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Metastable chaos in the ammonia ring laser
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We report experimental studies of metastable chaos in the far-infrared ammonia ring laser. When the laser
pump power is switched from above chaos threshold to slightly below, chaotic intensity pulsations continue for
a varying time afterward before decaying to either periodic or cw emission. The behavior is in good qualitative
agreement with that predicted by the Lorenz equations, previously used to describe this laser. The statistical
distribution of the duration of the chaotic transient is measured and shown to be in excellent agreement with
the Lorenz equations in showing a modified exponential distribution. We also give a brief numerical analysis
and graphical visualization of the Lorenz equations in phase space illustrating the boundary between the
metastable chaotic and the stable fixed point basins of attraction. This provides an intuitive understanding of
the metastable dynamics of the Lorenz equations and the experimental system.@S1050-2947~97!00610-0#

PACS number~s!: 42.65.Sf, 47.52.1j, 42.55.2f, 42.60.Mi
e
te
f
ic

d

se
a
lc
em
d

vi
b

th
ab
o

he
p
tr
in
y
wn
ex
ta

t
a
se
fo

o
e
Lo
e
tu

s a
n-
n-
ex-
the

m-
ns.
e
ined

n
nts

s a
ents
b-

ons.
of
qua-
he
the

ura-
a-

ta-
ery

in
am-

p-
to-
e
-
ted
put
I. INTRODUCTION

Deterministic chaos has been demonstrated in many
perimental systems, one well known one being the sys
devised by Weiss and Brock@1#. In this system the output o
a far-infrared ring laser produces chaotic time series wh
are well described by the Lorenz-Haken laser equations@2#,
which are isomorphic to the celebrated Lorenz equations
rived from the equations of convective fluid flow@3#. This
system has afforded a number of direct experimental ob
vations of chaotic behavior that have been in excellent qu
tative agreement, at the very least, with the dynamics ca
lated from the Lorenz equations. In this work, the syst
used is very similar to that of@1# and has also demonstrate
semiquantitative agreement with calculation@4–6#.

If the value of a parameter is changed, transient beha
can ensue before the system settles to a new long-term
havior characteristic of the new parameter value. When
new state is not far below the chaos threshold, metast
chaos, i.e., a burst of transient chaotic behavior, can be
served@7–9#. In this metastable regime, the duration of t
chaotic transient has been shown to depend sensitively u
the initial conditions chosen and gives an exponential dis
bution of metastable duration times for randomly chosen
tial conditions@7#. The mean of the distribution, effectivel
the average metastable duration time, has also been sho
vary exponentially with the pump parameter wherein the
ponent is referred to as the ‘‘critical exponent’’ for the me
stable behavior@10–12#.

This work investigates such metastable phenomena in
ammonia laser@4–6#. We allow the system to evolve for
time in the chaotic regime and then quickly switch the la
pump power to a value slightly below the threshold value
chaos. Metastable chaotic transients are subsequently
served which are shown to be in excellent qualitative agr
ment with corresponding transients calculated from the
renz equations. By repetitively switching the pump pow
from above to below the chaos threshold, the chaotic na
561050-2947/97/56~4!/3180~7!/$10.00
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of the laser output together with system noise provide
sufficiently random selection of initial conditions to demo
strate the statistical distribution of the duration of the tra
sients and allows comparison with theory. Once again,
cellent agreement is shown. Furthermore, the mean of
experimental distribution is shown to vary with pump para
eter in a manner consistent with that of the Lorenz equatio
As defined by@10#, an experimental critical exponent of th
system is determined and compared with exponents obta
from the Lorenz equations.

However, the exponential distribution of the duratio
times for metastable transients breaks down for transie
consisting of two, one, or zero chaotic pulses. There i
much larger number of these short or zero duration transi
than predicted by an exponential distribution. This is o
served both in the laser and in the solutions to the equati
To investigate this we provide a numerical visualization
the phase space for the three variables of the Lorenz e
tions. This graphically illustrates the geometrical form of t
basin of attraction of the metastable behavior and also
boundary between this and the basin for short or zero d
tion transients. The visualization gives an intuitive explan
tion as to why the distribution of the duration times for me
stable transients yields a much larger proportion of v
short transients.

II. EXPERIMENTAL SYSTEM AND THE LORENZ
MODEL

The system used~Fig. 1! is essentially the same as used
previous studies of chaotic and transient behavior of the
monia laser@4–6#. A 13CO2 laser optically pumps a15NH3
far-infrared~FIR! ring laser and the pump power can be ra
idly switched using the transmitted beam from an acous
optic modulator. The form of the pump power with tim
~from the diffracted beam! is observed using a HgCdTe de
tector and the output emission of the FIR laser is detec
using a Schottky barrier diode detector. The ring laser out
3180 © 1997 The American Physical Society
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56 3181METASTABLE CHAOS IN THE AMMONIA RING LASER
FIG. 1. Experimental setup.M 8 is a 2.0 m R.O.C. movable mirror to control the ring laser tuning. Gr. is grating to couple the2

radiation into the ring resonator~80 lines per mm!. W.M. is the wire mesh output coupler~5 lines per mm!. See text for details.
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is coupled via a wire mesh and the backward traveling w
~with respect to pump beam direction! is monitored through
a port. Pump radiation is coupled into the ring via a rul
grating with rule spacing designed to specularly reflect
FIR radiation. The frequency of the pump laser is tuned v
piezo mounted mirror and is monitored using a Lamb D
cell. The ring laser is tuned mechanically via a translata
curved mirror. The ammonia pressure used throughout
experiments was 38mbar. Pump laser power was typical
between 5.0 and 6.5 W.

The equations used to describe the system are the Lo
equations@3#:

ẋ5s~y2x!,

ẏ5x~r 2z!2y, ~2.1!

ż5xy2bz.

The variablesx,y,z, correspond to the laser electric fie
E and the polarizationP and inversionD of the lasing me-
dium, respectively, according to the isomorphism dem
strated by Haken@2#. The parameterss andb depend on the
relaxation rates of the laser variables. The pump power is
control parameter for the system and represented byr . Al-
though there has been considerable controversy concer
the validity of this model to describe the laser system~out-
lined in @5#!, the final qualitative agreement with experime
tal observations in this work continues to be exceptional

The regions of particular dynamic behavior~e.g., chaotic,
metastable, periodic, steady state! as a function ofr are il-
lustrated in Fig. 2 and are described briefly as follows.r 51
corresponds to the threshold for lasing and so forr less than
1, the origin is stable and there is no lasing. Forr between 1
andr ch @wherer ch5s(s1b13)/(s2b21) is the threshold
e

e
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le
e

nz
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for chaos# the origin is unstable and there are instead t
stable fixed point solutions„6Ab(r 21),6Ab(r 21),r 21…

corresponding to steady cw operation. Betweenr 51 andr ch
there are two further significant values,r 0 and r 1, that are
relevant to defining the metastable chaotic regime, w
1,r 0,r 1,r ch @7#. For r between 1 andr 0, the basins of
attraction of each of the fixed points make up all of pha
space defined byx,y,z and hence all points evolve to eithe
one of the fixed points. Forr betweenr 0 andr 1, there is now
a region of metastable chaos. Initial conditions chosen wit
this region behave chaotically but eventually end up on
fixed points. Initial conditions chosen outside the metasta
region also evolve to the fixed points but do not have
initial chaotic transient. There are therefore still two bas
of attraction each belonging to the two fixed points since
initial conditions eventually evolve to these points. Forr
betweenr 1 and r ch, however, there are three basins of a
traction ~two fixed stable points and the one which displa
complex dynamics!. All trajectories in each basin of attrac
tion remain there. Initial conditions chosen in either of t
fixed points’ basins of attraction evolve to the respect
fixed point and initial conditions chosen in the chaotic attra
tor’s basin of attraction continue to evolve chaotically inde
nitely. In this work, we investigate the behavior for whic

FIG. 2. Regimes of dynamical behavior of the Lorenz equatio
as a function of the pump parameterr . The threshold for chaos is
r ch and metastable behavior is observed forr between the two val-
uesr 0 ,r 1. The fixed points are stable for 1,r ,r ch.
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3182 56DYKSTRA, MALOS, HECKENBERG, AND McDUFF
the pump is reduced from above the chaos threshold,r ch, to
below the ‘‘metastable threshold,’’r 1.

III. QUALITATIVE BEHAVIOR

Figure 3~a! shows the form of laser intensity with tim
~lower trace! together with the switch in pump power~upper
trace! and Fig. 3~b! is the intensity determined from a nu
merical integration of the Lorenz equations~see figure cap-
tion for parameters! with the associated switch in pump p
rameter shown as well. In Fig. 3~a!, the pump power is
switched from one level for which chaos persists indefinit
to slightly below where metastable behavior is observed.
fore the switch, chaotic intensity pulsations are pres
which are ‘‘Lorenz-like;’’ i.e., qualitatively similar to the
pulsations from the Lorenz equations shown in Fig. 3~b!.
After the switch, the pulsations continue to be chaotic a
Lorenz-like for a number of pulses until finally switching
a series of pulses where the amplitude is decaying. This
havior is qualitatively the same as that found from the eq
tions and is referred to as ‘‘metastable chaos,’’ which w
reported in@7#. After switching down below the threshold fo
chaos, the chaotic dynamics is metastable, in that it contin
only for a time before switching to stable behavior. In t
equations, the pulsing after the metastable behavior
ceased eventually decays to steady state. In the laser
pulse amplitudes decay to a fixed level of pulsing@5#. De-
spite this difference, the overall qualitative behavior of t
system and the equations is extremely good. Also reprodu
in the numerical integration is the slight increase in the la
pulsation period after the switch.

The change in pulsing period after the switch indica
that when the pump is below chaos threshold, the metast

FIG. 3. ~a! The ring laser intensity~arbitrary units! and pump
laser power output. The step in pump level is from slightly abo
chaos threshold to slightly below~6.4 to 6.0 W!. The chaotic pul-
sations continue for about 20ms after the switch but with slightly
longer period of pulsation, before finally decaying.~b! Calculated
intensity for the Lorenz equations with pump parameter swit
Intensity corresponds to the square of Lorenz variablex. s52,
b50.25, r 515.0 to 10.6. The qualitative behavior compares ve
well with the experiment, including the slightly longer pulsatio
period after the switch.
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chaotic attractor is different from the fully chaotic attract
when the pump is above chaos threshold. This is clea
illustrated in Fig. 4 where the return maps@4# for the experi-
mental and numerical time series are plotted, respectiv
The return map consists of plotting the value of intensity
one pulsation peak versus the previous peak value
‘‘cusp’’ shape distribution is characteristic of the Loren
equations for a particular value of the pump parameter. If
pump parameter is changed, then the return map will cha
reflecting a change in the attractor. As can be seen in both~a!
and ~b! in Fig. 4, there are two such cusp shapes for e
figure where the open and solid symbols correspond to pe
before and after the pump switch, respectively. This dem
strates that the form of the attractor is different before a
after the pump switch, as expected. The metastable natu
the dynamics is also evident in the solid-symbol cusp in t
the lower end of the left ‘‘limb’’ of the cusp is below the
45° line used to follow the evolution of points in the retu

e

.

FIG. 4. The intensity return maps determined from the tim
traces shown in Fig. 3 for the experiment~a! and the numerical
integration ~b!. Points marked with open symbols correspond
pairs of pulses occurring before the switch in pump power; so
symbols correspond to pairs of pulses occurring after the switch
distinct change in the position and form of the ‘‘cusp’’ shape d
tribution of points is evident after the pump switch, both in t
experiment and the numerical analysis.
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56 3183METASTABLE CHAOS IN THE AMMONIA RING LASER
map @13#. Once a point maps to this region of the cus
subsequent mappings result in a monotonic, nearly expo
tial decay of the peak heights onto the fixed point. When
decay from the metastable state is slow, as in our results
points lie only slightly below the 45° line, but careful inspe
tion of Figs. 4~a! and 4~b! confirms that the points do lie
below the line. The open-symbol points, which represent
chaotic case, all lie on a cusp above this line so that no de
occurs. Qualitative agreement between the theory and ex
ment is once again good.

IV. STATISTICAL BEHAVIOR

The length of the metastable period depends sensiti
on the initial conditions, so if the experiment is repeat
many times a statistical distribution can be plotted, givi
the relative frequency of occurrence of metastable pe
lengths, expressed as numbers of pulses. The distributio
the Lorenz equations has been shown to be exponentia@7#
although this demonstration was made using an empir
determination of the maximum peaks from a scalar funct
approximation to the map. In Fig. 5 the logarithm of t
frequency distribution is shown for both the experiment~his-
togram! and using full numerical integration~solid line!. In
the experiment, the pump was repeatedly switched betw
two values for chaos and metastable behavior and for e
switch, the number of metastable pulses before decayin
periodic pulsing was recorded. The numerical integrat
was performed similarly so as to closely follow the expe
ment. The numerical calculations show much less varia
due to the large number of samples taken (105). In the ex-
periment, the number of samples was limited by the d
acquisition memory size and constancy of experimental
rameters over the time of sampling to about 1 ms. Althou
the control over system parameters for most purposes
sufficient, the extra sensitivity of metastable behavior

FIG. 5. Frequency distribution of metastable pulsing tra
lengths. The solid line represents results fromn5105 numerical
integrations of the Lorenz equations for the parameterss52,
b50.25, r 515.0 to 10.6. The histogram is the result ofn5859
experimental samples of metastable pulsing where the pump p
is switched between 6.2 and 5.8 W. The calculated distributio
normalized to the number of samples in the experimental distr
tion.
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small changes in parameters required rapid data samplin
minimize the drift of conditions. Nevertheless, the expe
mental histogram shows a reasonable linearity over the
linear scale, with the exception of metastable periods
length zero, one, or two pulses. Both the experiment and
numerical integration show a deviation from a pure expon
tial distribution for these low numbers of metastable puls
The mechanism for this will be discussed in Sec. V. Th
are also no counts recorded for some of the histogram b
which is simply due to the small number of samples in t
whole distribution.

If the first few bins which deviate strongly from a pure
exponential distribution are omitted, the slope of the rema
ing plot is then the mean of the distribution. Alternativel
when there are insufficient samples to generate a repres
tive histogram, the mean of the frequency distribution m
be determined by taking the simple mean of the sample
metastable pulse series, excluding series with less than t
metastable pulses. The experimental distribution was a
limited by the largest number of pulses that could occur
fore the pump is switched back up to reestablish cha
Therefore the meanm of the effective exponential distribu
tion, P(x)5(1/m)e2x/m, is determined from the measure
meanmmeasvia

mmeas5
*3

NmaxxP~x!dx

*3
NmaxP~x!dx

, ~4.1!

where Nmax is the maximum number of metastable puls
that could occur in any one series before the pump w
switched back to the value for chaos. For each value ofmmeas
obtained, the corresponding value ofm was obtained by nu-
merical solution of@mmeas(m)2^N&#50, where^N& is the
experimentally obtained average number of metasta
pulses, andmmeas(m) is the functional dependence of th
measured mean on the effective mean, according to
above equation.

As the pump parameter at which metastable chaos is
served is increased toward the value represented byr 1 in Fig.
2, the expectation is that the mean number of metasta
pulses should tend rapidly to infinity, since above this va
the chaotic attractor is stable and trajectories in phase s
should remain chaotic. This was clearly observed in the
periment. An average metastable pulsing length could be
served on an oscilloscope display that lengthened as
pumping was increased to the value for full chaotic behav
Figure 6 shows the results of measurements quantifying
behavior. The average metastable pulsing length~in terms of
the number of pulses! is plotted versus the difference be
tween the pump parameter and the pump value corresp
ing to r 1, on logarithmic scales. This demonstrates an ex
nential increase in the average metastable length as
critical pump value is approached. The slope of the line
best fit is referred to as the critical exponent, after@10#, and
has also been experimentally measured elsewhere@11,12#.
The error bars are relatively large due to the requirement
rapid sampling over a short enough time to minimize t
drift of conditions.

Figure 7 shows a comparison of the experimental va
tion measured together with that of the numerically in
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3184 56DYKSTRA, MALOS, HECKENBERG, AND McDUFF
grated Lorenz equations using the parameters used in
work and also for the functional parametrization used in@7#.
We also numerically verify the values of@7# using the same
parameters,s510, b58/3. The critical exponents for eac
curve are listed in Table I. The observed qualitative behav
is clearly represented in the experiment and is consis
with expectations and with the behavior of the Lorenz eq
tions.

As can be seen from the slope and position of the cur
in Fig. 7 and Table I there is a wide variation and the valu
of the exponent appear to be dependent upon the sy
parameters. Also the value calculated fors52, b51/4 devi-
ates from exponential atr values far from the metastabl
threshold value. The critical exponent listed in Table I f
these parameters was calculated using the linear portio
the curve. Although there does not appear to be a unive
exponent for the Lorenz system, and hence presumably
the experiment, the general behavior upon approach to
metastable threshold is common to all.

V. VISUALIZATION OF THE BASINS OF ATTRACTION

The Lorenz equations are time derivatives to first or
and contain no explicit time dependence. Thus the dynam
is dependent solely on the parameters,s,b,r and the initial
conditions,x0 ,y0 ,z0. Referring to Fig. 2, if the pump param
eter is chosen in the regionr 1,r ,r ch it follows that where
the initial conditions are chosen in phase space will de
mine their subsequent behavior. As already discussed, if
conditions are chosen in the basin of attraction of the cha
attractor, the system will remain chaotic. Similarly, the sy
tem will go to one of the fixed points if the initial condition
are chosen as part of the fixed point’s basin of attraction
the experiment, the initial conditions are limited to points
the attractor of the system when evolving chaotically. Wh

FIG. 6. Average metastable pulsing length~in terms of number
of pulses! plotted versus the difference between the pump par
eter and the pump value corresponding tor 1 ~normalized tor 1)
with logarithmic scales. Pump powers used are from 5.4 to 5.7
Chaos is first observed at 5.75 W. Number of samples of metas
transients vary from 86 at high pump powers to 430 at low pu
powers.
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the pump is suddenly switched to a metastable regime va
the state of the system before the switch represents the in
conditions chosen. However, in the numerical integratio
any point in phase space may be arbitrarily chosen, reg
less of whether or not it represents the state of the real
perimental system at any time. Thus the whole phase sp
may be mapped and the various basins of attraction rea
identified.

Figure 8 shows such a map for a value of the pump
rameter in the metastable regime. Each point in three dim
sions represents an initial condition. The surface shown
the boundary defined by whether a chosen initial conditi
when evolved, either immediately decays to one of the fix
points, or whether it first evolves in a metastable chao
fashion. The former are points inside the surface and
latter are all other points outside. The evolution of a sin
initial condition, which is outside the surface, is also sho
~white! from which the chaotic nature of the metastable t
jectory can be seen. The map shows a remarkable struc
that is otherwise hidden due to the choice of initial con
tions. There are two tubelike extensions of the surface wh
cross each other in the manner of a simple overhand k
The tubes pass through the plane of the metastable attra
at the positions of the fixed points. This is consistent with
fact that the fixed points are stable and any trajectories
are close to these spiral inward. However, it can be seen
this immediate attraction to the fixed points is not limited
the planes of the attractor but extends outward, defined
the interior volume of the tubes. The tubes continue aw
from the origin along thex axis, in both directions, forming
a corkscrew~not shown!.

-

.
le

p

FIG. 7. Determination and comparison of critical exponents
the experiment and the Lorenz equations. The parameters of Y
and Yorke @7# are s510, b58/3, r 522 to 24, r ch'24.74, r 1

'24.06. The parameters used in this work ares52, b51/4,
r 511.0 to 12.3,r ch514, r 1'12.308.

TABLE I. Critical exponents determined from the lines of be
fit ~Fig. 7!.

Experiment 0.376
s52, b51/4 0.567
s510, b58/3 2.50
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56 3185METASTABLE CHAOS IN THE AMMONIA RING LASER
The surface shown is, in fact, only part of the complet
surface which has been removed for clarity. The nature
the removed portion is presented in Fig. 9, which is a plan
slice through the phase space of Fig. 8 along they-z plane at
x50. In Fig. 9, the points are shaded according to wheth
they immediately evolve to either fixed point~black! or in-

FIG. 8. Three-dimensional phase space map of the basin of
traction for metastable chaos.x,y,z correspond to the variables of
the Lorenz equations. Parameters ares52, b51/4, r 510.6,
r ch514. The white trajectory is the metastable evolution of a sing
initial condition chosen very close to the defined surface. See te
for description.

FIG. 9. y-z slice atx50 through phase space of the map show
in Fig. 8.
f
r

r

stead execute metastable pulsing~lighter shades of gray for
longer metastable pulsing!. The two black circular regions
and the black ‘‘mouth-shaped’’ region correspond to t
cross sections in they-z plane of the two tubes and the out
surface in Fig. 8. It can be seen from Fig. 9 that the wh
object of Fig. 8 is encased in a series of black ‘‘shells’’ an
in fact, much of the phase space at high values ofz is also
black, corresponding to initial conditions which direct
evolve to the fixed points. Furthermore, there are black
gions that are interposed between metastable regions
fractal-like manner. Although not clear from these figure
the surface from which the tubes extend pinches into a s
which folds in between the metastable chaotic attractor, g
ing rise to the observed interposition of black and metasta
regions so that there are also points in the plane of the
tractor which decay immediately to the fixed point instead
first executing a metastable chaotic orbit.

It is not the intention of this work to fully describe th
structure unveiled by the phase space map shown. Instea
present, we merely obtain an intuitive understanding of
metastable dynamics observed using the above picture. In
experiment, as already mentioned, the initial conditions
not arbitrary points in the described phase space but ra
correspond to points on the chaotic attractor. When the s
tem is chaotic all the points lie on the attractor, therefo
when the pump is switched below the chaos threshold
initial condition must lie on the attractor. This is depicted
Fig. 10 where each initial condition was obtained from
numerical integration of the Lorenz equations in the chao
regime. Each initial condition is shaded depending up
whether it immediately decays to the fixed point, or fir
evolves chaotically. In this case, the points which evo
directly to the fixed points are black. Clear regions are poi
that are never visited by the chaotic trajectory and he
never chosen as initial conditions. Figure 10 is effectively

t-

e
xt

FIG. 10. Three-dimensional presentation of the initial conditio
chosen to observe metastable behavior. The initial conditions
part of the attractor fors52, b51/4, r 515.r ch514. Points are
shaded according to the number of metastable pulses execute
fore decaying to the fixed points whenr is switched tor 510.6.
Black points correspond to initial conditions which decay direc
to the fixed points.
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3186 56DYKSTRA, MALOS, HECKENBERG, AND McDUFF
subset of the phase space shown in Fig. 8 where the po
are selected by the chaotic orbit for when the system
evolving at a pump parameter value abover ch.

All points in Fig. 10 lie on a fully chaotic attractor that i
around the unstable fixed points withz coordinate,r 21.
This attractor is in a different position in phase space to t
of the metastable attractor shown in white in Fig. 8 for whi
r is less thanr 1. The chaotic attractor is higher along thez
axis than the metastable attractor shown in the map. Evid
are two circular white regions where no points are chos
Since the chaotic attractor never visits these regions of ph
space, these are never initial conditions for metastable ch
Also present are two black circular areas below the afo
mentioned white regions. These are initial conditions wh
immediately decay to the fixed points. Comparing this a
with the phase space map of Fig. 8, it can be noted that
is where the chaotic attractor forr .r ch intersects the tube
of the surface shown in Fig. 8 whereinr ,r 1. Since the cha-
otic attractor intersects the surface, ifr is switched down
when the chaotic trajectory is inside the surface, the ini
conditions are then those inside the surface which, by d
nition, means the trajectory subsequently spirals to the fi
points.

By comparing the relative area between the black and
other shaded points in Fig. 10, it can be seen that there
larger proportion of initial conditions chosen that evolve im
mediately to the fixed points. This qualitatively explains w
there is a deviation from exponential in the histogram in F
5. Since there is some kind of structure in phase spac
depicted by Fig. 8, the way in which the initial conditions a
chosen will determine the form of the distribution to an e
t.
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tent. In the extreme, if all initial conditions are chosen wh
the chaotic trajectory is in the dark regions, then there will
no metastable transients. This has implications for the de
of algorithms to control chaotic behavior as rapid target
of the steady state could be achieved by careful choice of
switching time. The way in which the points are chosen
the experiment corresponds to points on a chaotic orbit s
as in Fig. 10 and hence there is a larger sampling of
initial conditions inside the surface of Fig. 8. Further inspe
tion of Fig. 10 shows there is structure in the form of bla
lines and curves. These correspond to the previously
scribed fractal-like interposing of the metastable and fix
point basins of attraction resulting from the pinching a
folding of the surface in Fig. 8 throughout the metasta
attractor.

VI. CONCLUSION

Our experiments have shown that when the pump po
in the ammonia laser is reduced below the threshold
long-term chaos the transition to the new asymptotic s
can be via a period of metastable chaos exactly as predi
for the Lorenz equations. The form of the unstable attrac
is similar to that of the stable Lorenz attractor and the dis
bution of lengths of metastable chaos observed is expon
tial except that there is an excess of short lengths. This
be related to the overlap between the basin of attraction
the stable fixed point and the set of available initial con
tions which is the chaotic attractor which was stable bef
the switch.
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