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We investigate the dynamics of a nonintegrable system comprising of two cou-
pled spins. This Hamiltonian system can be considered as a model for two magnetic
molecules coupled via a particular nonlinear interaction. A model like this has been
proposed as a realisation for quantum bits in quantum computing. We identify a criti-
cal value of the coupling parameter. Below this critical value, motion is approximately
regular and the system is robust to weak coupling. Above the critical value the system
bifurcates and motion can be localised about the additional elliptic fixed points. The
localised motion is typically regular, though for less extreme energy values an exten-
sive chaotic region leads to unpredictable behaviour. The energy of the system plays a
crucial role in determining the accessible regions of phase space and the behaviour of
the system.

1.1 Introduction
Chaos in Hamiltonian systems is remarkable because chaotic regions can be

densely interweaved with regular regions in an extremely complicated phase
space which is neither totally regular or ergodic. Unlike the strange attractors
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of dissipative systems, there are no attractive regions in the phase space of
Hamiltonian systems. As such chaos tends to explore sub-regions of the phase
space bounded by regular motion[4].

The dynamics of a Hamiltonian system are completely specified by the Hamil-
tonian: a scalar function of position and momentum which represents the total
energy of the system. Trajectories move throughout phase space conserving the
Hamiltonian. Establishing the restrictions arising from energy conservation is
vital to understanding the system and analysing the dynamics.

Many examples of nonintegrable spin systems have been studied using Hamil-
tonian mechanics[2, 5, 6]. The unusual feature of the two-spin system studied in
this paper is that the coupling introduces nonlinearity into the otherwise linear
system. As a result of the nonlinear interaction this simple system is capable of
generating a wide range of complex dynamical behaviour.

Coupled spin systems of this kind are of much interest to quantum computing.

1.2 Physical motivation

Recently, magnetic molecules have been suggested as a realisation for quantum
bits[7]. Magnetic molecules are nanometre scale molecular clusters that consist
of thousands of electrons and nucleons, that can be treated as mesoscopic parti-
cles having properties such as magnetic moment and angular momentum. It is of
fundamental importance to quantum computing that these magnetic qubits in-
teract with one another in order to generate entanglement between the states|[1].
Entanglement is correlation of a special kind. If two systems do not interact,
they cannot be correlated.

In the system in question the interaction is achieved by coupling the magnetic
clusters via superconducting loops such that the supercurrent induced in the
loop by one spin produces a magnetic field at the site of the other. An external
magnetic field in the z direction also acts on each molecule causing the magnetic
moment, and with it the angular momentum, to precess uniformly about the
axis parallel to the magnetic field. This is known as Larmor precession[3]. The
Hamiltonian for each individual cluster! is simply H; = w;L.,, where w; is the
Larmor frequency for each spin, determined by the external magnetic field and
the mass and charge of the molecule.

In the present model, the interaction causes rotation about the y axis for
each cluster with frequency proportional to the y component of the magnetic
moment of the other cluster. Since the magnetic moment is parallel to the
angular momentum, the interaction Hamiltonian can be written in terms of the
y components of angular momentum, L,,, with x being the coupling parameter:

Hipy = XLy, Ly,. (1.1)

IThroughout this study the subscripts i and j are used to denote the two spins. The
convention used is that 4,5 € {1,2}, i # j.
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The Hamiltonian of the coupled two-spin system is
H=wLl. +wL., + xLy, Ly,. (1.2)

In addition to H remaining constant, the total angular momentum of each clus-
ter is conserved so that |L;| and |Lo| are also constants of the motion. By
setting |Li| = |L2| = L the six dimensional angular momentum phase space is
constrained to the four dimensional surface of two spheres with radius, L, such
that

Li'Li:in2+Lyi2+Lzl-2:L2- (13)

A point on sphere i represents the position of the axis of rotation of molecule i
and the state of the system can be specified by four coordinates. The two spins
form a time-independent Hamiltonian system with two degrees of freedom.

1.3 Analysis

Using the Poisson bracket and its angular momentum relations[3], the equations
of motion for each spin can be determined:

L.Cti = —wily, + x Lz Ly;, (1.4)

When x = 0, L., is constant and (L,,, L,,) rotate about the z axis with fre-
quency, w;. Alternatively, if w; = ws =0, Ly, is constant and (L,;, L.;) rotate
about the y axis with frequency xL,;, (i # j). More complex dynamics occur
when both of these influences affect the motion.

Figure 1.1 shows a sample of the behaviour that the spins can exhibit for
different parameters. One spin is shown for each regime. The variety of possible
dynamics of the system necessitates an analytic approach to investigate and
categorize the behaviour.

One way to represent the four dimensional phase space is to use a stere-
ographic projection and map each sphere (L,,,Ly;,L;) onto a plane (a;,3;)
such that the ‘north pole’ (L., = L) is mapped to the origin, the ‘south pole’
(L,, = —L) is mapped to infinity, and the ‘equator’ (L., = 0) is mapped to the
unit circle, a;2+3;2 = 1. This is not an area preserving transformation, however
it does preserve angles and the resulting phase space is only four dimensional.

The phase flow in the (a1, 81, as, 82) coordinates is described by:

(14 a;® - B°)

(1 + Oéj2 + 6]2)’
aifB:B;

(1 + an + sz-

a; = —wiBi+ xLB;

Bi

wia; + 2xL
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Figure 1.1: (a) Localised regular motion. (b) Regular motion exploring more of the
phase space. (c) Densely clustered trajectories. (d) Globally chaotic motion.

As with equations 1.4, 1.5, 1.6, the dynamics of the uncoupled system (y = 0)
are simple in this new representation however the nonlinearity is quite complex.
This is further complicated by the fact that motion near the south pole requires «
and S to approach infinity. As such motion near the south pole can be distorted
by this projection.

Fixed points in angular momentum space represent equilibrium solutions
where the angular momentum of both spins remains constant. The origin (11) is
a fixed point and there exist four more fixed points when x exceeds the threshold

value:

vyt (1.9)

L

The south pole configuration (/) is also a fixed point of the system. Further
analysis shows that at x = x¢ a supercritical pitchfork bifurcation occurs desta-
bilising the existing fixed points. As x increases, two elliptic fixed points emerge
in opposite directions from each pole along the L,, (or ;) axis. For large x
these points aymptotically approach the equator meaning there are always two
elliptic fixed points in each hemisphere.

Xc =

The total energy of the system (equation 1.2) is determined by the starting
momenta of the spins. For x subcritical, the angular momentum constraint
(equation 1.3) results in the energy being maximum when both spins are at the
north pole and minimum when both spins are at the south pole. These extreme
energy values are H = +(w; + wz)L. When y is above the threshold value,
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extreme energy values occur when VH = 0. With y supercritical, the energy is
maximum at the stable fixed points in the northern hemisphere and is minimum
at the stable fixed points in the southern hemisphere.

Trajectories can only travel in regions of phase space that have the same
energy thus it makes intuitive sense that the stable fixed points have extreme
energy values, confining motion to the fixed point. Motion near a stable fixed
point is confined to a sub-region of the phase space that has a constant energy
close to that of the extreme value. Regions with the same energy define the
energy surface: a three dimensional hypersurface on which the Hamiltonian is
constant. The parameters, wi,ws and y, and the starting momenta determine
the topology of the energy surface which is fundamental in establishing the
accessible regions of phase space.

This surface can be visualised by considering its two dimensional intersection
with the hypersurface oy = 0. When x = 0 the energy surface is radially
symmetric in the orthogonal coordinate system (831, a2, 82). As x increases,
the surface becomes warped and skewed in opposing directions until, when y is
supercritical, it is possible for the energy surface to exist as two disjoint surfaces
localised around the fixed points (Figure 1.2). For negative values of energy,
the energy surface appears as two infinitely wide disjoint sheets which can also
extend to infinity in a tube-like manner along the perpendicular axis (Figure
1.3). This is an artifact of the stereographic projection and can be overcome by
applying a different stereographic transformation.

Figure 1.2: Disjoint energy surface with H > (w1 + w2)L and x > xc.

Conditions on the topology of the energy surface an be found by analysising
the Hamiltonian. Hp4 is the energy of the system ‘at the origin’ where both
spins start in the upright position:

HTT = (w1 + wg)L (110)

Essentially, Hy4 is an energy threshold. If H > (w; + ws)L the energy surface
is disjoint and motion is localised around the maximum energy fixed points.
Similarly, if H < —(w; + we)L motion will be localised around the minimum
energy fixed points.
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Figure 1.3: ‘Infinite’ energy surface with H < 0.

It is well established for autonomous Hamiltonian systems with two degrees
of freedom that the existence of two constants of motion results in integrable
dynamics[3, 4]. Integrable trajectories are constrained to the two dimensional
surface of intersection described by the global invariants. The Hamiltonian is one
such global invariant though it is generally difficult to determine whether another
constant of the motion exists. Poincaré maps can be used to investigate whether
an additional constant exists and whether the system is in fact integrable.

The Poincaré map is a numerical technique with the ability to reveal structure
in seemingly disordered motion and provide a useful indication of integrable
motion. It allows us to sample the motion by taking a cross section of the phase
space while retaining all the information of the original phase flow. Poincaré
maps for this system were generated via numerical integration of trajectories in
the four dimensional phase space. The dynamics are constrained to the energy
surface. When a trajectory crosses the hypersurface a; = 0 in the same direction,
the point of intersection is recorded in the Poincaré map. The Poincaré map
reveals integrable periodic motion as closed one dimensional curves and chaos
as a scatter of points, typically bounded by integrable motion.

Figure 1.4 shows a series of Poincaré maps as y increases. As the perturbation
increases the invariant curves break up and motion becomes ‘globally chaotic’
when a trajectory can travel unbounded over the energy surface. Even with
strong coupling, motion is typically regular about the elliptic fixed points, for
energy above Hyy.

1.4 Discussion

In this study we have investigated the dynamics of a coupled two-spin system
as the coupling and energy change. For weak coupling, the poles are elliptically
stable and motion is approximately regular. Numerical investigation displays
one spin spiralling in towards the pole while the other spin spirals outwards.
Governed by energy conservation, each spin’s radial direction reverses and this
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Figure 1.4: Poincaré maps for a system with L = 1,w; = 1,ws = 1. The critical
values, xc = 1 and Hy = 2. (a) x = 0.5, H = 1.2. Closed curves for eight different
initial conditions depicting regular, period-one behaviour. (b) x = 1.2, H = 1.2. For x
supercritical some invariant curves break up. The scatter of points displaying chaotic
motion is generated from one initial condition. Period-three motion is also observed.
(¢) x =2, H = 1.2. The chaotic region in this map is generated from one initial condi-
tion. It appears that some regular motion still exists and constrains the nonintegrable
motion. (d) x = 2, H = 2.07. The energy surface is disjoint and motion is localised
about the elliptic fixed points. The Poincaré map displays closed curves signifying
regular behaviour for eight initial conditions on each surface. No chaotic motion is
observed in this map.

cyclical motion continues indefinitely.

As x increases, regular behaviour persists close to the origin although chaos
can be observed further out for trajectories with lower energy magnitude. Chaos
is caused by resonance between the two spins and is more readily observed when
w1 = we. Motion started with a lower |H| also has a larger accessible energy
surface which contributes to the behaviour of the system.

We have identified a critical value for the coupling parameter, x¢ at which the
elliptically stable poles become hyperbolic and two elliptic fixed points emerge
from each pole. This bifurcation results in qualitatively different phase space
as the energy surface can become disjoint and localised around the new fixed
points. Furthermore, the unstable poles no longer have extreme energy values
so trajectories initially near the poles are able to traverse larger regions of phase
space while maintaining constant energy.

Chaotic motion is more prevalent when y is supercritical but is also influenced
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by the energy surface. Lower |H| results in an energy surface on which chaotic
motion is typically more widespread. When |H| > (w; +w2)L, motion is localised
around the stable fixed points and is typically regular.

Since the classical dynamics act as a guide for the quantum dynamics, the
implications for quantum computing are clear. The coupled spins must behave
predictably for time reversible dynamics. However, the interaction needs to allow
arbitrary rotation and create measurably different states. This study suggests
x should be supercritical and |H| > Hy4 such that motion is localised about
the extreme energy fixed points avoiding regions of chaos. Identifying and lo-
cating the resonances responsible for the chaotic dynamics will lead to further
understanding of the complicated behaviour of this system.
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