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Metastable chaos in the ammonia ring laser
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We report experimental studies of metastable chaos in the far-infrared ammonia ring laser. When the laser
pump power is switched from above chaos threshold to slightly below, chaotic intensity pulsations continue for
a varying time afterward before decaying to either periodic or cw emission. The behavior is in good qualitative
agreement with that predicted by the Lorenz equations, previously used to describe this laser. The statistical
distribution of the duration of the chaotic transient is measured and shown to be in excellent agreement with
the Lorenz equations in showing a modified exponential distribution. We also give a brief numerical analysis
and graphical visualization of the Lorenz equations in phase space illustrating the boundary between the
metastable chaotic and the stable fixed point basins of attraction. This provides an intuitive understanding of
the metastable dynamics of the Lorenz equations and the experimental sy31€%50-294707)00610-0

PACS numbe(s): 42.65.5f, 47.52tj, 42.55~f, 42.60.Mi

[. INTRODUCTION of the laser output together with system noise provides a
sufficiently random selection of initial conditions to demon-
Deterministic chaos has been demonstrated in many exstrate the statistical distribution of the duration of the tran-
perimental systems, one well known one being the systersients and allows comparison with theory. Once again, ex-
devised by Weiss and Brogk]. In this system the output of Cellent agreement is shown. Furthermore, the mean of the
a far-infrared ring laser produces chaotic time series whictgxperimental distribution is shown to vary with pump param-
are well described by the Lorenz-Haken laser equatighs eter in a manner consistent ywth that o_f_the Lorenz equations.
which are isomorphic to the celebrated Lorenz equations de?s defined by{10], an experimental critical exponent of the
rived from the equations of convective fluid floi8]. This ~ System is determined gnd compared with exponents obtained
system has afforded a number of direct experimental obseflom the Lorenz equations. _
vations of chaotic behavior that have been in excellent quali- However, the exponential distribution of the duration
tative agreement, at the very least, with the dynamics Cak;l}]mes_ fpr metastable transients break_s down for tran5|_ents
lated from the Lorenz equations. In this work, the systemfOnsisting of two, one, or zero chaotic pulses. There is a
used is very similar to that dfL] and has also demonstrated much Iarggr number of these shqrt or zero d_uratlon_trqn3|ents
semiquantitative agreement with calculatigh-6)]. than predlct_ed by an exponentlal dlstr_lbutlon. This is pb-
If the value of a parameter is changed, transient behavigperved both in the laser and in the solutions to the equations.
can ensue before the system settles to a new long-term pdo investigate this we provide a n_umerlcal visualization of
havior characteristic of the new parameter value. When thée phase space for the three variables of the Lorenz equa-

new state is not far below the chaos threshold, metastabi@ns. This graphically illustrates the geometrical form of the
chaos, i.e., a burst of transient chaotic behavior, can be otasin of attraction of the metastable behavior and also the

served[7-9]. In this metastable regime, the duration of the Poundary between this and the basin for short or zero dura-
chaotic transient has been shown to depend sensitively updipn transients. The visualization gives an intuitive explana-

the initial conditions chosen and gives an exponential distrifion as to why the distribution of the duration times for meta-

bution of metastable duration times for randomly chosen iniStable transients yields a much larger proportion of very
tial conditions[7]. The mean of the distribution, effectively Short transients.

the average metastable duration time, has also been shown to

vary exponentially with the pump parameter wherein the eX- || EXPERIMENTAL SYSTEM AND THE LORENZ

ponent is referred to as the “critical exponent” for the meta- MODEL

stable behaviof10-12.

This work investigates such metastable phenomena in the The system use(Fig. 1) is essentially the same as used in
ammonia lasef4-6]. We allow the system to evolve for a previous studies of chaotic and transient behavior of the am-
time in the chaotic regime and then quickly switch the lasemonia lasef4—6]. A 3CO, laser optically pumps &@°NH;
pump power to a value slightly below the threshold value forfar-infrared(FIR) ring laser and the pump power can be rap-
chaos. Metastable chaotic transients are subsequently olsly switched using the transmitted beam from an acousto-
served which are shown to be in excellent qualitative agreeeptic modulator. The form of the pump power with time
ment with corresponding transients calculated from the Lo{from the diffracted beainis observed using a HgCdTe de-
renz equations. By repetitively switching the pump powertector and the output emission of the FIR laser is detected
from above to below the chaos threshold, the chaotic naturgsing a Schottky barrier diode detector. The ring laser output
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FIG. 1. Experimental setupM’ is a 2.0 m R.O.C. movable mirror to control the ring laser tuning. Gr. is grating to couple the CO
radiation into the ring resonat@80 lines per mm W.M. is the wire mesh output couplé€s lines per mm See text for details.

is coupled via a wire mesh and the backward traveling wavéor chaog the origin is unstable and there are instead two
(with respect to pump beam directjois monitored through stable fixed point solutioné+ \b(r—1),= Vb(r—1),r—1)
a port. Pump radiation is coupled into the ring via a ruledcorresponding to steady cw operation. Betweeril andr .,
grating with rule spacing designed to specularly reflect thehere are two further significant values, andr,, that are
FIR radiation. The frequency of the pump laser is tuned via gelevant to defining the metastable chaotic regime, with
piezo mounted mirror and is monitored using a Lamb Dip1<r,<r,<r., [7]. Forr between 1 and,, the basins of
cell. The ring laser is tuned mechanically via a translatablesttraction of each of the fixed points make up all of phase
curved mirror. The ammonia pressure used throughout thepace defined by,y,z and hence all points evolve to either
experiments was 3@bar. Pump laser power was typically one of the fixed points. Far betweerr , andr, there is now
between 5.0 and 6.5 W. a region of metastable chaos. Initial conditions chosen within
The equations used to describe the system are the Lorefiis region behave chaotically but eventually end up on the
equationg 3]: fixed points. Initial conditions chosen outside the metastable
) region also evolve to the fixed points but do not have an
X=0o(y—X), initial chaotic transient. There are therefore still two basins
) of attraction each belonging to the two fixed points since all
y=x(r—z)—vy, (2.1 initial conditions eventually evolve to these points. For
_ betweenr, andrg,, however, there are three basins of at-
z=Xy—bz traction (two fixed stable points and the one which displays
complex dynamics All trajectories in each basin of attrac-
The variablesc,y,z, correspond to the laser electric field tion remain there. Initial conditions chosen in either of the
E and the polarizatiof® and inversiorD of the lasing me-  fixed points’ basins of attraction evolve to the respective
dium, respectively, according to the isomorphism demonfixed point and initial conditions chosen in the chaotic attrac-
strated by Hakefi?]. The parameters andb depend on the tor's basin of attraction continue to evolve chaotically indefi-
relaxation rates of the laser variables. The pump power is thgitely. In this work, we investigate the behavior for which
control parameter for the system and represented. bAd-
though there has been considerable controversy concerning'o i

| | |
I T T T
1 r T N

the validity of this model to describe the laser syst@mt- 0 1
lined in[5]), the final qualitative agreement with experimen-  —— — t—— by
tal observations in this work continues to be exceptional. origin xed poin(s stable txed points unsiable

The regions of particular dynamic behavierg., chaotic, stable l l

1
metastable, periodic, steady stass a function of are il- metastable chaos chaos
lustrated in Fig. 2 and are described briefly as follows.1 FIG. 2. Regimes of dynamical behavior of the Lorenz equations
corresponds to the threshold for lasing and sorftess than  as a function of the pump parameterThe threshold for chaos is
1, the origin is stable and there is no lasing. Fdretween 1  r, and metastable behavior is observedrfdretween the two val-
andr g, [wherer op= o (o +b+3)/(c—b—1) is the threshold uesr,,r;. The fixed points are stable for<lr <r,.
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FIG. 3. (@) The ring laser intensityarbitrary unit$ and pump
laser power output. The step in pump level is from slightly above
chaos threshold to slightly belo{®.4 to 6.0 W. The chaotic pul-
sations continue for about 2@s after the switch but with slightly .
longer period of pulsation, before finally decayin) Calculated §®
intensity for the Lorenz equations with pump parameter switch. s 0
Intensity corresponds to the square of Lorenz variabler=2, fo
b=0.25,r=15.0 to 10.6. The qualitative behavior compares very 3 H § S
well with the experiment, including the slightly longer pulsation ~ %%
period after the switch. %%
\ ",
the pump is reduced from above the chaos threshgld,to . oo
below the “metastable threshold ;. + Chaos (r=I5)
Ill. QUALITATIVE BEHAVIOR I,

Figure 3a) shows the form of laser intensity with time (b)
(lower trace together with the switch in pump poweérpper
trace and Fig. 3b) is the intensity determined from a nu-

r_nerical integration OT the Lorenz _equatio(gee figure cap- integration (b). Points marked with open symbols correspond to
tion for parametepswith the associated switch in pump pa- pairs of pulses occurring before the switch in pump power; solid

rameter shown as well. In Fig.(@, the pump power is gymhols correspond to pairs of pulses occurring after the switch. A
switched from one level for which chaos persists indefinitelygistinct change in the position and form of the “cusp” shape dis-

to slightly below where metastable behavior is observed. Beyibution of points is evident after the pump switch, both in the
fore the switch, chaotic intensity pulsations are presengxperiment and the numerical analysis.
which are “Lorenz-like;” i.e., qualitatively similar to the
pulsations from the Lorenz equations shown in Fi¢)3 chaotic attractor is different from the fully chaotic attractor
After the switch, the pulsations continue to be chaotic andvhen the pump is above chaos threshold. This is clearly
Lorenz-like for a number of pulses until finally switching to illustrated in Fig. 4 where the return majgy for the experi-
a series of pulses where the amplitude is decaying. This benental and numerical time series are plotted, respectively.
havior is qualitatively the same as that found from the equaThe return map consists of plotting the value of intensity of
tions and is referred to as “metastable chaos,” which wane pulsation peak versus the previous peak value. A
reported in 7]. After switching down below the threshold for “cusp” shape distribution is characteristic of the Lorenz
chaos, the chaotic dynamics is metastable, in that it continuesguations for a particular value of the pump parameter. If the
only for a time before switching to stable behavior. In thepump parameter is changed, then the return map will change,
equations, the pulsing after the metastable behavior ha®flecting a change in the attractor. As can be seen in(apth
ceased eventually decays to steady state. In the laser, tlaad (b) in Fig. 4, there are two such cusp shapes for each
pulse amplitudes decay to a fixed level of puls[gg. De- figure where the open and solid symbols correspond to peaks
spite this difference, the overall qualitative behavior of thebefore and after the pump switch, respectively. This demon-
system and the equations is extremely good. Also reproducesirates that the form of the attractor is different before and
in the numerical integration is the slight increase in the laseafter the pump switch, as expected. The metastable nature of
pulsation period after the switch. the dynamics is also evident in the solid-symbol cusp in that
The change in pulsing period after the switch indicateshe lower end of the left “limb” of the cusp is below the
that when the pump is below chaos threshold, the metastabls° line used to follow the evolution of points in the return

FIG. 4. The intensity return maps determined from the time
traces shown in Fig. 3 for the experime{@ and the numerical
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small changes in parameters required rapid data sampling to
25 | 1 minimize the drift of conditions. Nevertheless, the experi-
mental histogram shows a reasonable linearity over the log-

20l linear scale, with the exception of metastable periods of

| length zero, one, or two pulses. Both the experiment and the
= \7 numerical integration show a deviation from a pure exponen-
S5t ~_[H 1 tial distribution for these low numbers of metastable pulses.
g ] T The mechanism for this will be discussed in Sec. V. There
Ky I i are also no counts recorded for some of the histogram bins,

vor which is simply due to the small number of samples in the

whole distribution.
If the first few bins which deviate strongly from a purely

05 - ]
H_H HT exponential distribution are omitted, the slope of the remain-
40

ing plot is then the mean of the distribution. Alternatively,
0 10 20 30 when there are insufficient samples to generate a representa-
Metastable peak number tive histogram, the mean of the frequency distribution may
be determined by taking the simple mean of the sample of
lengths. The solid line represents results from 10° numerical metastable pulse series, excludmg serles_ W'.th '?Ss than three
integrations of the Lorenz equations for the parameiers2, me_tastable pulses. The experimental distribution was also
b=0.25,r=15.0 to 10.6. The histogram is the result f 859 limited by the Iar_gest number of pulses that could_ occur be-
experimental samples of metastable pulsing where the pump powdP® the pump is switched back up to reestablish chaos.
is switched between 6.2 and 5.8 W. The calculated distribution isl Nerefore the meap of the effective exponential distribu-
normalized to the number of samples in the experimental distribution, P(X)z(_llﬂ)eﬁ/“: is determined from the measured
tion. meanumeasVia

0.0

FIG. 5. Frequency distribution of metastable pulsing train

map [13]. Once a point maps to this region of the cusp, fgmaxxp(x)dx
subsequent mappings result in a monotonic, nearly exponen- Mmeas™ TNy
tial decay of the peak heights onto the fixed point. When the J3mP(x)dx
decay from the metastable state is slow, as in our results, the

points lie only slightly below the 45° line, but careful inspec- where N, IS the maximum number of metastable pulses
tion of Figs. 4a) and 4b) confirms that the points do lie that could occur in any one series before the pump was
below the line. The open-symbol points, which represent thewitched back to the value for chaos. For each valye f.<
chaotic case, all lie on a cusp above this line so that no decagbtained, the corresponding value @fwas obtained by nu-
occurs. Qualitative agreement between the theory and expetiaerical solution off wmea ) —(N)]=0, where(N) is the

4.0

ment is once again good. experimentally obtained average number of metastable
pulses, andumea{u) is the functional dependence of the
IV. STATISTICAL BEHAVIOR measured mean on the effective mean, according to the

above equation.

The length of the metastable period depends sensitively As the pump parameter at which metastable chaos is ob-
on the initial conditions, so if the experiment is repeatedserved is increased toward the value represented byFig.
many times a statistical distribution can be plotted, giving2, the expectation is that the mean number of metastable
the relative frequency of occurrence of metastable perioghulses should tend rapidly to infinity, since above this value
lengths, expressed as numbers of pulses. The distribution fohe chaotic attractor is stable and trajectories in phase space
the Lorenz equations has been shown to be expondiial should remain chaotic. This was clearly observed in the ex-
although this demonstration was made using an empiricgberiment. An average metastable pulsing length could be ob-
determination of the maximum peaks from a scalar functiorserved on an oscilloscope display that lengthened as the
approximation to the map. In Fig. 5 the logarithm of the pumping was increased to the value for full chaotic behavior.
frequency distribution is shown for both the experiméns-  Figure 6 shows the results of measurements quantifying this
togranm and using full numerical integratio¢solid line). In behavior. The average metastable pulsing lefigtiherms of
the experiment, the pump was repeatedly switched betweghe number of pulsgsis plotted versus the difference be-
two values for chaos and metastable behavior and for eadiween the pump parameter and the pump value correspond-
switch, the number of metastable pulses before decaying timg to r,, on logarithmic scales. This demonstrates an expo-
periodic pulsing was recorded. The numerical integratiomential increase in the average metastable length as the
was performed similarly so as to closely follow the experi-critical pump value is approached. The slope of the line of
ment. The numerical calculations show much less variatioest fit is referred to as the critical exponent, afted], and
due to the large number of samples taken’j10n the ex- has also been experimentally measured elsewfitel?].
periment, the number of samples was limited by the datd’he error bars are relatively large due to the requirement for
acquisition memory size and constancy of experimental parapid sampling over a short enough time to minimize the
rameters over the time of sampling to about 1 ms. Althoughdrift of conditions.
the control over system parameters for most purposes was Figure 7 shows a comparison of the experimental varia-
sufficient, the extra sensitivity of metastable behavior totion measured together with that of the numerically inte-
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FIG. 7. Determination and comparison of critical exponents for
the experiment and the Lorenz equations. The parameters of Yorke
and Yorke[7] are 0=10, b=8/3, r=22 to 24,ry~24.74,r,
~24.06. The parameters used in this work are2, b=1/4,

11.0 to 12.3y =14, r,~12.308.

FIG. 6. Average metastable pulsing lengih terms of number
of pulse$ plotted versus the difference between the pump param
eter and the pump value correspondingrto(normalized tor,)
with logarithmic scales. Pump powers used are from 5.4 to 5.7 W=

Chaos is first observed at 5.75 W. Number of samples of metastable ) . )
transients vary from 86 at high pump powers to 430 at low pumpthe pump is suddenly switched to a metastable regime yal_u_e,
powers. the state of the system before the switch represents the initial

conditions chosen. However, in the numerical integrations,
y point in phase space may be arbitrarily chosen, regard-
ess of whether or not it represents the state of the real ex-
perimental system at any time. Thus the whole phase space
may be mapped and the various basins of attraction readily

grated Lorenz equations using the parameters used in th
work and also for the functional parametrization usefi7ih
We also numerically verify the values pf] using the same
parametersg= 10, b=8/3. The critical exponents for each . o
curve are listed in Table |. The observed qualitative behavioiden.t'f'ed'

is clearly represented in the experiment and is consistent Figure 8 shows such a map for a value of the pump pa-

with expectations and with the behavior of the Lorenz equa_rameter in the metastable regime. Each point in three dimen-

tions sions represents an initial condition. The surface shown is

As can be seen from the slope and position of the curveg1e boundary de.fined. by wh_ether a chosen initial condit_ion,
in Fig. 7 and Table | there is a wide variation and the valuedVNen evolved, either immediately decays to one of the fixed
of the exponent appear to be dependent upon the syste ints, or whether it first evolves in a metastable chaotic
parameters. Also the value calculated dor 2, b= 1/4 devi- ashion. The former are points inside the surface and the

ates from exponential at values far from the metastable !afct_er are a_II. other points outsjde. The evolutipn of a single
threshold value. The critical exponent listed in Table | forlmtlal condition, which is outside the surface, is also shown

these parameters was calculated using the linear portion chVTt?) frorr‘ng/vhlch ;heTﬁhar%tlc n?]tu\:\? of trh?nmrektat;sltablt(? trta—r
the curve. Although there does not appear to be a univers fetory can be seen. The map Snows a remarkable structure
exponent for the Lorenz system, and hence presumably f at is otherwise hidden due to the choice of initial condi-

the experiment, the general behavior upon approach to th ons. TheLe atrhe tV\.'O tttr‘]be“ke exten?long of ':he surfr?cedwltncr;
metastable threshold is common to all. cross each other in the manner of a simple overhand knot.

The tubes pass through the plane of the metastable attractor
at the positions of the fixed points. This is consistent with the
V. VISUALIZATION OF THE BASINS OF ATTRACTION fact that the fixed points are stable and any trajectories that
) ) o ] are close to these spiral inward. However, it can be seen that
The Lorenz equations are time derivatives to first ordeknis immediate attraction to the fixed points is not limited to
and contain no explicit time dependence. Thus the dynamicghe planes of the attractor but extends outward, defined by
is dependent solely on the parametersh,r and the initial  the interior volume of the tubes. The tubes continue away

conditions Xo,Yo,2o. Referring to Fig. 2, if the pump param-  from the origin along thes axis, in both directions, forming
eter is chosen in the regian <r <r, it follows that where 3 corkscrew(not shown.

the initial conditions are chosen in phase space will deter-

mine their subsequent behavior. As already discussed, if the TABLE I. Critical exponents determined from the lines of best
conditions are chosen in the basin of attraction of the chaotigt (Fig. 7).

attractor, the system will remain chaotic. Similarly, the sys

tem will go to one of the fixed points if the initial conditions Experiment 0.376
are chosen as part of the fixed point’s basin of attraction. In o=2,b=1/4 0.567
the experiment, the initial conditions are limited to points on o=10,b=8/3 250

the attractor of the system when evolving chaotically. When
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FIG. 10. Three-dimensional presentation of the initial conditions
chosen to observe metastable behavior. The initial conditions are
part of the attractor forr=2, b=1/4, r =15>r = 14. Points are
shaded according to the number of metastable pulses executed be-

X fore decaying to the fixed points whenis switched tor =10.6.
Black points correspond to initial conditions which decay directly

FIG. 8. Three-dimensional phase space map of the basin of ato the fixed points.

traction for metastable chaos,y,z correspond to the variables of

the Lorenz equations. Parameters are=2, b=1/4, r=10.6, .
r.n=14. The white trajectory is the metastable evolution of a singIeStead execute metastable pulsifighter shades of gray for

initial condition chosen very close to the defined surface. See ternger metastat‘)‘Ie pulsingThe F,WO b'Iack circular regions
for description. and the black “mouth-shaped” region correspond to the

cross sections in the-z plane of the two tubes and the outer
The surface shown is, in fact, only part of the completesufface in _Fig. 8 It can be.seen fr.om Fig. 9 that the whole
surface which has been removed for clarity. The nature oPPi€ct of Fig. 8 is encased in a series of black “shells” and,
the removed portion is presented in Fig. 9, which is a planaf fact, much of the phase space at high valueg &f also
slice through the phase space of Fig. 8 alongyttzeplane at black, corresppndmg to initial conditions which directly
x=0. In Fig. 9, the points are shaded according to whethe?YOlve to the fixed points. Furthermore, there are black re-

they immediately evolve to either fixed poittilack) or in-  9ions that are interposed between metastable regipns in a
fractal-like manner. Although not clear from these figures,

the surface from which the tubes extend pinches into a sheet
which folds in between the metastable chaotic attractor, giv-
ing rise to the observed interposition of black and metastable
regions so that there are also points in the plane of the at-
tractor which decay immediately to the fixed point instead of
first executing a metastable chaotic orbit.

It is not the intention of this work to fully describe the
structure unveiled by the phase space map shown. Instead, at
present, we merely obtain an intuitive understanding of the
metastable dynamics observed using the above picture. In the
experiment, as already mentioned, the initial conditions are
not arbitrary points in the described phase space but rather
correspond to points on the chaotic attractor. When the sys-
tem is chaotic all the points lie on the attractor, therefore
when the pump is switched below the chaos threshold the
initial condition must lie on the attractor. This is depicted in
Fig. 10 where each initial condition was obtained from a
numerical integration of the Lorenz equations in the chaotic
regime. Each initial condition is shaded depending upon
whether it immediately decays to the fixed point, or first
evolves chaotically. In this case, the points which evolve
directly to the fixed points are black. Clear regions are points

FIG. 9. y-z slice atx=0 through phase space of the map shownthat are never visited by the chaotic trajectory and hence
in Fig. 8. never chosen as initial conditions. Figure 10 is effectively a
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subset of the phase space shown in Fig. 8 where the pointsnt. In the extreme, if all initial conditions are chosen when
are selected by the chaotic orbit for when the system igshe chaotic trajectory is in the dark regions, then there will be
evolving at a pump parameter value aboyg. no metastable transients. This has implications for the design
All points in Fig. 10 lie on a fully chaotic attractor that is of algorithms to control chaotic behavior as rapid targeting
around the unstable fixed points withcoordinate,r —1.  of the steady state could be achieved by careful choice of the
This attractor is in a different position in phase Space to thagwitching time. The way in which the points are chosen in
of the metastable attractor shown in white in Fig. 8 for whichthe experiment corresponds to points on a chaotic orbit such
r is less thamr;. The chaotic attractor is higher along the a5 in Fig. 10 and hence there is a larger sampling of the
axis than the metastable attractor shown in the map. Evidefitial conditions inside the surface of Fig. 8. Further inspec-
are two circular white regions where no points are chosenion of Fig. 10 shows there is structure in the form of black
Since the chaotic attractor never visits these regions of phasges and curves. These correspond to the previously de-
space, these are never initial conditions for metastable chaogeribed fractal-like interposing of the metastable and fixed
Also present are two black circular areas below the aforepoint basins of attraction resulting from the pinching and

mentioned white regions. These are initial conditions whichfo|ding of the surface in Fig. 8 throughout the metastable
immediately decay to the fixed points. Comparing this areagtractor.

with the phase space map of Fig. 8, it can be noted that this

is where the chaotic attractor fore>r , intersects the tubes

of_the surface_shown in Fig. 8 Wheren'ﬁ_i_rl. Si_nce the cha- VI. CONCLUSION

otic attractor intersects the surface,rifis switched down

when the chaotic trajectory is inside the surface, the initial Our experiments have shown that when the pump power

conditions are then those inside the surface which, by defin the ammonia laser is reduced below the threshold for

nition, means the trajectory subsequently spirals to the fixetbng-term chaos the transition to the new asymptotic state

points. can be via a period of metastable chaos exactly as predicted
By comparing the relative area between the black and allor the Lorenz equations. The form of the unstable attractor

other shaded points in Fig. 10, it can be seen that there isia similar to that of the stable Lorenz attractor and the distri-

larger proportion of initial conditions chosen that evolve im-bution of lengths of metastable chaos observed is exponen-

mediately to the fixed points. This qualitatively explains whytial except that there is an excess of short lengths. This can

there is a deviation from exponential in the histogram in Fig.be related to the overlap between the basin of attraction of

5. Since there is some kind of structure in phase space dbe stable fixed point and the set of available initial condi-

depicted by Fig. 8, the way in which the initial conditions aretions which is the chaotic attractor which was stable before

chosen will determine the form of the distribution to an ex-the switch.
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