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Casimir invariants and characteristic identities for gl ()

M. D. Gould and N. I. Stoilova®
Department of Mathematics, University of Queensland, Brisbane Qld 4072, Australia

(Received 31 December 1996; accepted for publication 7 May)1997

A full set of (higher-order Casimir invariants for the Lie algebml () is con-
structed and shown to be well defined in the catego¢y generated by the highest
weight (unitarizablg irreducible representations with only a finite number of non-
zero weight components. Moreover, the eigenvalues of these Casimir invariants are
determined explicitly in terms of the highest weight. Characteristic identities satis-
fied by certain(infinite) matrices with entries frongl(«) are also determined and
generalize those previously obtained fot(n) by Bracken and GreepA. J.
Bracken and H. S. Green, J. Math. Ph$g&, 2099(1971); H. S. Greenjbid. 12,
2106(1971)]. © 1997 American Institute of Physids$50022-24887)02508-5

I. INTRODUCTION

In recent years infinite-dimensional Lie algebras have become a subject of interest in both
mathematics and physidsee Refs. 1 and 2 and the references thgrévie mention as an
example, related to the topic of the present article, that the Lie alggbrd and its completion
and central extensioa,, play an important role in the theory of soliton equatidistring theory,
two-dimensional statistical models, éttn addition, these algebras provide an example of Kac—
Moody Lie algebras of an infinite type’

In this paper, we derive a full set of Casimir invariants for the infinite-dimensional general
linear Lie algebrayl(«), corresponding to the following matrix realizati¢gee the notation at the
end of the Introduction

gl(»)={x=(a;;)|i,jeN, all but a finite number of geC are zerg. (1)

Characteristic identities satisfied by certain infinite matrices with entries fybfw) are also
determined and generalize those obtained by Bracken and Grieergl(n). Such identities are
of interest and have found applications to state labeling probilemd to the determination of
Racah—Wigner coefficient§.

A basis for the Lie algebrgl(«) is given by the Weyl generatoss; , i,j € N, satisfying the
commutation relations:

[&i] € ]= 6k — Sji€; - 2

The categoryO generated by highest weight irreducildé(e) modules, corresponding to the
“Borel” subalgebra,

N, =lin. env{e;|i<jeN}, 3

has been constructed in Ref. 11. By definition, eglfr) moduleV € O contains a uniquéup to
a multiplicative constantvectorv , , the highest weight vector, with the properties

N,v,=0, eva=Ajv,, VieN. 4)
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4784 M. D. Gould and N. I. Stoilova: Casimir invariants and characteristic indentities

The highest weigh=(A;,A5,A3,...) of Ve O uniquely labels the modul&/=V(A). More-
over, all unitarizable irreducible highest weigiit() modulesV(A), corresponding to the natu-
ral conjugation operatione(;)"=e;;, Vi,j N, have been determinéd The moduleV(A) e O
carries a unitarizable representationgdf) if and only if

Ai—AjeZ,, Vi<jeN, AjeR, VieN. (5)

In the paper we will consider the categoBrsC O, of modules generated by all unitarizable
irreduciblegl () modules with a finite number of nonzero highest weight compongntsThese
are modules/(A) with highest weights,

A=A, Ay, ... AO, .. )=(A1,As,... Ay, 0). (6)

The paper is organized as follows. In Sec. Il we give some useful results on the representa-
tions of gl(e) with a finite number of nonzero components of the highest weight. In Sec. Ill we
construct a full set of convergent Casimir invariants on each mod(l. Section 1V is devoted
to the computation of the eigenvalues of these Casimir invariants for all modules from the sub-
categoryOgs. In Sec. V we present a derivation of the polynomial identities satisfied by certain
matrices with entries frongl(«), which generalize those obtained previously go(n).

Throughout the paper we use the following notation:

irrep(s)—irreducible representatigs);

lin. env.{X}-the linear envelope oX;
C—the complex numbers;

R—the real numbers;

Z ,—all non-negative integers;

N—all positive integers;

U(A)—the universal enveloping algebra Af

Il. PRELIMINARIES

Denote byH the Cartan subalgebra gfi(). The spacéH* dual toH is described by the
forms e;, i eN, whereeg;:x—a;;, andx is given by(1) only for diagonalx. Let ( , ) be the
bilinear form onH* defined by €;,€;)=&; . For a weightu=X_, uje;e H* with u; being
complex numbers we Writge=(u1,42,-.-,4n,-..). Therootse;—eg; (i#]) of gl(«) are the
nonzero weights of the adjoint representation. The positive roots are given by the set

O ={gi—gj|l<i<jeN}. (7)
Define
1< .
p=7 2 (1-2)e. ®

Let D, be the set ofyl(e) weights:

Dn={V|V=(V1,...,Vn,O), vieZ,, i=12,...n—1, v,eN}, (9
and letD, CD,, be the subset of dominant weightsin, :
D, ={v|lveD,,(v,ei—&;:1)eZ,, VieN}. (10

Denote

J. Math. Phys., Vol. 38, No. 9, September 1997
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Dfs=U;_1D,, Des=U;_;D,. 11

Note the following.

(1) The irreduciblegl() modulesV(A) with highest weights\ D;CDES, corresponding
to the natural conjugation operation, generate the subcate@pgr O of unitarizablegl()
modules(6);

(2) Each moduleV(A) gives rise to a unitarizable module for the canonical subalgebra
gl(n)Cgl(x) with generators;; , i,j=1,...,n. In general,V(A) is a reduciblegl(n) module;
more precisely, it is a completely reducildé(n) module;

(3) If vis a weight inV(A), thenveD,,, for someneZ, .

Let A, be the projection of thgl(>) highest weightA € D, onto the weight space @fl(n)
so that, forn>K,

An=(Aqseii A0y i) =(Aq,ee Ak, 0. (12)

Theorem 1: (i) The gl(n) module ,(A)CV(A), A Dy, cyclically generated by the high-
est weight vectoo } € V(A), is irreducible with highest weight .

(i) If veV(A) is a weight vector of weighte D,,, thenv e V,(A).

Proof: (i) The cyclicgl(n) moduleV,(A) generated by} is well known to be indecom-
posable(see, for instance, Ref. 12The result then follows from the complete reducibility of
V(A) considered as gl(n) module.

(i) Let v e V(A) have weightre D,,. From the PoincareBirkhoff—Witt theorem we may
write

v=poy, peU(N_), (13
with N_ the subalgebra ofl(«) generated by all negative root vectors,
N_=lin. env{g;| i>jeN}. (14

The weightv e H* has the form

V=A—.Zl mi(ei—&i11), (15)

andm;=0 for all but a finite number of. Sinceve D,, m;=0 fori>n, so that

v=A—__El mi(&i—&i11)- (16)

In view of the linear independence of the simple rosets ¢, .1, (16) implies that

peU(N_)NU[gI(n)]. 17

Thereforev is a vector from theyl(n) moduleV,(A), v e V,(A). O
Consider thegl(«) modulesV(A) and V(u), with highest weights\ e D, and ueD;",
respectively. Take the tensor product of them,

V(A)®V(u), (18
and suppose that is agl(e) highest weight vector i118). Then for some, ve D, so that

is a linear combination of vectors of the form

J. Math. Phys., Vol. 38, No. 9, September 1997
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VAW, (19

wherev andw have weights irD,,. Theorem lthen implies that e V,,(A), we V,(u). There-
fore

v, €Vn(A)®Vn(u). (20

Since A hask and u hasl nonzero components, thencan have at modt+1 nonzero compo-
nents, so thah<k+I. Hence w.l.o.g. we may take=k+I. Thus, ifv, is agl(>) highest
weight vector in(18) then

v, eVy(AM)®Vy(u), n=k+lI, (22)
is agl(n) highest weight vector. Conversely, giverggn) highest weight vector,
v, eVy(AM)®Vy(u), n=k+I,
we have
ejv, =0, Vi<j=1...n,
while
ejv, =0, Vj>n,
since all weights invV(A) andV(u) have entries irZ , . Thereforev| must be agl(«) highest
weight vector.V,(A) and V,(x) aregl(n) irreducible modules with highest weights, and
Mn, respectively. For their tensor product decomposition we write
V(M) @ V() =V(An) ©V(mn) =& M,V (vy)=&,m,\Vp(v), (22)
wherev=(v, ,0).
Hence we have proved the following.
Theorem 2: The irreducible g{n) module decomposition
Vn(A)@Vi(p) =& ,m,Vn(v), (23)
implies the g(«) irreducible module decomposition
V(A)eV(w)=e,m\V(v), (24)

where A eDy, weD/", n=k+lI.

IIIl. CONSTRUCTION OF CASIMIR INVARIANTS

An obvious invariant forgl() is the first-order invariant,

Ilzizl eii . (25)

However, it is not clear how to construct appropriate higher-order invariantgl{er). Let us
therefore consider the second-order invaright of gl(n):

J. Math. Phys., Vol. 38, No. 9, September 1997
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n n n n n n
1= ejei=2 X ejet> X e+ ef
ihj=1 i=1j<i=1 i=1j>i=1 i=1

n n n n n
2> D e+ > (ei—e+ > €
=1 j<i=1 =1 j>i=1 1

n n n n
22 2 eijeji+z (n+1_2i)eii+2 eﬁ
=152 = =

n

n n
22 2 eijeji‘l‘z eii(eii+1_2i)+n|g_n), (26)
=152 =1

<i=

wherel{(V=3!"_.e; is the first-order invariant o§l(n). Due to the last term ii26) the gl(n)
second-order invariant divergesms-. Eliminating the last term ii26) (the rest of the expres-
sion is also an invariapind taking the limin— o, one obtains the following quadratic Casimir
for gl(e):

[ o

=22 > eijeji+zl eii(e;+1-2i), (27
i<i i=

which is convergenfsee formula(36)] on the categorDg of irreps considered. ON'(A), A
eDy, |, takes the constant value

k
XA(IZ):Zl Aj(Aj+1-20)=(A,A+2p). (28

This construction suggests how to proceed to the higher-order invariagig-of.
To begin with we introduce the characteristic matrix,

This matrix, in fact, arises naturally in the context of characteristic identities, to be discussed in
Sec. V. Powers of the matri& are defined recursively by

(Am>f'=k21 ANA™ YL, [(AY=6;1. (30)

Using induction and thgl() commutation relation§2) one obtains the following.
Proposition 1:

[, (A™)I]= 8 (A™){ = S (A™)] . O (3D
Therefore the matrix traces,
tr(A™ =2, (A™), (32)
i=1

are formally Casimir invariants. They are, however, divergent excephfed, in which case we
obtain the first-order invariari25). The purpose of the present investigation is to construct a full
set of Casimir invariants that are well defined and convergent on the cat®ggry

The following is the main result of the paper.

J. Math. Phys., Vol. 38, No. 9, September 1997
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Theorem 3: The Casimir invariants defined recursively by

©

1= 2 Al=tr(A);
i=1
=2, [(AM =l 1] =A™= 1 4], (33
form a full set of convergent Casimir invariants on each modJlg\) € Ors. O

Observe first that thé,, so defined33) are indeed Casimir invariantseeProposition 1. It
remains to prove that they are convergent on the cateQagy We will do this by induction. It
is constructive to consider first the case=2:

o

é eijeji—ll} E

J =

> e”e“+2 eijeji+es—I }

1>]

2= 2, [(A)]-12]= 2
3,

|:22 eijeji-l—Z (eii—ejj)+eﬁ—ll}=2 [22 eijeji+ejj(ejj—j+l)+2 e“—ll}
i>] i<j =1 i>] 1<]

Z {22 eije;i+ej(e;—i)— 2 &

o ©

Z Z:J eije]'i'i‘jzl e“(e”—Zj-i-l), (34)

which agrees with the definitio(27).
Now letv e V(A), A e Dy, be an arbitrary weight vector. Then the weighuvdfias the form.

V=(V1,V2,...,Vr,0), (35
so thatS!_,»;=3K ;A;=x,(1,). Note that
Alv=g;v=0, Vi>r, (36)
and that the second-order invaridatis convergent on eacti(A) € Ogg [cf. formula (27)].
Applying Proposition 1and(36) for i>r, one obtains

(AMjv E Al(A™ 1)v—J§ e,-i<Am*1>}v=j§l{[(Am*)}—(Am*1)§]v+<Am*1>}ejiv}

Z [(A™ 1 —(A™ 1) Jv. (37)
In particular, for the casen=2 we have
(Az)iu:jgl [A}—Ai]vzg,1 eju=Ilw, Vi>r, (38)
so that
(A%)i—1)v=0, Vi>r, (39)

which is another proof for the convergencelgf More generally, we have the following.
Proposition 2: For any weight vectar e V(A), and me N there exist re N such that

J. Math. Phys., Vol. 38, No. 9, September 1997
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(A™! =1pn_Dv=0, Vi>r. (40)

Proof: We proceed by induction and assumédnas weightv as in(35). Formula(40) is valid
for m=2 (39). Assuming the result is true for a given, i.e.

(AMv=In_v, Yi>r,

we have[see(37)]

[

<Am“>:v=j§1 [(Am>}—<Am>2]v=J§1 [(AM =l 1lo=lw, VYi>r, (41)

which proves(40). O
I (33) is convergent on eactf(A) for m=2. Assume it is convergent and well defined on
V(A) for a givenm. Then, withv as in(40), we have

lmﬂvzi; [(Am“ﬂ—lm]v:;l [(Am“>:—|m]u=§l (A™ o —rl w, (42)

so thatl ,,, ; is convergent and well defined af(A).
This completes th@nductive proof of Theorem 3
In the next section we will obtain an explicit eigenvalue formula for these invariants.

IV. EIGENVALUE FORMULA FOR CASIMIR INVARIANTS

In this section we apply our previous results to evaluate the spectrum of the inv&8ants

Let veV(A), be an arbitrary vector of weight=(v4,...,»,,0). Then, keeping in mind
Proposition 1 the fact that A™~ 1)} has weighte; — g, under the adjoint representation gif( )
and that all vectors o¥/(A) have weight components i, , we must have fof<r,

(A" YHlv=0, Vk>r. (43)
Therefore
0 r
(Am){u=k§1 A:‘(Am—l)ikv=k21 AfA™ v, (44)

Proceeding recursively, we may therefore write
(A™o=(ANo, Vij=1...r, (45)

where (A_){zeji , Vi,j=1,...r, is thegl(r) characteristic matrix, and the powers of the makix
are defined by30) with i,j,k=1,...r andA instead ofA. It follows then that the formul&42)
can be written as

(0= 3 [T =l aJo =1 =11 o, (46)

with

10=2 (A™);, (47)

J. Math. Phys., Vol. 38, No. 9, September 1997
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being themth-order invariant ofgl(r). Formula(46) is valid Vme N, which gives a recursion
relation for thel ,, with the initial condition

liw=xa(l1)v. (48)
In particular, it follows from(46) that the invariantd,, are certainly convergent on all weight
vectors v e V(A).

To determine the eigenvalueslgf letv=v ; be the highest weight vector of the unitarizable
moduleV(A) and let

=(A,0)eD;, A=(Aq,...AQ. (49)
Then for the eigenvalues of thg, one obtains the recursion relatipsee(46)]
Xalm) = XU ) =Ky, (In-), - xa(l) =2 A, (50)

wherex (1) is the eigenvalue of thenth-order invariant47) of gl(k) on the irreduciblegl(k)
module with highest weighd; the latter is given explicitly b¥*

K —ai+1
XAl =2 a H ( —, (51)
i=1 J#l 1 aj— aj
where
CYl:Ai+1_i.
We thereby obtain for the eigenvalues of the Casimir invarigpts
aJ—I—l
(Im)= 2 P, H ( et (52
for suitable polynomial$,,,(x), which, from Eq.(50), satisfy the recursion relation
Pm(X)=x"—KkPp_1(X), Py(X)=x. (53
In particular,
x2—k?
2 ley— .
P,(x)=x"—kx=Xx Tk (54a
P —3|<2|<—x3+k3 54b
3() =X —k(X"—kx)=x — -, (54b)
and more generally, it is easily established by induction that
B Xm_(_l)mkm
Pm(X) =X K (55)

Thus we have the following.

J. Math. Phys., Vol. 38, No. 9, September 1997
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Theorem 4: The eigenvalues of the Casimir invariangs(33), on the irreducible unitarizable
gl(«) module (A), A D, are given by

a+ (—1)™ K™ e a1
ai+k j

k
XA(Im):Zl ;i ) where a¢;=A;+1—i.  (56)

j#i @i — qj

O

V. POLYNOMIAL IDENTITIES
Let A be the comultiplication on the enveloping algeliagl(=)] of gl(>) [A(e;;) =&
®1l+1®egj,i,j €N, with 1 being the unit irU[gl(=)]]. Applying A to the second-order Casimir
invariant(27) of gl(«), we obtain
A(lz):|2®1+1®|2+22 eij®eji. (57)
o~

1,]=

Therefore

- 1
”_E:l eij®eji:§[A(lz)—|2®1—1®lz]. (58)

Denote by7r£l the irrep ofgl(°) afforded byV(e4). The weight spectrum for the vector module

V(e,) consists of all weights;, i=1,2,..., each occurring exactly once. Denote By, i,j
e N the generators on this space,

., (€))=Eij, (59

with E;; an elementary matrix.
As for the algebrayl(n), we introduce the characteristic matrix

= - 1
A:i,z:l wsl(e”)ejizijzl Eijeji=> (7, @ D[A(I2)~1,01-1815]. (60)

ThereforeA is the infinite matrix introduced in Sec. I[see(29)] and the entries of the matrix
powersA™ are given recursively by30). We will show that the characteristic matrix satisfies a
polynomial identity acting on thegl(«) moduleV(A), AeD . Let m, be the representation
afforded byV(A). From Eq.(60) acting onV(A) we may interprefA as an invariant operator on
the tensor product moduM(e)®V(A):

From Theorem 2we have, for the tensor product decomposition,
V(e)@V(A)=a1'V(A+g), (62

where the prime signifies that it is necessary to retain only those summands for whieh
eD{s. Therefore on eachl(>) moduleV(A +¢;) in (62), A takes the eigenvalue

Axase(12) = xs, (1) = xa(12) 1= (A + &, A+ei+2p)—(e1,81+2p) = (A, A+2p)]
=Aj+1-i (63)

(seeTheorem 4 Thus we have the following theorem.

J. Math. Phys., Vol. 38, No. 9, September 1997
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Theorem 5: On each g() module (A), A €D, the characteristic matrix satisfies the
polynomial identity

k+1
i]jl (A—a;)=0, (64)
with a;=A;+1—i the characteristic roots O

The characteristic identitie€4) are thegl(«) counterpart of the polynomial identities en-
countered fogl(n) by Bracken and Greéf (more precisely their adjoint identitigdt is worth
noting, in view of the decompositiof62), that these identities may frequently be reduced. Some
reduced identities are indicated below for certain choitesD /g of the gl(e) highest weight:

A=(1,0): (A—1)(A+k)=0; (653
A=(k,0): (A+1)(A—k)=0; (65b)
A=(P, 1,01 (A—p)(A+k—q)(A+k+1)=0, p<q. (650

Note: Sometimes the characteristic and reduced identities are the same; for instaitéd) e
reduced identity coincides with the characteristic identity. This is in stark contrast to the charac-
teristic identities forgl(n).

More generally, having in min¢58), introduce a characteristic matrix,

0

1
AA:ijzzl (€€ =5 (M ®D[A(I) ~1291-1®1,], (66)

corresponding to any irrep, of gl() afforded byV(A), A € D} . In a suitably chosen basis for
V(A), A, is an infinite matrix with entries

(AA>§=,21 TA(E)]) € - (67)

)=

Acting on an irreduciblegl(«) moduleV(x), neD,", Ay may be regarded as an invariant
operator on the tensor product modMeA) ®V(u):

Ar=3(my @7, )[A(1)—1,01-11,]. (69)

Now applyingTheorem 2the decomposition of the tensor product spd¢A) ® V(u) is given by
thegl(k+1) branching rule,

Va(A)®Vp(p)=®,m,Vy(v), (69

with n=k+1. Let {\'}?_, be the set of distinct weights in th(n) moduleV,(A). Then the
allowed highest weights,, occurring in the decompositioi®9) are of the formv,= u,+\,,, for

somei. It follows that onV(v), v=(v, ,O), the matrixA, takes the constant values

an ;=M X, (120~ Xa(12) = Xu(12T= L0 N+ 20+ p) = (A A +2p)], N =(\},0),
(70

which are the characteristic roots of the matx. Thus we have the following.

J. Math. Phys., Vol. 38, No. 9, September 1997
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Theorem 6: On the irreducible g{~) module \(u), ueDgs, the characteristic matrix
A, satisfies the polynomial identity

d
il:[l (Ap—ay j)=0. (71

These identities are obvious generalizations of thos€haforem Hsee(64)]. Note, in this case,
that Eq. (69) implies the reduced identity satisfied by the matAx on the gl(«) module
V(u), given by

1] (Ay—a,)=0, (72)

where now

a,=3[(v,v+2p)— (A, A+2p) = (p,u+2p)]. (73

Casimir invariants for the infinite-dimensional general linear Lie algebra have been obtained
explicitly, and their eigenvalues on any irreducible highest weight unitarizable representation with
a finite number of nonzero weight components computed. With the help of the second-order
Casimir invariant, we have obtained characteristic identities for the Lie alggbrg, which are
a generalization of those fayl(n).

It is well known that the invariants of finite-dimensional Lie algebras play an important role
in their representation theory. However, for the infinite-dimensional Lie algebras, corresponding
full sets of Casimir invariants have not yet been determined. The present paper is a step in solving
this problem.
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