
ibility. As might be expected, higher maximum visibilitie
can be achieved with only a classical channel as the ave
photon number increases and the input becomes more li
classical field. For average photon numbers less than 1
maximum achievable visibility is reduced. This is basically
signal-to-noise effect. The penalty in classical teleportat
arises from amplification of vacuum fluctuations (v1) intro-
duced in the ‘‘measurement’’ process. For low photon nu
bers this noise is large compared to the signal leading to
visibility. For large photon numbers the noise can beco
negligible compared to the signal leading to high visibilitie
Figure 8 illustrates the change inlmax andVmax as a function
of entanglement for various values of the input phot
number.

Single photon number states can be realized condition
by using number entangled states. It is instructive to inve
gate this special case@see Fig. 4~b!#. A low efficiency, a

FIG. 5. Visibility versus gain for the setup shown in Fig. 3~a!
and various levels of entanglement~0%, 50%, and 90%!.

FIG. 6. Visibility versus gain with ‘‘attenuation balancing
@setup shown in Fig. 3~b!# for various levels of entanglement~0%,
50%, and 90%!.
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nondegenerate parametric amplifier~downconverter! can
produce pairs of photons in the polarization-number
tangled state

uf&a,a8'u0,0&au0,0&a81x~ u1,0&au1,0&a81u0,1&au0,1&a8),

~24!

wherea anda8 are the two, spatially separated fields andx
is the conversion efficiency. We have assumedx!1 and ne-
glected higher-order terms inx. As before,a is the input field
to the interferometer plus teleporter and is transformed as
Eq. ~13!. We can either analyze the raw visibility of th
outputs or the conditional visibility. Beama by itself is in the
unpolarized mixed state, given by the reduced density op
tor

ra'u0,0&^0,0u1x2~ u0,1&^0,1u1u1,0&^1,0u!. ~25!

The raw count rates are thus calculated using^a†a&
5Tr@ra†a#. As would be expected, the raw visibility is a
predicted by Eq.~22! with n̄5x2. Becausex is small, clas-
sical teleportation visibilities will be low. However, with
teleportation entanglement they can, in principle, reach un
The relationship between interferometer visibilities and
fidelity of pure state teleportation will be discussed in S
VI. Here it is interesting to note that fidelity cannot be us
to judge teleportation of the mixed state of Eq.~25!. The
fidelity between mixed input and output states is defined
@30#

FIG. 7. The effect of loss on the visibility. In~a! the maximum
visibility is plotted versus the transmission efficiency of the e
tangled beams for various levels of entanglement~0%, 50%, and
90%!. In ~b! balancing of the interferometer is allowed~plot is for
50% entanglement!.
9-6
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F5Tr @Ara
1/2routra

1/2#. ~26!

If ra5rout, thenF51. But this can easily be arranged by
cheating Alice and Bob without using entanglement. This
becauseany unpolarized mixed state with average phot
numberx2 will have a density operator equal tora . Only by
making measurements of the joint state ofa and a8 before
and after the teleporter and calculating a global fidelity ca
high fidelity be considered proof of quantum teleportation.
contrast, a local interferometric test on onlya unambigu-
ously judges the quality of the teleporter. This is due to
sensitivity of the teleporter to the overall phase of the fie
As a result, high visibilities are only possible when Alice a
Bob share entanglement.

Conditional visibilities can be obtained by making the c
incidence countŝ fua,a8^fuba8†a8aout

† aoutuf&buf&a,a8 and
^fua,a8^fuba8†a8bout

† boutuf&buf&a,a8 . Now counts are only
recorded if a photon has simultaneously been detecte
beama8. This guarantees that only counts corresponding
times when a photon is launched into the interferometer
recorded. The visibilities then correspond to those obtai
in Sec. II with single photon input states@31,32#. This result
is conceptually different from the case of an average of
photon per measurement interval because it can be arran
to a high probability, that only one photon is ever presen
one time in the interferometer@33#.

V. CONTINUOUS VARIABLE INPUTS

We now consider a very different type of input state a
detection technique. Our input beam will now potentially
a ‘‘bright’’ beam. However, our interest will center only o
the state of the ‘‘side bands’’ of the beam at some RF f
quencies6v around the central frequency. We will requi
thatv is sufficiently large that the power in the side bands
that frequency are of the order of one photon per seco
Typically, for solid-state lasers,v&10 MHz will suffice. In-
stead of considering the polarization state of the light, as
the previous sections, we will now consider the field state
the side bands, as characterized by their distribution
power between phase and amplitude fluctuations. The t
power in the side bands at the outputs can be measured u
optical homodyne techniques and constructed visibiliti
These visibilities behave identically to those in the pho
counting case provided the average photon number in
side bands is equal ton̄. This is quite surprising given the
incompleteness of the formal analogy between single pho
polarization states and single mode continuous varia
states.

The proposed setup is shown in Fig. 4~c!. It is identical to
that for the single photon input except for the homody
detection systems at the outputs instead of photon coun
The output beams are divided in half at beamsplitters
sent to homodyne detectors which detect orthogonal qua
ture amplitudes, i.e.,

X1~v!5eiua~v!1e2 iua†~v!,
~27!

X2~v!5ei (u1p/2)a~v!1e2 i (u1p/2)a†~v!,
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where the absolute quadrature angle,u, is arbitrary. Although
the homodyne detection itself can be ideal, the splitting
the beams at the beamsplitters inevitably introduces vacu
noise~this must occur because orthogonal quadratures c
stitute conjugate observables!. Thus the detection results ar

Xa
1~v!5

1

A2
@aout~v!1aout

† ~v!1vd11vd1
† #,

Xa
2~v!5

i

A2
@aout

† ~v!2aout~v!1vd12vd1
† #,

Xb
1~v!5

1

A2
@bout~v!1bout

† ~v!1vd21vd2
† #,

Xb
2~v!5

i

A2
@bout

† ~v!2bout~v!1vd22vd2
† #, ~28!

where the arbitrary angleu has been set to zero for simplic
ity. The penalty vacuum noise is represented as usual byv ’s.
Consider adding the photocurrents from each beam wit
p/2 phase shift. This could be achieved by imposing a de
of t to one of the currents such thattv5p/2. This gives
photocurrents

A~v!5Xa
11 iXa

25A2~aout1vd1
† !,

~29!

B~v!5Xb
11 iXb

25A2~bout1vd2
† !.

These photocurrents could then be fed into spectrum ana
ers which give the photon number spectra

FIG. 8. Gain for maximum visibility (lmax
2 ) and maximum vis-

ibility thus achieved (Vmax) versus level of entanglement for var

ous average input photon numbers (n̄50.25,1.0,4.0).
9-7
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VA~v!5^uXa
11 iXa

2u2&52^aout
† ~v!aout~v!&12,

~30!
VB~v!5^uXb

11 iXb
2u2&52^bout

† ~v!bout~v!&12.

We can then define, in analogy with the photon counting c
@Eq. ~15!#,the spectral visibility as

V5
^aout

† ~v!aout~v!&2^bout
† ~v!bout~v!&

^aout
† ~v!aout~v!&1^bout

† ~v!bout~v!&
5

VA2VB

VA1VB24
.

~31!

Note that for an arbitrary field we can also write

^ain
† ~v!ain~v!&5^ 1

2 uX11 iX2u2&5 1
4 ~V11V2!2 1

2 ,
~32!

whereV15^uX1u2& andV25^uX2u2&. Equation~32! allows
us to construct visibilities directly from individually mea
sured orthogonal quadrature spectral variances. Also it
lows us to compare the visibilities obtained here with tho
of the previous sections. In order to make such comparis
with the photon counting visibilities, we observe th
^ain

† (v)ain(v)& is the photon number in the upper frequen
component of the field only. Thus the total avera
photon number of upper and lower side ban
~assuming a frequency-symmetric input state! is n̄(6v)
52^ain

† (v)ain(v)&. This is similar to the summing of the
average photon numbers for both polarization modes in
discrete case. For equivalent average photon numbers@Eq.
~22! with n̄(6v)[n̄# all the predictions of the low photon
number visibilities are exactly reproduced in the continuo
variable case, including the ability to rebalance the inter
ometer and obtain unit visibilities.

The preceding analysis has shown that interferome
tests of quantum teleportation for unknown continuous v
able states of a fixed average photon number can als
performed. Let us consider a couple of examples. For
arbitrary input field there will be some particular value ofu
for which the conjugate spectral variances reach maxim
and minimum values,Vmax

1 and Vmin
2 , respectively. A mini-

mum uncertainty state obeys the equalityVmax
1 Vmin

2 51. It is
convenient to discuss our examples in terms of these qua
tures. Suppose our input field is quantum noise limited
with a small classical signal imposed at an arbitrary quad
ture angle. This is equivalent to a coherent state of a part
lar amplitude but unknown phase. For this inputVmax

1 5Vs

11 and Vmin
2 51, whereVs is the signal power. IfVs52,

then spectral visibilities identical to the single photon cou
ing visibilities will be observed. Alternatively the input sta
may be squeezed at some arbitrary angle such
Vmax

1 &1&Vmin
2 . If Vmax

1 51/(22A3) andVmin
2 5(22A3), then

again spectral visibilities will be identical to the single ph
ton counting visibilities.

These results are significant as reliable teleportation
spectral components is technologically less challenging t
single photon experiments and are thus likely to form a s
nificant part of future quantum information research.
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VI. RELATIONSHIP TO OTHER MEASURES

We will now examine the relationship of the visibilitie
measured in our interferometric arrangement with the ot
measures for teleportation proposed and used in the lit
ture. We will first derive a quite general direct relationsh
between the conditional variance of the teleporter and
measured visibility and then show by example how telep
tation fidelities for particular input states can be calculate

The amplitude conditional variance between the input a
output of the teleporter is given by

Vcv5
1

2
@Vout

1 ~12C1!1Vout
2 ~12C2!#, ~33!

where Vout
6 5^udXout

6 u2& are the variances for the amplitud
(dX1) and phase (dX2) quadrature fluctuations of the ou
put state. The correlation function,C, is defined by

C65
u^dXin

6dXout
6 &u2

Vin
6Vout

6 . ~34!

For the output field given by Eq.~5! we get

Vcv5S lAhb1H

ha
2Ahb2~H21! D 2

1
l2~12hb1!

ha

1S lAhb1~H21!

ha
2Ahb2H D 2

1~12hb2!1
l2~12ha!

ha
.

~35!

Importantly this result is independent of the input field. Fro
this result it can then be shown that in fact

Vcv5
ln̄

V 112l22
n̄

2
~11l2!. ~36!

Thus provided the gain of the teleporter (l) and the average
photon number of the input (n̄) are known, then a measure
ment of the visibility immediately gives one a value for th
conditional variance@34#. Although derived for the particula
teleportation model of Sec. II, it can be shown that this res
@Eq. ~36!# is quite general, always applying provided:~i! the
noise added by the teleporter is Gaussian and~ii ! the gain of
the teleporter is equal for both quadratures and is linear.

Once the conditional variance of the teleporter is know
then the fidelities that would be achieved when teleport
specific classes of states can be calculated. As a first
ample, consider a single photon number state, polariza
qubits, as discussed in Sec. III. The teleportation fidelity c
be calculated provided all the normally ordered moments
the output state are known~see Appendix B!. It is straight-
forward to show that the normally ordered moments
given in terms of the conditional variance by
9-8
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^a†mam&5S 1

2
~Vcv1l221! D 2m

m!

1FmlS 1

2
~Vcv1l221! D 2(m21)G~m21!!.

~37!

In Fig. 9~a!, we plot the visibility and inferred fidelity for
single photon number states. Note that the fidelity is cal
lated for the situation where the qubits are teleported dire
~not the case of the teleporter in the interferometer!. We see
that there is little apparent relationship between the t
plots. However, it is standard in qubit teleportation expe
ments to disregard the efficiency of the teleporter and c
sider only the fidelity of state reconstruction when the te
portation is successful~i.e., conditional on the arrival of a
photon! @4#. In Fig. 9~b!, fidelity inferred in this way is com-
pared with the visibility of a balanced interferometer. Now
relationship is seen with qualitatively similar behavior of t
fidelity and visibility.

For our second example, we will consider the most
perimentally relevant states for the short to medium te
continuous variable coherent states. Furusawaet al. @7# iden-
tified the boundary between classical and quantum telepo
tion of coherent states at a fidelity of 0.5. At about the sa
time we@12# concluded that a second, qualitatively differe
limit was given by a conditional variance of 1.0 at unity ga
@35#. This second limit corresponds to a fidelity of 0.66
Since then, considerable evidence for the significance of
second limit has been presented in terms of the ability of
teleporter to reproduce quantum properties of the s
@14,15#, the quality requirements on the entangleme
@14,13#, and the uniqueness of the teleported state@13#. The
existence of dual boundaries for entanglement-assisted
nomena is not unusual. For example, for discrete polariza
entanglement the boundary for nonseparability is a coin
dence visibility of 0.5 in all bases. On the other hand, vio
tion of a Bell inequality requires visibilities greater tha
0.71. Similarly, the requirements for violation of the contin
ous variable EPR condition@36# are more stringent than th
nonseparability criterion for continuous variables@37#.

The determination of these boundaries from the visib
ties, measured as described in Sec. V, is straightforw
First, the visibility can be turned into a conditional varian
using the relationship of Eq.~36!. The fidelity that could be
achieved with the teleporter can then be inferred using
relationship

F5
2

21Vcv
expS 2

2uau2~12l!2

21Vcv
D , ~38!

which can be derived from Ref.@7# with a the coherent
amplitude of the input state. If the input states have un
average photon number, then the following corresponden
apply at unity gain: a visibility ofV50.333 corresponds to
conditional variance ofVcv52 and infers a fidelity ofF
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50.5, while a visibility of V50.5 corresponds to a cond
tional variance of Vcv51.0 and infers a fidelity ofF
50.667.

So far, continuous variable teleportation experiments h
only explored the region close to unity gain. We have se
that the interferometric test highlights the interest of oth
gain conditions. In particular, with rebalancing very high v
ibilities may be obtained with finite entanglement squeezi
What is the significance of these visibilities? The condition
variance corresponding to substitution of the rebalanced
ibility into Eq. ~36! is an ‘‘efficiency corrected’’ conditional
variance which depends on nonoptimal aspects of the pr
col implementation, e.g., loss, but does not depend on
actual level of squeezing entanglement used. This could
useful characterization. The fidelity that would then be
ferred is an efficiency-corrected fidelity similar to that di
cussed for single qubits. In particular, we would infer

Fcorr5^AhauruAha&, ~39!

whereh is the attenuation applied in rebalancing the int
ferometer. In other words, we infer the overlap that would
obtained between the output of the teleporter and an atte
ated version of the input state.

VII. CONCLUSION

We have examined an interferometric test of the effica
of teleportation. Unique characteristics of this arrangem
are~i! it does not require the tester to know the input state
the light, only the average power;~ii ! the ability of the tele-

FIG. 9. Comparison of visibility of the interferometric test a
rangement with fidelity which would be obtained in a standard te
portation experiment. Input state is a single photon polarizat
qubit. In ~b! the results are corrected for efficiency by rebalanc
the interferometer and calculating an efficiency-independent fi
ity. No corrections are done in~a!.
9-9
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T. C. RALPH PHYSICAL REVIEW A 65 012319
porter to reconstruct both the relative and global phase of
field is tested directly; and~iii ! one can directly test the stat
reconstruction ability of the teleporter separately from or
gether with its efficiency.

The teleportation efficacy is characterized by the visibil
between the two outputs of a Mach-Zehnder interferome
when the teleporter to be tested is placed in one of the a
We have contrasted the results obtained with no entan
ment and varying levels of squeezing entanglement us
continuous variable teleportation. A clear classical limit~i.e.,
with no entanglement! to the visibility was demonstrated an
its dependence on input average photon number investiga
For an average photon count of one per measurement i
val, the classical limit wasV<A1/5. Higher classical visibili-
ties could be obtained with greater photon flux. The class
limit was lower with smaller photon flux. High visibilities
~close to 1! could only be obtained~for low photon flux! with
high levels of entanglement and low levels of loss. These
the requirements for high efficiency teleportation. Howev
decreased photon flux in the teleported arm~reduced effi-
ciency! can be compensated by rebalancing the untelepo
arm of the interferometer. In this way, state reconstruct
can be tested separately from efficiency. We find that, p
vided losses are small, ideal state reconstruction can
achieved for any level of entanglement squeezing. This
characterized by unit visibility in the balanced interferome
with finite levels of entanglement. Losses reduce visibilit
but the general trends remain the same.

A generalization of the technique to continuous varia
inputs was presented. With suitable interpretation it w
found that the visibilities exhibited identical behavior to the
discrete variable counterparts.

We have discussed the relationship of the interferome
visibility to other figures of merit. Of considerable signifi
cance is the quite direct relationship between the visibi
and the amplitude conditional variance of the teleporter.
showed by example how, once the value of the conditio
variance had been obtained from visibility measureme
fidelities for arbitrary input states could be inferred.

We believe that tests of the kind outlined in this pap
represent an important technique for characterizing quan
teleportation.
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APPENDIX A

Some readers may find it unusual that the classical ch
nel ac is described by an operator. This is a standard fea
of the treatment of classical channels in the Heisenberg
ture,not a consequence of our particular choice of an opti
classical channel or our particular choice of teleporter mo
The different treatments of classical channels between
Heisenberg and Schro¨dinger pictures are contrasted for qua
tum limited feedback in Ref.@38#. Thatac is truly a classical
01231
e

-

r
s.
e-
g

ed.
er-

al

re
r,

ed
n
-

be
is
r
s

e
s

ic

y
e
al
s,

r
m

-

n-
re
c-
l
l.
e

channel can be demonstrated easily via the no-cloning th
rem @39#, which states that a quantum system cannot be
plicated without penalty. If the quantum nature ofac is sig-
nificant in the teleportation process, then the no-clon
theorem would predict that duplication ofac would lead to a
significant degradation in the quality of the teleported sta
An optimum continuous variable cloner can be construc
from the combination of a linear amplifier of gain 2 followe
by a 50:50 beamsplitter. Applying this toac produces the two
clonesac8 andac9 given by

ac85ac1
1

A2
~vc1

† 1vc2!,

~A1!

ac95ac1
1

A2
~vc3

† 2vc2!,

where thev ’s are vacuum modes. Suppose Bob usesac8 for
the reconstruction. He will produce the output

aout5lain1~lAH2AH21!v3
†1~AH2lAH21!v4

1A«
1

A2
~vc1

† 1vc2!. ~A2!

The final term is due to the cloning process. But in the cl
sical channel limit we have«→0 and hence this final term
can be neglected and Eq.~A2! reduces to Eq.~6!. Arbitrarily
good reconstruction of the input beam is still possible. T
same result holds if Bob were to use the other clone,ac9 , for
the reconstruction. Thus the cloning procedure does
change the quantum properties of the output and soac must
be considered a classical channel.

APPENDIX B

The fidelity for a pure input stateus& is given by

Fi5^sur i us&, ~B1!

where r i is the density operator of the output state in t
Schrödinger picture. First note that the action of the te
porter@as described by Eq.~13!# is independent of the polar
ization basis used to express it. That is, the Heisenberg e
tions will have identical form for any two orthogona
polarization modes. Thus the labelsh andv can equally be
interpreted as meaning horizontal and vertical or right a
left circular, etc. This means we only need to evaluate
fidelity for some particular input polarization. The invarian
with change of basis then implies that the same result
hold for all input polarizations. For simplicity, we choos
horizontally polarized input photons such thatx51 and y
50. The fidelity then becomes

Fi5^1uh^0uvr i ,hr i ,vu0&vu1&h5^1ur i ,hu1&^0ur i ,vu0&,

~B2!

where the ouput density operator can be factorized into c
tributions from the two polarization modes,r i5r i ,hr i ,v ,
9-10
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provided polarization cross-talk in the polarizing beamsp
ters can be neglected. Thus the problem is reduced to fin
the first and second diagonal elements ofr i ,v and r i ,h, re-
spectively.

The diagonal elements of the density operator can be
tained from the normally ordered moments of the Heisenb
operators in the following way: suppose a Schro¨dinger pic-
ture density operator has the following general form:

r5p0u0&^0u1p1u1&^1u1p2u2&^2u1•••pnun&^nu

1~nondiagonal elements!, ~B3!

where we assume we can truncate at some sufficiently l
photon number,n. The normally ordered moments are give
by ^a†mam&5Tr$a†mamr% and are easily calculated from Eq
~B3! to be

^a†a&5p112p213p31•••npn ,

^a†2a2&52p216p31•••n~n21!pn ,
~B4!

^a†3a3&56p3124p41•••n~n21!~n22!pn ,

•••

^a†nan&5n! pn .
, a

r,

e

n

, H

B

01231
-
ng

b-
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From this result the following recursive relationship betwe
the diagonal element probabilities and the moments can
obtained:

pn5
1

n!
^a†nan&,

pn215
1

~n21!! S ^a†n21an21&2
n!

1!
pnD ,

pn225
1

~n22!! S ^a†nan&2
~n21!!

1!
pn212

n!

2!
pnD ,

~B5!
•••

p15~^a†a&22p223p32•••npn ,

p0512p12p22p32•••pn .

Of course the operator moments are equivalent whether
culated in the Schro¨dinger or Heisenberg pictures. Calcul
tion of the various moments in the Heisenberg picture p
ceeds as described in Sec. VI. Substitution into the gen
formula given by Eq.~B5! allows us to numerically calculate
the required coefficients.
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