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Casimir invariants and characteristic identities for gl (`)
M. D. Gould and N. I. Stoilovaa)

Department of Mathematics, University of Queensland, Brisbane Qld 4072, Australia

~Received 31 December 1996; accepted for publication 7 May 1997!

A full set of ~higher-order! Casimir invariants for the Lie algebragl(`) is con-
structed and shown to be well defined in the categoryOFS generated by the highest
weight ~unitarizable! irreducible representations with only a finite number of non-
zero weight components. Moreover, the eigenvalues of these Casimir invariants are
determined explicitly in terms of the highest weight. Characteristic identities satis-
fied by certain~infinite! matrices with entries fromgl(`) are also determined and
generalize those previously obtained forgl(n) by Bracken and Green@A. J.
Bracken and H. S. Green, J. Math. Phys.12, 2099 ~1971!; H. S. Green,ibid. 12,
2106 ~1971!#. © 1997 American Institute of Physics.@S0022-2488~97!02508-5#

I. INTRODUCTION

In recent years infinite-dimensional Lie algebras have become a subject of interest in both
mathematics and physics~see Refs. 1 and 2 and the references therein!. We mention as an
example, related to the topic of the present article, that the Lie algebragl(`) and its completion
and central extensiona` play an important role in the theory of soliton equations,3,4 string theory,
two-dimensional statistical models, etc.5 In addition, these algebras provide an example of Kac–
Moody Lie algebras of an infinite type.1,6

In this paper, we derive a full set of Casimir invariants for the infinite-dimensional general
linear Lie algebragl(`), corresponding to the following matrix realization~see the notation at the
end of the Introduction!:

gl~`!5$x5~ai j !u i , j PN, all but a finite number of aijPC are zero%. ~1!

Characteristic identities satisfied by certain infinite matrices with entries fromgl(`) are also
determined and generalize those obtained by Bracken and Green7,8 for gl(n). Such identities are
of interest and have found applications to state labeling problems9 and to the determination of
Racah–Wigner coefficients.10

A basis for the Lie algebragl(`) is given by the Weyl generatorsei j , i , j PN, satisfying the
commutation relations:

@ei j ,ekl#5d jkeil 2d l i ek j . ~2!

The categoryO generated by highest weight irreduciblegl(`) modules, corresponding to the
‘‘Borel’’ subalgebra,

N15 lin. env.$ei j u i , j PN%, ~3!

has been constructed in Ref. 11. By definition, eachgl(`) moduleVPO contains a unique~up to
a multiplicative constant! vectorvL , the highest weight vector, with the properties

N1vL50, eii vL5L ivL , ; i PN. ~4!

a!Permanent address: Institute for Nuclear Research and Nuclear Energy, 1784 Sofia, Bulgaria;
Electronic mail: stoilova@inrne.acad.bg
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The highest weightL[(L1 ,L2 ,L3 ,...) of VPO uniquely labels the module,V[V(L). More-
over, all unitarizable irreducible highest weightgl(`) modulesV(L), corresponding to the natu-
ral conjugation operation: (ei j )

†5eji , ; i , j PN, have been determined.11 The moduleV(L)PO
carries a unitarizable representation ofgl(`) if and only if

L i2L jPZ1 , ; i , j PN, L iPR, ; i PN. ~5!

In the paper we will consider the categoryOFS,O, of modules generated by all unitarizable
irreduciblegl(`) modules with a finite number of nonzero highest weight componentsL i . These
are modulesV(L) with highest weights,

L[~L1 ,L2 ,...,Lk,0,...![~L1 ,L2 ,...,Lk ,0̇!. ~6!

The paper is organized as follows. In Sec. II we give some useful results on the representa-
tions of gl(`) with a finite number of nonzero components of the highest weight. In Sec. III we
construct a full set of convergent Casimir invariants on each moduleV(L). Section IV is devoted
to the computation of the eigenvalues of these Casimir invariants for all modules from the sub-
categoryOFS . In Sec. V we present a derivation of the polynomial identities satisfied by certain
matrices with entries fromgl(`), which generalize those obtained previously forgl(n).

Throughout the paper we use the following notation:

irrep~s!—irreducible representation~s!;
lin. env. $X%-the linear envelope ofX;
C—the complex numbers;
R—the real numbers;
Z1—all non-negative integers;
N—all positive integers;
U(A)—the universal enveloping algebra ofA.

II. PRELIMINARIES

Denote byH the Cartan subalgebra ofgl(`). The spaceH* dual toH is described by the
forms « i , i PN, where« i :x→aii , andx is given by ~1! only for diagonalx. Let ~ , ! be the
bilinear form onH* defined by (e i ,e j )5d i j . For a weightm5( i 51

` m i« iPH* with m i being
complex numbers we writem[(m1 ,m2 ,...,mn ,...). Theroots « i→« j ( iÞ j ) of gl(`) are the
nonzero weights of the adjoint representation. The positive roots are given by the set

F15$« i2« j u1< i , j PN%. ~7!

Define

r5
1

2 (
i 51

`

~122i !e i . ~8!

Let Dn be the set ofgl(`) weights:

Dn5$nun5~n1 ,...,nn ,0̇!, n iPZ1 , i 51,2,...,n21, nnPN%, ~9!

and letDn
1,Dn be the subset of dominant weights inDn :

Dn
15$nunPDn ,~n,« i2« i 11!PZ1 , ; i PN%. ~10!

Denote
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DFS
1 [øn51

` Dn
1 , DFS[øn51

` Dn . ~11!

Note the following.
~1! The irreduciblegl(`) modulesV(L) with highest weightsLPDk

1,DFS
1 , corresponding

to the natural conjugation operation, generate the subcategoryOFS,O of unitarizablegl(`)
modules~6!;

~2! Each moduleV(L) gives rise to a unitarizable module for the canonical subalgebra
gl(n),gl(`) with generatorsei j , i , j 51,...,n. In general,V(L) is a reduciblegl(n) module;
more precisely, it is a completely reduciblegl(n) module;

~3! If n is a weight inV(L), thennPDn , for somenPZ1 .
Let Ln be the projection of thegl(`) highest weightLPDk

1 onto the weight space ofgl(n)
so that, forn.k,

Ln5~L1 ,...,Lk,0,...,0n!5~L1 ,...,Lk ,0̇n2k!. ~12!

Theorem 1: (i) The gl(n) module Vn(L),V(L), LPDk
1 , cyclically generated by the high-

est weight vectorvL
1PV(L), is irreducible with highest weightLn .

(ii) If vPV(L) is a weight vector of weightnPDn , thenvPVn(L).
Proof: ~i! The cyclic gl(n) moduleVn(L) generated byvL

1 is well known to be indecom-
posable~see, for instance, Ref. 12!. The result then follows from the complete reducibility of
V(L) considered as agl(n) module.

~ii ! Let vPV(L) have weightnPDn . From the Poincare´–Birkhoff–Witt theorem we may
write

v5pvL
1 , pPU~N2!, ~13!

with N2 the subalgebra ofgl(`) generated by all negative root vectors,

N25 lin. env.$ei j u i . j PN%. ~14!

The weightnPH* has the form

n5L2(
i 51

`

mi~« i2« i 11!, ~15!

andmi50 for all but a finite number ofi . SincenPDn , mi50 for i .n, so that

n5L2(
i 51

n

mi~« i2« i 11!. ~16!

In view of the linear independence of the simple roots« i2« i 11 , ~16! implies that

pPU~N2!ùU@gl~n!#. ~17!

Thereforev is a vector from thegl(n) moduleVn(L), vPVn(L). h

Consider thegl(`) modulesV(L) and V(m), with highest weightsLPDk
1 and mPDl

1 ,
respectively. Take the tensor product of them,

V~L! ^ V~m!, ~18!

and suppose thatvn
1 is agl(`) highest weight vector in~18!. Then for somen, nPDn

1 so thatvn
1

is a linear combination of vectors of the form
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v ^ w, ~19!

wherev andw have weights inDn . Theorem 1then implies thatvPVn(L), wPVn(m). There-
fore

vn
1PVn~L! ^ Vn~m!. ~20!

SinceL hask andm has l nonzero components, thenn can have at mostk1 l nonzero compo-
nents, so thatn<k1 l . Hence w.l.o.g. we may taken5k1 l . Thus, if vn

1 is a gl(`) highest
weight vector in~18! then

vn
1PVn~L! ^ Vn~m!, n5k1 l , ~21!

is a gl(n) highest weight vector. Conversely, given agl(n) highest weight vector,

vn
1PVn~L! ^ Vn~m!, n5k1 l ,

we have

ei j vn
150, ; i , j 51,...,n,

while

ei j vn
150, ; j .n,

since all weights inV(L) andV(m) have entries inZ1 . Thereforevn
1 must be agl(`) highest

weight vector.Vn(L) and Vn(m) are gl(n) irreducible modules with highest weightsLn and
mn , respectively. For their tensor product decomposition we write

Vn~L! ^ Vn~m![V~Ln! ^ V~mn!5 % nmnV~nn![ % nmnVn~n!, ~22!

wheren[(nn ,0̇).
Hence we have proved the following.
Theorem 2: The irreducible gl(n) module decomposition,

Vn~L! ^ Vn~m!5 % nmnVn~n!, ~23!

implies the gl(`) irreducible module decomposition

V~L! ^ V~m!5 % nmnV~n!, ~24!

whereLPDk
1, mPDl

1, n5k1 l .

III. CONSTRUCTION OF CASIMIR INVARIANTS

An obvious invariant forgl(`) is the first-order invariant,

I 15(
i 51

`

eii . ~25!

However, it is not clear how to construct appropriate higher-order invariants forgl(`). Let us
therefore consider the second-order invariantI 2

(n) of gl(n):
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I 2
~n!5 (

i , j 51

n

ei j eji 5(
i 51

n

(
j , i 51

n

ei j eji 1(
i 51

n

(
j . i 51

n

ei j eji 1(
i 51

n

eii
2

52(
i 51

n

(
j , i 51

n

ei j eji 1(
i 51

n

(
j . i 51

n

~eii 2ej j !1(
i 51

n

eii
2

52(
i 51

n

(
j , i 51

n

ei j eji 1(
i 51

n

~n1122i !eii 1(
i 51

n

eii
2

52(
i 51

n

(
j , i 51

n

ei j eji 1(
i 51

n

eii ~eii 1122i !1nI1
~n! , ~26!

where I 1
(n)[( i 51

n eii is the first-order invariant ofgl(n). Due to the last term in~26! the gl(n)
second-order invariant diverges asn→`. Eliminating the last term in~26! ~the rest of the expres-
sion is also an invariant! and taking the limitn→`, one obtains the following quadratic Casimir
for gl(`):

I 252(
i 51

`

(
j , i

`

ei j eji 1(
i 51

`

eii ~eii 1122i !, ~27!

which is convergent@see formula~36!# on the categoryOFS of irreps considered. OnV(L), L
PDk

1 , I 2 takes the constant value

xL~ I 2!5(
i 51

k

L i~L i1122i !5~L,L12r!. ~28!

This construction suggests how to proceed to the higher-order invariants ofgl(`).
To begin with we introduce the characteristic matrix,

Ai
j5eji . ~29!

This matrix, in fact, arises naturally in the context of characteristic identities, to be discussed in
Sec. V. Powers of the matrixA are defined recursively by

~Am! i
j5 (

k51

`

Ai
k~Am21!k

j , @~A0! i
j[d i j #. ~30!

Using induction and thegl(`) commutation relations~2! one obtains the following.
Proposition 1:

@ekl ,~Am! i
j #5d j l ~Am! i

k2d ik~Am! l
j . h ~31!

Therefore the matrix traces,

tr~Am![(
i 51

`

~Am! i
i , ~32!

are formally Casimir invariants. They are, however, divergent except form51, in which case we
obtain the first-order invariant~25!. The purpose of the present investigation is to construct a full
set of Casimir invariants that are well defined and convergent on the categoryOFS .

The following is the main result of the paper.
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Theorem 3: The Casimir invariants defined recursively by

I 15(
i 51

`

Ai
i5tr~A!;

I m5(
i 51

`

@~Am! i
i2I m21#5tr@Am2I m21#, ~33!

form a full set of convergent Casimir invariants on each module, V(L)POFS . h

Observe first that theI m so defined~33! are indeed Casimir invariants~seeProposition 1!. It
remains to prove that they are convergent on the categoryOFS . We will do this by induction. It
is constructive to consider first the casem52:

I 2[(
j 51

`

@~A2! j
j2I 1#5(

j 51

` F(
i 51

`

ei j eji 2I 1G5(
j 51

` F(
i . j

`

ei j eji 1(
i , j

`

ei j eji 1ej j
2 2I 1G

5(
j 51

` F2(
i . j

`

ei j eji 1(
i , j

`

~eii 2ej j !1ej j
2 2I 1G5(

j 51

` F2(
i . j

`

ei j eji 1ej j ~ej j 2 j 11!1(
i , j

`

eii 2I 1G
5(

j 51

` F2(
i . j

`

ei j eji 1ej j ~ej j 2 j !2(
i . j

`

eii G52(
j 51

`

(
i . j

`

ei j eji 1(
j 51

`

ej j ~ej j 22 j 11!, ~34!

which agrees with the definition~27!.
Now let vPV(L), LPDk

1 , be an arbitrary weight vector. Then the weight ofv has the form.

n5~n1 ,n2 ,...,n r ,0̇!, ~35!

so that( i 51
r n i5( i 51

k L i5xL(I 1). Note that

Ai
jv5eji v50, ; i .r , ~36!

and that the second-order invariantI 2 is convergent on eachV(L)POFS @cf. formula ~27!#.
Applying Proposition 1and ~36! for i .r , one obtains

~Am! i
iv5(

j 51

`

Ai
j~Am21! j

i v5(
j 51

`

eji ~Am21! j
i v5(

j 51

`

$@~Am21! j
j2~Am21! i

i #v1~Am21! j
i ej i v%

5(
j 51

`

@~Am21! j
j2~Am21! i

i #v. ~37!

In particular, for the casem52 we have

~A2! i
iv5(

j 51

`

@Aj
j2Ai

i #v5(
j 51

`

ej j v5I 1v, ; i .r , ~38!

so that

„~A2! i
i2I 1…v50, ; i .r , ~39!

which is another proof for the convergence ofI 2 . More generally, we have the following.
Proposition 2: For any weight vectorvPV(L), and mPN there exist rPN such that
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„~Am! i
i2I m21…v50, ; i .r . ~40!

Proof: We proceed by induction and assumey has weightn as in~35!. Formula~40! is valid
for m52 ~39!. Assuming the result is true for a givenm, i.e.

~Am! i
iv5I m21v, ; i .r ,

we have@see~37!#

~Am11! i
iv5(

j 51

`

@~Am! j
j2~Am! i

i #v5(
j 51

`

@~Am! j
j2I m21#v5I mv, ; i .r , ~41!

which proves~40!. h

I m ~33! is convergent on eachV(L) for m52. Assume it is convergent and well defined on
V(L) for a givenm. Then, withv as in ~40!, we have

I m11v[(
i 51

`

@~Am11! i
i2I m#v5(

i 51

r

@~Am11! i
i2I m#v5(

i 51

r

~Am11! i
iv2rI mv, ~42!

so thatI m11 is convergent and well defined onV(L).
This completes the~inductive! proof of Theorem 3.
In the next section we will obtain an explicit eigenvalue formula for these invariants.

IV. EIGENVALUE FORMULA FOR CASIMIR INVARIANTS

In this section we apply our previous results to evaluate the spectrum of the invariants~33!.
Let vPV(L), be an arbitrary vector of weightn5(n1 ,...,n r ,0̇). Then, keeping in mind

Proposition 1, the fact that (Am21)k
j has weight« j2«k under the adjoint representation ofgl(`)

and that all vectors ofV(L) have weight components inZ1 , we must have forj <r ,

~Am21!k
j v50, ;k.r . ~43!

Therefore

~Am! i
jv5 (

k51

`

Ai
k~Am21!k

j v5 (
k51

r

Ai
k~Am21!k

j v. ~44!

Proceeding recursively, we may therefore write

~Am! i
jv5~Ām! i

jv, ; i , j 51,...,r , ~45!

where (Ā) i
j5eji , ; i , j 51,...,r , is thegl(r ) characteristic matrix, and the powers of the matrixĀ

are defined by~30! with i , j ,k51,...,r and Ā instead ofA. It follows then that the formula~42!
can be written as

I mv5(
i 51

r

@~Ām! i
i2I m21#v5@ I m

~r !2rI m21#v, ~46!

with

I m
~r !5(

i 51

r

~Ām! i
i , ~47!
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being themth-order invariant ofgl(r ). Formula~46! is valid ;mPN, which gives a recursion
relation for theI m with the initial condition

I 1v5xL~ I 1!v. ~48!

In particular, it follows from~46! that the invariantsI m are certainly convergent on all weight
vectors vPV(L).

To determine the eigenvalues ofI m let v5vL
1 be the highest weight vector of the unitarizable

moduleV(L) and let

L5~L̄,0̇!PDk
1 , L̄[~L1 ,...,Lk!. ~49!

Then for the eigenvalues of theI m one obtains the recursion relation@see~46!#

xL~ I m!5xL̄~ I m
~k!!2kxL

~ I m21!, xL~ I 1!5(
i 51

k

L i , ~50!

wherexL̄(I m
(k)) is the eigenvalue of themth-order invariant~47! of gl(k) on the irreduciblegl(k)

module with highest weightL̄; the latter is given explicitly by13

xL̄~ I m
~k!!5(

i 51

k

a i
m )

j Þ i 51

k S a i2a j11

a i2a j
D , ~51!

where

a i5L i112 i .

We thereby obtain for the eigenvalues of the Casimir invariantsI m ,

xL~ I m!5(
i 51

k

Pm~a i ! )
j Þ i 51

k S a i2a j11

a i2a j
D , ~52!

for suitable polynomialsPm(x), which, from Eq.~50!, satisfy the recursion relation

Pm~x!5xm2kPm21~x!, P1~x!5x. ~53!

In particular,

P2~x!5x22kx5x
x22k2

x1k
; ~54a!

P3~x!5x32k~x22kx!5x
x31k3

x1k
, ~54b!

and more generally, it is easily established by induction that

Pm~x!5x
xm2~21!mkm

x1k
. ~55!

Thus we have the following.

4790 M. D. Gould and N. I. Stoilova: Casimir invariants and characteristic indentities

J. Math. Phys., Vol. 38, No. 9, September 1997

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  130.102.82.2 On: Tue, 18 Oct 2016

05:39:38



Theorem 4: The eigenvalues of the Casimir invariants Im ~33!, on the irreducible unitarizable
gl(`) module V(L), LPDk

1 are given by

xL~ I m!5(
i 51

k

a i S a i
m1~21!m11km

a i1k D)
j Þ i

k S a i2a j11

a i2a j
D , where a i5L i112 i . ~56!

h

V. POLYNOMIAL IDENTITIES

Let D be the comultiplication on the enveloping algebraU@gl(`)# of gl(`) @D(ei j )5ei j

^ 111^ ei j , i , j PN, with 1 being the unit inU@gl(`)##. Applying D to the second-order Casimir
invariant ~27! of gl(`), we obtain

D~ I 2!5I 2^ 111^ I 212 (
i , j 51

`

ei j ^ eji . ~57!

Therefore

(
i , j 51

`

ei j ^ eji 5
1

2
@D~ I 2!2I 2^ 121^ I 2#. ~58!

Denote byp«1
the irrep ofgl(`) afforded byV(«1). The weight spectrum for the vector module

V(«1) consists of all weights« i , i 51,2,..., each occurring exactly once. Denote byEi j , i , j
PN the generators on this space,

p«1
~ei j !5Ei j , ~59!

with Ei j an elementary matrix.
As for the algebragl(n), we introduce the characteristic matrix

A5 (
i , j 51

`

p«1
~ei j !eji 5 (

i , j 51

`

Ei j eji 5
1

2
~p«1

^ 1!@D~ I 2!2I 2^ 121^ I 2#. ~60!

ThereforeA is the infinite matrix introduced in Sec. III@see~29!# and the entries of the matrix
powersAm are given recursively by~30!. We will show that the characteristic matrix satisfies a
polynomial identity acting on thegl(`) moduleV(L), LPDk

1 . Let pL be the representation
afforded byV(L). From Eq.~60! acting onV(L) we may interpretA as an invariant operator on
the tensor product moduleV(«1) ^ V(L):

A[ 1
2~p«1

^ pL!@D~ I 2!2I 2^ 121^ I 2#. ~61!

From Theorem 2, we have, for the tensor product decomposition,

V~«1! ^ V~L!5 % i 51
k118V~L1« i !, ~62!

where the prime signifies that it is necessary to retain only those summands for whichL1« i

PDFS
1 . Therefore on eachgl(`) moduleV(L1« i) in ~62!, A takes the eigenvalue

1
2@xL1« i

~ I 2!2x«1
~ I 2!2xL~ I 2!#5 1

2@~L1« i ,L1« i12r!2~«1 ,«112r!2~L,L12r!#

5L i112 i ~63!

~seeTheorem 4!. Thus we have the following theorem.
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Theorem 5: On each gl(`) module V(L), LPDk
1 the characteristic matrix satisfies the

polynomial identity

)
i 51

k11

~A2a i !50, ~64!

with a i5L i112 i the characteristic roots. h

The characteristic identities~64! are thegl(`) counterpart of the polynomial identities en-
countered forgl(n) by Bracken and Green7,8 ~more precisely their adjoint identities!. It is worth
noting, in view of the decomposition~62!, that these identities may frequently be reduced. Some
reduced identities are indicated below for certain choicesLPDFS

1 of the gl(`) highest weight:

L5~ 1̇k ,0̇!: ~A21!~A1k!50; ~65a!

L5~k,0̇!: ~A11!~A2k!50; ~65b!

L5~ ṗk ,q̇l ,0̇!: ~A2p!~A1k2q!~A1k1 l !50, p,q. ~65c!

Note: Sometimes the characteristic and reduced identities are the same; for instance, in~65b! the
reduced identity coincides with the characteristic identity. This is in stark contrast to the charac-
teristic identities forgl(n).

More generally, having in mind~58!, introduce a characteristic matrix,

AL5 (
i , j 51

`

pL~ei j !eji 5
1

2
~pL ^ 1!@D~ I 2!2I 2^ 121^ I 2#, ~66!

corresponding to any irreppL of gl(`) afforded byV(L), LPDk
1 . In a suitably chosen basis for

V(L), AL is an infinite matrix with entries

~AL!a
b5 (

i , j 51

`

pL~ei j !abeji . ~67!

Acting on an irreduciblegl(`) module V(m), mPDl
1 , AL may be regarded as an invariant

operator on the tensor product moduleV(L) ^ V(m):

AL[ 1
2~pL ^ pm!@D~ I 2!2I 2^ 121^ I 2#. ~68!

Now applyingTheorem 2, the decomposition of the tensor product spaceV(L) ^ V(m) is given by
the gl(k1 l ) branching rule,

Vn~L! ^ Vn~m!5 % nmnVn~n!, ~69!

with n5k1 l . Let $ln
i % i 51

d be the set of distinct weights in thegl(n) moduleVn(L). Then the
allowed highest weightsnn occurring in the decomposition~69! are of the formnn5mn1ln

i , for

somei . It follows that onV(n), n5(nn ,0̇), the matrixAL takes the constant values

aL,i5
1
2@xm1l i

~ I 2!2xL~ I 2!2xm~ I 2!#5 1
2@„l i ,l i12~m1r!…2~L,L12r!#, l i5~ln

i ,0̇!,
~70!

which are the characteristic roots of the matrixAL . Thus we have the following.
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Theorem 6: On the irreducible gl(`) module V(m), mPDFS
1 , the characteristic matrix

AL satisfies the polynomial identity

)
i 51

d

~AL2aL,i !50. ~71!

These identities are obvious generalizations of those ofTheorem 5@see~64!#. Note, in this case,
that Eq. ~69! implies the reduced identity satisfied by the matrixAL on the gl(`) module
V(m), given by

)
n

~AL2an!50, ~72!

where now

an5 1
2@~n,n12r!2~L,L12r!2~m,m12r!#. ~73!

Casimir invariants for the infinite-dimensional general linear Lie algebra have been obtained
explicitly, and their eigenvalues on any irreducible highest weight unitarizable representation with
a finite number of nonzero weight components computed. With the help of the second-order
Casimir invariant, we have obtained characteristic identities for the Lie algebragl(`), which are
a generalization of those forgl(n).

It is well known that the invariants of finite-dimensional Lie algebras play an important role
in their representation theory. However, for the infinite-dimensional Lie algebras, corresponding
full sets of Casimir invariants have not yet been determined. The present paper is a step in solving
this problem.
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