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Pulsed quadrature-phase squeezing of solitary waves inx „2… parametric waveguides
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P. D. Drummond
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~Received 24 January 1997!

It is shown that coherent quantum simultons~simultaneous solitary waves at two different frequencies! can
undergo quadrature-phase squeezing as they propagate through a dispersivex (2) waveguide. This requires a
treatment of the coupled quantized fields including a quantized depleted pump field. A technique involving
nonlinear stochastic parabolic partial differential equations using a nondiagonal coherent state representation in
combination with an exact Wigner representation on a reduced phase space is outlined. We explicitly demon-
strate that group-velocity matchedx (2) waveguides which exhibit collinear propagation can produce
quadrature-phase squeezed simultons. Quasi-phase-matched KTP waveguides, even with their large group-
velocity mismatch between fundamental and second harmonic at 425 nm, can produce 3 dB squeezed bright
pulses at 850 nm in the large phase-mismatch regime. This can be improved to more than 6 dB by using
group-velocity matched waveguides.@S1050-2947~97!06707-3#

PACS number~s!: 42.50.Dv, 42.65.Tg, 42.50.Lc
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I. INTRODUCTION

Recently there has been a renewed interest inx (2) qua-
dratic media due to the realization that optical solitary wa
can propagate in the presence of dispersion~or diffraction!.
This has been known for a long time but it is only recen
that the earlier work was recognized and extended. The
oretical efforts in the last few years have led to a mu
greater understanding of the extent of possible solutions
their stability. The related research on cascading inx (2) ma-
terials has demonstrated possible applications ofx (2)

waveguides through the ability to induce large nonline
phase shifts@1#. These solitary waves, called simultons,
quadratic media are quite different from the well-known so
tons of the nonlinear Schro¨dinger equation. Simulton stabil
ity properties have been investigated@2# along with their
behavior during collisions @3# and their quantum
counterparts—coherent quantum simultons@4#. This paper
demonstrates that coherent quantum simultons can ex
quadrature-phase squeezing@5# due to propagation throug
the dispersivex (2) waveguide.

The optical field propagation of solitary waves@6–9#
called simultons@3,10,11# has been theoretically predicted
occur under a variety of conditions and observed experim
tally as spatial solitons or self-guided waves in three dim
sions @12#. Temporal (111) dimensional forms have no
been experimentally verified yet, but promising candidate
achieve the material parameter requirements are curre
available@13#. The favored materials in recent experimen
on second-harmonic generation of short pulses were B
@14# and quasi-phase-matched LiNBO3 @15#. The latter ma-
terial has been used previously for squeezing experim
@16# and can be phase-velocity and group-velocity matc
near 1.6mm @13#. In the former case the commonly use
crystal BBO is well matched near 1.5mm with respect to
group-velocity, however, it is not 90° phase matched. A
561050-2947/97/56~2!/1508~11!/$10.00
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cent paper has shown that solitary waves exist under a v
ety of conditions even when birefringence is present@17#.
The observation of temporal solitary waves, though m
difficult than spatial forms, is therefore a possibility in th
future.

In the past ten years, the use of silica fiber as an opt
single transverse mode waveguide for demonstrating qu
tum effects of nonlinear optical processes has been very
cessful@18#. The quantum noise effects of propagating c
herent quantum solitons through silica fiber have be
demonstrated in a number of experiments. In addition to
ing the first experiments on quantum solitons, the phys
investigated has been of practical use in understanding
limits imposed on optical communication channels by qu
tum noise. A major disadvantage of this medium for so
applications is the long interaction lengths typically requir
which makes monolithic integration difficult. There are al
the acoustic and optical phonons of the silica fiber wh
lead to Brillouin and Raman scattering. To circumvent t
weak interaction of the silica fiber with light,x (3) analogs
usingx (2) materials have been investigated. More genera
cascadedx (2) processes have led to qualitatively differe
behavior than just intensity-dependent phase shifts due to
three-wave mixing processes involved. Consequently,
quantum noise effects of propagating coherent pul
throughx (2) media can also be qualitatively different from
those observed inx (3) media. However, in the limiting cas
of a large phase mismatch similar behavior is expected.

Traveling-wave parametric amplifiers are phase-sensi
amplifiers where in general three-wave mixing processes
a x (2) nonlinearity include parametric down-conversio
second-harmonic generation, and effectivex (3) processes via
cascadedx (2) interactions. Quantum continuous-wavex (2)

processes have been revisited again recently by Li and
mar @19,20#. There the conclusion was that quadrature-ph
1508 © 1997 The American Physical Society
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56 1509PULSED QUADRATURE-PHASE SQUEEZING OF . . .
squeezing was associated with amplification of the fun
mental and amplitude squeezing was associated with de
plification of the fundamental. Also, it was shown that
second-harmonic generation the quadrature-phase sque
of the harmonic field is limited to 50% when exact pha
matching is used@19#. This paper describes a robust alg
rithm for calculating quantum statistics of parametric p
cesses inx (2) waveguides, including pulsed inputs and d
persion; in particular, we shall treat the subshot noise le
spectral fluctuations observed in recent experiments on
trashort pulsed squeezing in parametric waveguides@21#.

We also investigate the quantum noise generated by
parametric soliton, or ‘‘simulton,’’ solutions of thex (2) in-
teraction including linear dispersion. Previous work pu
lished on temporal simultons treated the classical field pro
gation problem of stable pulse formation, whereas we
interested in the quantum statistics of initial coherent for
of these solutions. Little is known about the quantum no
properties of simultons. The techniques described in this
per and elsewhere@22# can be used to predict the quantu
statistics of coherent quantum simultons and generalizat
of the Hamiltonian to include other nonlinear processes. A
more fundamental level, theoretical predictions of noncla
cal photon correlations provide a test of the quantum th
retic and computational methods used for describing qu
tum field propagation in dispersive nonlinear dielectrics.

The stochastic partial differential equations which d
scribe the evolution of the photon flux amplitudes are
rived in Sec. II. These are used to formulate a hyb
positive-P–Wigner stochastic partial differential equatio
in Sec. III, which can be used for efficient calculations of t
correlation functions of interest. Here the correlation fun
tion required is the quadrature-phase squeezing spec
which is derived in Sec. IV. The methods used to integr
the stochastic partial differential equations and generate
correlation functions have been described in detail elsewh
@22#. The results for quantum squeezing in down-convers
and for coherent simulton propagation are presented in
V. Finally we provide concluding remarks in Sec. VI.

II. QUANTUM THEORY FOR x „2… WAVEGUIDES

The traveling-wave parametric amplifier is modeled h
as a nonlinear, dispersive dielectric waveguide which allo
propagation in thez direction in single transverse modes f
both the fundamental~signal! and second harmonic~pump!.
We assume that the waveguide is oriented such that ty
phase matching for thex (2) process is dominant. This restric
tion is imposed since only a single polarization mode
each field is included for simplicity. It is trivial to generaliz
to type-II phase matching for collinear propagation. Birefr
gence is not included here, so the phase matching shou
such that there is no walk off between the ordinary and
traordinary fields. The problem of~311! dimensional propa-
gation in the paraxial approximation using Hermite-Gauss
modes has been treated@4# and will appear elsewhere. Th
Hamiltonian used here is the same as appears in the ea
work of Raymeret. al. @23#,
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Ĥ5(
m

\vm
~1!âm

~1!†âm
~1!1(

m
\vm

~2!âm
~2!†âm

~2!

2
1

3
e0x~2!E d3x:F D̂ ~1!~x!

e1
1

D̂ ~2!~x!

e2
G3

:, ~2.1!

where the notation : : represents normal ordering. Here
electric displacementsD ( i )(x) in the nonlinear term are ex
panded in terms of the boson field operators as

D̂ ~ i !~x!5 i(
m

S e i\v i8k0
~ i !

2L D 1/2

âm
~ i !u~ i !~x!exp~ ikm

~ i !z!1H.c.,

~2.2!

where the frequency dependence of the parameters has
kept only for the phase-shift term exp(ikm

(i)z). The electric
permittivity at the frequenciesv1 andv252v1 are given by
e1 ande2, with corresponding carrier frequency wave num
bersk0

( i )5k(v i), and group velocitiesv i85]v(k0
( i )/]k.

The annihilation operatorsâm
( i ) correspond to a mode with

propagation constant

km
~ i !5S e i

e0
D 1/2v i

c
1mDk, m52M , . . . ,M ~2.3!

with mode spacingDk52p/L. The mode volume is then
defined by the normalized transverse mode functionu( i )(x)
and the lengthL of the medium. Herex represents the trans
verse coordinates. The mode frequenciesvm

( i ) are approxi-
mate, corresponding to a second-order Taylor expansion
that

vm
~ i !'v i1~mDk!v i81 1

2 ~mDk!2v i9 , ~2.4!

where the derivativesv i8 andv i9 are with respect tok. This
is easily extended to include higher-order dispersion if
sired. The procedure for transforming to local field operat
has been given in the work of Drummond and Carter@24#.
The local field operators are defined on a lattice of lengthL
with 2M11 points by

â l5
1

A2M11
(

m52M

M

âm
~1!expS i2pml

2M11
2 ivt D ~2.5!

so that the lattice cell denoted byl corresponds to longitudi-
nal positionzl5 lDz5 lL /(2M11). Local operatorsb̂ l are
defined analogously from theâm

(2) operators. The effective
Hamiltonian for the time evolution ofa l ,b l can be written in
an interaction picture, which removes the carrier frequen
oscillations, as

Ĥ/\5(
l

(
l 8

Dv l l 8
a â l

†â l 81(
l

(
l 8

Dv l l 8
b b̂ l

†b̂ l 8

1
i

2 (
l

x l* â l
†2

b̂ l1H.c., ~2.6!
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1510 56M. J. WERNER AND P. D. DRUMMOND
where the definition ofDv l l 8 follows directly @24# from sub-
stituting Eq.~2.5! into Eq. ~2.1! and we define

x l5xv18 S v28

DzD
1/2

ei ~2k0
~1!

2k0
~2!

!zl. ~2.7!

Here, for later use, we introduce a traveling-wave nonlin
coefficient defined as

x5
e0x~2!k0

~1!

e1
S \k0

~2!

2e2
D 1/2E d2x„u~1!~x!…2u~2!* ~x!. ~2.8!

A. Phase-space representations

Phase-space representations of operator equations a
the development of a theory that is equivalent to the stand
Heisenberg operator equations of motion, but is more rea
soluble.

There are two common approaches to obtaining
phase-space equations of motion for the electromagn
field with nonclassical statistics. The first of these is based
an expansion of the density operator in terms of nondiago
coherent state projection operators. This normally orde
phase-space method, known as the positive-P representation,
has proved to be useful in cases of non-classical statistic
leads to a set of four stochasticc-number equations equiva
lent to thequantumequations, which also reproduce theclas-
sical equations in the limit of small quantum effects, or lar
photon number.

This technique is related to the Glauber-Sudarshan@25# P
representation, but this diagonal expansion method has a
gular behavior for this Hamiltonian. Accordingly, a nond
agonal coherent state expansion of the density matrix is p
erable. The result is a generalizedP representation Fokker
Planck equation, which is an extension of the diago
Glauber-SudarshanP representation.

A number of different types of generalizedP representa-
tion are known@26#. Here the positive-P representation will
be used, which is able to treat all types of nonclassical ra
tion as a positive distribution on a nonclassical phase sp
and is amenable to numerical simulation using stocha
equations. Using this method, the operator equations
transformed to complex Ito stochastic equations, which o
involve c-number~commuting! variables. Thus, while quan
tum effects require that the usual classical equation be r
terpreted as an operator equation, the operator equatio
turn can be transformed to equivalentc-number stochastic
equations.

The other phase-space representation involves analy
the problem in terms of the Wigner function, by truncati
third-order derivatives in the corresponding evolution eq
tion for the Wigner distribution. Theapproximatetruncation
generates anotherc-number stochastic equation for the fie
which closely resembles the classical equation. However,
classical resemblance is due to the truncation proces
which effectively reduces the exact quantum-mechan
Wigner equation to a semiclassical form.

Generally, in these operator representation methods
equivalent classical fieldf is introduced with
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^f&stochastic5^f̂&quantum. ~2.9!

Correlations of just one chosen ordering can be represe
directly. Thus correction terms are needed for alternate
derings. The coherent state methods correspond to norm
ordered correlations~like direct photodetection!, while the
Wigner method corresponds to symmetrically ordered co
lations ~like local-oscillator homodyne detection!. In both
cases, correction terms can be included to treat alternate
erator orderings. For example, the Wigner method leads
stochastic field that includes vacuum fluctuation term
These are not physically measured by normal photodetec
so a ~small! correction term that depends on the frequen
cutoff is needed for comparisons with experimentally me
sured spectra, especially at low intensity.

When linearization about a mean intense field is diffic
~as in the case of pulsed inputs which may have no ex
solution under the influence of dispersion and nonlinearity! it
is therefore possible to numerically simulate the stocha
equations using one of these operator representations.
results of this procedure will be given in the following se
tions of the paper.

The purpose here is thus to explain the nature of
coupled stochastic equations obtained using various ph
space representations for the behavior of the propaga
electromagnetic field. While these techniques are particul
useful when the linearized approximations for the Heis
berg equations break down, one can also view them as gi
a justification of these methods, since operator lineariza
is not a very well-defined procedure. The chief advantage
these methods, relative to conventional number state ex
sions, is that number state techniques tend to become
rapidly unwieldy with large photon numbers and latti
sizes, due to the enormous size of the Hilbert space — wh
is precisely the typical situation here.

The corresponding Ito stochastic differential equatio
~SDE’s! are ~consider the parameters to be restricted to
$0,1% wheres51 corresponds to the positive-P representa-
tion ands50 to the Wigner representation!

]a l

]t
52 i(

l 8
Dv l l 8

a a l 81x l* a l
†b l1sAx l* b lz l~ t !,

]a l
†

]t
51 i(

l 8
Dv l 8 l

a a l 8
†

1x la lb l
†1sAx lb l

†z l
†~ t !,

]b l

]t
52 i(

l 8
Dv l l 8

b b l 82
1

2
x la l

2 ,

]b l
†

]t
51 i(

l 8
Dv l 8 l

b b l 8
†

2
1

2
x l* a l

†2
, ~2.10!

where the noises are real Gaussian stochastic processes
correlations given by

^z l~ t !z l 8~ t8!&5d l l 8d~ t2t8!,

^z l~ t !z l 8
†

~ t8!&5^z l~ t !&5^z l
†~ t !&50.
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While these equations are stochastic for the positive-P case,
and deterministic for the truncated Wigner case, the reve
is true for the initial conditions of these equations—whi
are always stochastic in the Wigner case. The initial con
tions in the case of an initial coherent state amplitudea l

C,b l
C

area l
†5a l* ,b l

†5b l* , with

^a l~ t !&5a l
C,

^b l~ t !&5b l
C. ~2.11!

In the case of the positive -P representation since the bas
set is coherent, there are not additional fluctuations neede
represent an initial coherent state. This is not the case for
Wigner representation, which must include random fluct
tions to represent any coherent state–including the vac
state:

^DA l~ t !Da l 8
†

~ t8!&5
12s

2
d l l 8d~ t2t8!,

^Db l~ t !Db l 8
†

~ t8!&5
12s

2
d l l 8d~ t2t8!. ~2.12!

It is important to note that in the positive-P representation
a l

†(b l
†) is not necessarily the complex conjugate ofa l(b l)

except in the mean. The derivation of the Fokker-Plan
equation forW(a,b;s,t) @27# and P(a;t) @26# relies upon
the use of partial integration, and assumes the distributio
sufficiently rapidly vanishing at the phase-space bounda
where ua l u,ub l u→`. This assumption is not always vali
@28#, in which case the stochastic method is asymptotic
small coupling constant, rather than exact. The bound
terms can be checked in each case simply by monitoring
trajectories for large departures towards infinity; these w
not observed for the parameters relevant to the present s
lations.

The equivalence between a Fokker-Planck equation w
second-order derivatives and stochastic differential equat
also requires a positive semidefinite diffusion. However,
evolution equation for the positive-P distribution (s51) can
always be found such that it has a positive semidefinite
fusion using the nonuniqueness of the time developmen
P(a;t) corresponding to the original master equation@26#.
Although the exact Wigner distribution equations have thi
order derivative terms which must be truncated, these do
occur in the case of the positive-P representation, so no ad
ditional assumptions are needed to transform the Fok
Planck equation into stochastic equations.

Either type of equation can be transformed to evolve p
ton flux amplitudes by defining

F l5a l S v18

DzD
1/2

, C l5b l S v28

DzD
1/2

ei ~2k0
~1!

2k0
~2!

!2l

~2.13!

whereF l
†F l2(1-s)v1

8 /(2Dz) and C l
†C l2(1-s)v2

8 /(2Dz)
equal the number of photons per second passing thezl plane
for signal and pump fields, respectively. We note that
positive-P equations can be used to obtain the flux direc
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~it is a normally ordered representation!, while the Wigner
trajectories must include operator-ordering corrections to
tain the flux.

These equations can be cast into the following dimensi
less equations:

]f

]j
52

i

2
sgn~k19!

]2

]t2 f1f†c1sAcz~j,t!,

]f†

]j
51

i

2
sgn~k19!

]2

]t2 f†1fc†1sAc†z†~j,t!,

]c

]j
5Fz0

t0
S 1

v18
2

1

v28
D ]

]t
1 iz0~k0

~2!22k0
~1!!

2
i

2

k29

uk19u
S v28

v18
D 2 ]2

]t2Gc2
1

2
f2 ,

]c†

]j
5Fz0

t0
S 1

v18
2

1

v28
D ]

]t
2 iz0~k0

~2!22k0
~1!!

1
i

2

k29

uk19u
S v28

v18
D 2 ]2

]t2Gc†2
1

2
f†2

, ~2.14!

where tv5t2z/v,ki95d2k/dv2uk5ki
52v i9/v

3, and t is the

time measured in the laboratory frame whiletv is the time
measured in the comoving frame with speedv5v18 . The
factor (k0

(2)22k0
(1)) accounts for any mismatch of phase v

locities, while Dv35(z0/t0)(1/v2821/v18) accounts for
group-velocity mismatch, andki9 accounts for group-velocity
dispersion~GVD!. j5z/z0 is the propagation distance scale
by z0 andt5tv /t0 is the scaled time in the comoving fram
Here z05uxC0u21 is the classical undepleted pump ga
length andt05Az0k19 is the inverse phase-matching ban
width when C0 is the initial peak value ofC. The noise
correlation is

^z~j,t!z~j8,t8!&5
1

n̄
d~j2j8!d~t2t8!. ~2.15!

where n̄5C0
2t0 is the parameter governing the system s

expansion. The dimensionless fieldsf andc are defined by
(f,c)5(F,C)/C0. In simulating quantum pulse propaga
tion, either type of representation can be used, and is o
quite suitable. The positive-P representation is particularly
suitable for calculating intensities, as it is a normally-order
representation. When calculating highly squeezed quadra
fluctuations with local oscillators, it is sometimes the ca
that the intrinsic sampling error can cause problems, du
the very low level of quantum fluctuations in a squeez
quadrature. This problem is reduced in the case of
Wigner representation, which tends to have lower samp
errors for quadrature squeezed states@29#. However, the
truncated Wigner representation equations have another
ficulty; since the equations involve a truncation, it is n
clear when they actually give correct answers. It would
very useful to have a stochastic method that would comb
the intrinsic accuracy of the positive-P method, with a low
sampling error.
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III. HYBRID WIGNER –POSITIVE- P SIMULATIONS

As stated in the preceding section, correct quantum sta
tics including a quantized pump is given by the positiveP
representation. However, for highly nonclassical states
doubled dimensionality of the phase space can result in p
sampling statistics. The Wigner representation on the o
hand describes the dynamics exactly for a classical pump
the reduced phase space where the stochastic fields r
senting the Hermitian conjugate field are in fact exactly
complex conjugate field. This fact can be utilized to provi
a significant improvement in the sampling statistics for
positive-P representation for a quantized pump. Instead
directly calculating the squeezing spectrum including the
fects of pump depletion and fluctuations in the positiveP
representation, one calculates the difference between
squeezing spectrum for a classical undepleted pump a
quantized, depleted pump. It is essential to keep the n
trajectories the same in both positive-P simulations in order
to reduce sampling errors. The Wigner representation is u
to calculate the squeezing spectrum for a classical undep
pump which is exact, as explained above. The addition of
positive-P difference spectra and the Wigner spectra is th
the correct quantum statistics including quantized pump.

The important feature is that the sampling error is cons
erably smaller than in the case of the positive-P representa-
tion used alone, without incurring the problem of an u
known truncation error if the truncated~‘‘semiclassical’’!
Wigner equations are used by themselves. While there is
the potential problem of the positive-P boundary correction
terms, these are typically negligible under most experime
conditions, and are easily checked by monitoring the num
cal trajectories for large excursions.

The hybrid Wigner–positive-P method for the dynamics
of the x (2) interaction can be obtained from Eq.~2.14! by
writing down the appropriate stochastic equations for
positive-P stochastic differencing and the classical pum
Wigner equations. These are given by the following coup
equations for the dynamics of thex (2) interaction:

]fw

]j
52

i

2
sgn~k19!

]2

]t2 fw1fw* cc , ~3.1!

]cc

]j
5Fz0

t0
S 1

v18
2

1

v28
D ]

]t
1 iz0~k0

~2!22k0
~1!!

2
i

2

k2
c9

uk19u
S v28

v18
D 2 ]2

]t2Gcc , ~3.2!

]f1

]j
52

i

2
sgn~k19!

]2

]t2 f11f1
†c1Acz~j,t!, ~3.3!

]f1
†

]j
51

i

2
sgn~k19!

]2

]t2 f1
†1f1c†1Ac†z†~j,t!, ~3.4!

]c

]j
5Fz0

t0
S 1

v18
2

1

v28
D ]

]t
1 iz0~k0

~2!22k0
~1!!,

2
i

2

k29

uk19u
S v28

v18
D 2 ]2

]t2Gc2
1

2
f1

2 , ~3.5!
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]c†

]j
5Fz0

t0
S 1

v18
2

1

v28
D ]

]t
2 iz0~k0

~2!22k0
~1!!

1
i

2

k29

uk19u
S v28

v18
D 2 ]2

]t2Gc†2
1

2
f1

†2
, ~3.6!

]f2

]j
52

i

2
sgn~k19!

]2

]t2 f21f2
†cc1Accz~j,t!, ~3.7!

]f2
†

]j
51

i

2
sgn~k19!

]2

]t2 f2
†1f2cc* 1Acc* z†~j,t!,

~3.8!

where the classical undepleted pumpcc has been utilized in
the evolution off2. These stochastic fields then correspo
to different operator orderings and different dimension
phase spaces. That is,f2 represents a restriction off1 to the
reduced phase space (f1 ,f1

† ,c,c* ). The homodyne detec
tor uses a coherent local oscillator which is considered c
sical in the Wigner simulation and quantized in the positiv
P simulation. Solving these six positive-P Ito stochastic, one
Wigner, and one classical parabolic partial differential eq
tions turns out to be more efficient than solving just t
(f,f†,c,c†) coupled positive-P equations alone.

The coupled equations above can be extended to tre
Sagnac loop interferometer analagous to the fiber lo
squeezing experiments by Rosenbluh and Shelby in s
fiber @30#. In this case the local oscillator for the homodyn
detector is one of the bright output pulses of a balan
Sagnac interferometer, depending upon at which freque
the quantum correlations are to be measured. A similar p
cedure as above is performed for each arm of the Sag
interferometer to calculate the dynamics of the two indep
dent counterpropagating simulton fields.

IV. SQUEEZING SPECTRUM

The time-ordered, normally ordered current operators p
vide the usualN-photon coincident rates

G~N!~ t1 , . . . ,tN!5^: Î ~ t1!••• Î ~ tN! :& ~4.1!

such that the normalized photocurrent spectrum is given
@31#

Ḡ~v,v8!5A2pG~1!~v1v8!12pG~2!~v,v8!, ~4.2!

where

G~2!~v,v8!5
1

2pE E eivt1 iv8t8G~2!~ t,t8!dt dt8.

~4.3!

We can rewrite the normalized photocurrent spectrum
terms of the current operators as
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Ḡ~v,v8!5E ei ~v1v8!t^ Î ~ t !&dt1E E ei ~vt1v8t8!

3^: Î ~ t ! Î ~ t8!:&dt dt8. ~4.4!

The second term can exhibit nonclassical correlations.
Now consider a homodyne detector with two input po

a andb so that the difference current operator is

Î 25~har 22hbt2!Fa
†Fa1~h1t22hbr 2!Fb

†Fb

1rt ~ha1hb!~Fa
†Fb1Fb

†Fa!. ~4.5!

whereh i are the detector efficiencies. We only conside
balanced homodyne detector where one hasr 5t51/A2 and
ha5hb5h. In a time intervalT, the average signal observe
is

Ī 2
c 5

1

TE2T/2

1T/2

^ Î 2~ t !&dt. ~4.6!

Experiments are usually carried out not at dc but at so
convenient rf frequency to avoid the local-oscillator ban
width, electronic, and other noise~for example, mode lock-
ing frequency!. The ability to measure the dc photon diffe
ence number in pulsed systems has been demonst
experimentally@21#.

We define the generalized quadrature operator as

X̂5g~F̂a
†F̂b1F̂b

†F̂a!, ~4.7!

where g is assumed real. Since this is proportional to t
detector efficiency, it represents the detected quadrature
consequently its noise also scales with the powers of
detector efficiency. The shot noise also decreases with de
tor efficiency but only linearly. That is, theN-photon count-
ing probability is proportional tohN so that the two-photon
correlations important in squeezing decrease linearly w
h when they are scaled to the shot noise level. From now
take g51 since it is now clear what the physical effect
reduced detector efficiency has on making quantum lim
measurements such as in pulsed squeezing experiments

The two-photon coincidence rate is

G~2!~ t,t8!5^: Î 0~ t ! Î 0~ t8!:&1^:X̂~ t !X̂~ t8!:&

1^: Î 0~ t !X̂~ t8!1X̂~ t ! Î 0~ t8!:& ~4.8!

and Î 05(har 22hbt2) Î a1(hat22hbr 2) Î b . It is worth not-
ing that for a perfectly balanced system only the last term
Eq. ~32! is nonzero. In order to take into account the fr
quency response of the detectors one can define a det
response function

J~v!5
1

A2p
E eivtJ~ t !dt, ~4.9!
a

e
-

ted

e
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e
c-
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tor

whereJ(t) is the current pulse for a photon detection eve
Typically, J(t) is taken to beZed(t) whereZ is the number
of electrons per current pulse. Hence the photocurrent po
spectrum is given by

P~v!5
2p

T
uJ~v!u2Ḡ~2v,v!

5uJ~v!u2F Ī 2
c 1

2p

T
@^: Î 0~2v! Î 0~v!:&

1^: Î 0~2v!X̂~v!1X̂~2v! Î 0~v!:&#

1
2p

T
^:X̂~2v!X̂~v!:&G . ~4.10!

For convenience one can define a power spectrum norm
ized to the dc detector spectral response giving

P~v!5J~v!F Ī 2
c 1

2p

T
@^: Î 0~2v! Î 0~v!:&1^: Î 0~2v!X̂~v!

1X̂~2v! Î 0~v!:&#1
2p

T
^:X̂~2v!X̂~v!:&G , ~4.11!

whereJ(v)5uJ(v)u2/uJ(v50)u2.
In principle, the noise spectrum can be reduced to

P~v!5J~v!F Ī 2
c 1

2p

T
^:X̂~2v!X̂~v!:&G . ~4.12!

The last term represents the additional noise above the
noise level. One should not lose track of the fact that here
last term represents phase-dependent noise correlations
is referred to herein as the squeezing spectrum given by

2p

T
^:X̂~2v!X̂~v!:&. ~4.13!

One can calculate this directly using the positive-P represen-
tation as ensemble averages correspond to normally ord
moments.

It is convenient to calculate a normalized squeezing sp
trum such that the minimum value of the correlation functi
is 21. The lower bound is determined from the commuta

of the X̂(t) operators, in particular,

:X̂~ t !X̂~ t8!:5T$X̂~ t !X̂~ t8!1F̂a
†~ t !@F̂b

†~ t8!,F̂b~ t !#F̂a~ t8!

1F̂b
†~ t !@F̂a

†~ t8!,F̂a~ t !#F̂b~ t8!%, ~4.14!

whereT denotes time ordering. Also, sinceX̂(t) does not

contain products of the formF̂ i
†F̂ i the productX̂(t)X̂(t8)

generates a symmetrically ordered combination appropr
for calculations using the Wigner representation. Sin

^X̂(2v)X̂(v)&>0 one has in the positive-P representation

^X~2v!X~v!&>2
1

2pK E
2T/2

T/2

dt~Fa
†Fa1Fb

†Fb!L .

~4.15!
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Now one can define the pulsed squeezing spectrum as

S~v!5
2p^:X̂~2v!X̂~v!:&

^*2T/2
T/2 dt~F̂a

†F̂a1F̂b
†F̂b!&

. ~4.16!

Then in the positive-P representation we have

SP~FS ,j,v!5^ŜP~FS ,j,v!&5
2p^X~j,2v!X~j,v!&

^*dt@FLO
† FLO1FS

†FS#&
,

~4.17!

whereFS is the signal field andFLO is the local-oscillator
field.

In the Wigner representation, the stochastic moments
respond to symmetrical operator ordering resulting in
stochastic moment̂X(2v)X(v)& being non-negative. The
squeezing spectrum in the Wigner representation is then

SW~FS ,j,v!5211
2p^X~j,2v!X~j,v!&

^*dt@ uFLOu21uFSu221/~Dt !#&
,

~4.18!

whereDt21 is the frequency cutoff. In the case of the hybr
method applied to parametric down-conversion the hyb
spectrum is constructed from

Shybrid~j,v!5^ŜP~F1 ,j,v!2ŜP~F2 ,j,v!&

1SW~Fw ,j,v!. ~4.19!

In order to specify how the beam splitter input fields r
late to actual source fields, the type of experiment has to
more clearly defined. Two different detection schemes
used here. One uses an external local oscillator which
typically some fraction of the output from a source las
which is also used, either directly or indirectly, to pump
nonlinear crystal or waveguide to generate the squeez
This simple method has been employed a number of time
traveling-wave parametric amplifier squeezing experime
The other approach is to use a Sagnac interferometer a
the soliton squeezing experiments of Rosenbluh and Sh
@30#.

A. External local oscillator

Consider a local-oscillator field which can have its glob
phase altered continuously and independently so that

F̂a5F̂s ,

F̂b5eiuF̂LO , ~4.20!
r-
e

d

-
e

re
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g.
in
s.
in

by

l

whereF̂s represents the signal field. The term of interest
the Fourier transformed two-time correlation function

1

2pE E dt dt8eiv~ t82t !^:X̂~ t !X̂~ t8!:&

5
1

2pE E dt dt8eiv~ t2t8!

3$^:F̂s
†~ t !F̂LO~ t !F̂LO

† ~ t8!F̂s~ t8!:&

1^:F̂LO
† ~ t !F̂s~ t !F̂s

†~ t8!F̂LO~ t8!:&%,

1
1

2pE E dt dt8eiv~ t82t !

3$^:F̂s
†~ t !F̂LO~ t !F̂s

†~ t8!F̂LO~ t8!:&e2 i2u

1ei2u^:F̂LO
† ~ t !F̂s~ t !F̂LO

† ~ t8!F̂s~ t8!:&%

5
1

2pE E dt dt8eiv~ t82t !$^: î ~ t ! î †~ t8!:&1^: î †~ t ! î ~ t8! :̂ &

1^: î ~ t ! î ~ t8!:&e2 i2u1ei2u^: î †~ t ! î †~ t8!:&%. ~4.21!

In the positive-P representation this becomes

^ i ~2v!i †~v!&1^ i †~2v!i ~v!&1^ i ~2v!i ~v!&e2 i2u

1ei2u^ i †~2v!i †~v!&,

where î (t)5F̂s
†(t)F̂LO(t). We choose the local-oscillato

phase independently for each frequency to maximize the
tected squeezing so that

^ i ~2v!i ~v!&e2 i2u1ei2u^ i †~2v!i †~v!&

→22u^ i ~2v!i ~v!&u. ~4.22!

The pulsed squeezing spectrum can be calculated using

S~v!5
4p@Rê i ~2v!i †~v!&2u^ i ~2v!i ~v!&u#

^*2T/2
T/2 dt~Fs

†Fs1FLO
† FLO!&

,

~4.23!

where Rê•••& is the real part of the expectation value.

B. Self-generated local oscillator

In this arrangement a pump and signal pulse are sent
a Sagnac interferometer. The output of the Sagnac inter
ometer, which contains the nonlinear medium, then cons
of a squeezed field and a bright pulse to be used for the l
oscillator. These two fields are the input to a homodyne
tector as before. Either the signal field or harmonic field c
be detected in this way. The difference current is given b

Î 25r LOcosu~F̂1
†F̂12F̂2

†F̂2!2r LOsinu~F̂1F̂2
†1F̂2F̂1

†!

5r LOî 1cosu2r LOî 2sinu, ~4.24!

whereF̂1 represents the field transmitted through the be

splitter to form the squeezed vacuum andF̂2 represents the
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field transmitted through the beam splitter to form the lo
oscillator andr LO is the reflectance of the mirror which re
directs the field reflected by the Sagnac interferometer
the homodyne detector. In the positive-P representation the
difference current correlation is

1

2pr LO
2 E E dt dt8eiv~ t82t !^I 2~ t !I 2~ t8!&

5cos2u^ i 1~2v!i 1~v!&1sin2u^ i 2~2v!i 2~v!&

2
1

2
sin2u@^ i 1~2v!i 2~v!&1^ i 2~2v!i 1~v!&#

[cos2uC111sin2uC222
1

2
sin2u~C121C21!. ~4.25!

As before one can choose the global phase of the local
cillator to maximize the amount of squeezing which
equivalent to finding the minimum value of Eq.~4.25! for
each frequency independently and is given by

^ i 1~2v!i 1~v!&1^ i 2~2v!i 2~v!&2$@^ i 1~2v!i 1~v!&2^ i 2

~2v!i 2~v!&#21@^ i 1~2v!i 2~v!&1^ i 2~2v!i 1~v!&#2%1/2.

The lower bound is found in the same way as above fro

:
Î 2~ t ! Î 2~ t8!

r LO
2 :5TH Î 2~ t ! Î 2~ t8!

r LO
2 1cos2u$F1

†~ t !

3@F1
†~ t8!,F1~ t !#F1~ t8!1F2

†~ t !

3@F2
†~ t8!,F2~ t !#F2~ t8!%

1sin2u$@F1
†~ t8!,F1~ t !#F2

†~ t8!F2~ t !

1F1
†~ t !@F2

†~ t8!,F2~ t !#F1~ t8!%J
~4.26!

so that the pulsed squeezing spectrum can be calculated

S~v!5
2p@C111C222A~C112C22!

21~C121C21!
2#

^*2T/2
T/2 dt~F1

†F11F2
†F2!&

.

~4.27!

V. RESULTS AND DISCUSSION

A. Parametric down-conversion and matched local oscillators

In parametric down-conversion it is known that for sho
pump pulses, that is, the pump pulse duration is of the s
order as the inverse phase-matching bandwidth, the gro
velocity mismatch and group-velocity dispersion both ne
to be taken into account in determining the properties of
local oscillator. The local oscillator needs to be optimiz
with respect to its pulse width, phase structure, and temp
overlap with the squeezed vacuum pulse. This has been d
onstrated in previous work by the authors@32# by employing
in the comoving frame temporally shifted, dispersed lo
oscillators whose initial pulse width is intermediate betwe
the pump pulse width and the inverse phase-matching b
l

to
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t
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width. The asymmetry introduced by a group-velocity m
match causes the measured squeezing to change a
shorter local-oscillator pulse is overlapped with differe
portions of the squeezed vacuum. The phase structure o
local oscillator can be matched in a practical sense with
of the squeezed vacuum through a chirp induced from gro
velocity dispersion. Significant squeezing can still
achieved without the optimization of the local oscillat
since the underlying instabilities of thex (2) nonlinear pro-
cess result in an exponential growth in fluctuations in so
quadrature. This can be seen from an analysis of the stab
of cw fields to fluctuations. However, the details of the i
stabilities in the pulsed case will be different.

To illustrate the spectral features of the squeezing sp
trum of the down-converted signal for pump pulses of t
same duration and which experience the same dispersio
the following simulton calculations, we plot in Fig. 1 th
squeezing spectrum using the Wigner representation fo
coherent pump pulse sech/2(t/5) with k29/2k1950.05, n̄
5109. In these simulations, we assumed equal group ve
ity and exact phase matching. The local oscillator is cho
to be equal to the initial pump pulse. This is not optimal, b
means that the temporal width of the local-oscillator a
squeezed signal are comparable as in the following s
generated local-oscillator arrangement used for the simu
calculations. The distinctive spectral features are the sub
noise fluctuations about the carrier frequency and the ex
noise sideband peaks. We then repeated the calculation u
the positive-P–Wigner hybrid technique, which gives the d
squeezing more exactly. However, for the large value on̄
used here, it turns out that the corrections are much sma
than the error in the Wigner calculation. Hence, the
squeezing shown in Fig. 2 is the same as depicted in Fig
The dc squeezing shows the characteristic effect of gro
velocity dispersion whereby the measured squeezing
creases after propagating several dispersion lengths. O
mizing the local oscillator as discussed earlier reduces
detrimental effect. However, since the combination of no
linearity and dispersion can induce instabilities which res
in squeezing, the problem with dispersion effects is in m
suring the squeezing rather than in producing it.

Fundamental solitons of the nonlinear Schro¨dinger equa-
tion can exhibit large quadrature-phase squeezing as w
There the U~1! symmetry of the field provides an invarianc
to arbitrary phase rotations. The nonlinearity produces
intensity-dependent phase shift called self-phase modula
As a result quantum noise produces phase diffusion wh
leads to quadrature-phase squeezing. The interplay betw
dispersion and nonlinearity leads to modulational instabi
and an exponential growth in fluctuations about a cw fie
However, the soliton is stable to coherent quantum fluct
tions. In the case of soliton propagation, the pulse does
temporally broaden during propagation and its intens
spectrum does not change either so the type of local osc
tor required will be different compared to the earlier case
parametric down-conversion. This nonlinear Schro¨dinger
soliton squeezing can be measured using the self-gene
local oscillator from a Sagnac interferometer. Again this
not optimal but a practical compromise.



o
a
ic
th

u

e
al-

a
ed
-
el
nt

si
n

-
na
o
th
d
et

th

all
the

dc
in

of
ar-
-
de-

at
rated
d-
are

tons
up-

f

tric
Fig.

zed
e-
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B. Group-velocity matched simultons

Coherent simultons are coherent states whose temp
profile is given by the solutions to the classical field equ
tions. In particular, we consider the subset of solutions wh
are the known bright solutions whose analytic form are
coupled temporal sech2 pulses described elsewhere@3#.
These particular solutions satisfy the following simultaneo
equations:

f5f0sech2~kt!eiu1j,

c5c0sech2~kt!eiu2j,

u1522k2sgn~k19!,

u25z0~k0
~2!22k0

~1!!22k2
k29

uk19u
,

u252u1 ,

c05
2 i uk19uf0

2

6k2k29
,

uf0u25
18k4k29

k19
.

More general solutions exist but this analytic form is conv
nient for specifying the initial conditions to the quantum c
culations to follow.

The hybrid method has been demonstrated above for p
metric down-conversion including a quantized, dispers
depleted pump field@22#. That exact calculation is often ap
proximated in the literature by a pulsed classical pump fi
which is constant with propagation. However, experime
performed using subpicosecond pulses cannot always be
scribed this way because the nonlinear medium is disper
and depletion can be important. Also, recent experime
using LiTaO3 waveguides@33# exhibit two-photon absorp
tion of the short pump pulses which provides an additio
pump depletion mechanism. Although this has not been c
sidered here it is possible to incorporate these effects in
formulation of the problem used in this paper, if require
Figure 3 shows the corrections due to the quantized, depl
pump for a simulton withk29/2k1950.05 andk50.2 in the
normal dispersion regime. This shows that even when

FIG. 1. Squeezing spectrum using the Wigner representation
parametric down-conversion withk2950.1k19 , z0(k0

(2)22k0
(1))50.
ral
-
h
e
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ra-
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d
s
de-
ve
ts

l
n-
e

.
ed

e

group-velocity dispersion at the pump frequency is sm
compared to the signal group-velocity dispersion and
pump field contains more than 109 photons, the pump field
quantum dynamics is important. The corresponding
squeezing calculated using the hybrid method is shown
Fig. 4 of about 5 dB. An important parameter is the ratio
the signal to pump group-velocity dispersion. For these p
ticular solutions, the ratiok29/k1952 when exact phase match
ing is used. The phase mismatch required changes sign
pending on whether the ratiok29/k19 is above or below 2.
After propagating many dispersion lengths, it is found th
the squeezing spectrum measured using the self-gene
local-oscillator arrangement is qualitatively different depen
ing on the sign of the phase mismatch. Figures 5 and 6
Wigner simulations fork29/2k1950.05 andk29/2k1951.69. The
results suggest that waveguides with a smallerk29/k19 ratio are
better for producing quadrature-phase squeezed simul
for small phase mismatches. By increasing the gro

or

FIG. 2. dc-squeezing using the Wigner method for parame
down-conversion. The parameters correspond to those used in
1.

FIG. 3. Quantum corrections for simultons due to the quanti
depleted pump versus propagation distance using the positivP
fields f2 ,f1 ,c for n̄5109. The initial conditions are
^f2(0,t)&50.053 66sech2(t/5), ^c(0,t)&520.12sech2(t/5), with
k2950.1k19 andz0(k0

(2)22k0
(1))520.152.
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56 1517PULSED QUADRATURE-PHASE SQUEEZING OF . . .
velocity dispersion at the fundamental frequencyv1, the in-
teraction length required is reduced and thek29/k19 ratio is
decreased. However, for the samek29/2k1951.69 ratio it is
possible to use shorter pulses and obtain dc squeezing w
persists for longer propagation distances. This is shown
Fig. 7 for the caseb52 giving k51/1.174 73 where the
phase mismatchb5z0(k0

(2)22k0
(1)). The latter property is

not expected for pulses which are not solitary waves.

C. Cascading including phase and group-velocity mismatch

As the ratiok29/k19 departs from 2, the phase mismat
required increases in magnitude. Therefore we consider
experimentally easier case where the second harmonic is
tially in the vacuum state and there is a large phase mism
between the two carrier frequencies. In this case an appr
mate cw solution is known analytically for the adiabatica
eliminated pump field which follows immediately from th
solution to the nonlinear Schro¨dinger equation. One can se
the oscillations in the dc squeezing in Fig. 8 from the ph
mismatch and the magnitude of dc squeezing for gro
velocity matching is comparable to the earlier case
k29/k1950.1. Except here the pump dispersion is an aver
taken from the Sellmeier equations for KTP and RTP at 4
nm @34# so thatv28

2k29/2v18
2k1951.69. The effect of group-

velocity mismatch can be reduced by increasing the ph
mismatch but for these solutions this requires using high
intensity pulses. Figure 8 shows the effect of varying
phase mismatch, including the group-velocity misma
Dvg5z0(1/v1821/v28)/t0, for initial conditions of the form

f~0,t!5A2b sech~t!.

This is the fundamental soliton of the nonlinear Schro¨dinger
equation with an effective nonlinearity 1/2b. This configu-
ration appears to be the easiest type of experiment to per
since it relaxes the restrictions on phase matching, gro
velocity matching, and correct input fields.

VI. CONCLUSIONS

The squeezing of coherent simultons was demonstr
and the greatest noise reduction was found for the case w

FIG. 4. dc squeezing versus propagation for the simulton in
condition in Fig. 3 using the hybrid positive-P–Wigner method.
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the group-velocity dispersion at the second-harmonic
quency was less than at the fundamental frequency. T
appears to be a favorable condition for generation of bri
squeezed pulses at the fundamental frequency using simu
propagation for small phase mismatches. The optimal cry
parameters, input conditions, and local oscillator are
known. It is emphasized that no optimization of the loc
oscillator was carried out for the simulton case as previou
investigated for the parametric down-conversion sche
Note also that materials such as LiNBO3 have a larger posi-
tive GVD at the second-harmonic frequency.

It was found that the phase mismatch required for
particular solutions used here was important in determin
the low-frequency squeezing for a particular ratio of GVD
This is obviously true when the group-velocity mismatch
not compensated but was also found for the group-velo
matched case since the solutions we used for initial con
tions specify the relationship between pulse duration, disp
sion, and phase mismatch. Numerically, solitary solutio
are known to exist for more complicated temporal pulses
the case of a group-velocity mismatch@17#. As a first step
toward a simulton squeezing experiment, using a large ph
mismatch with vacuum input at the second-harmonic f
quency is easier experimentally@35#, achievable with current
KTP waveguides, and allows the variation of the squeez
with phase mismatch to be investigated directly without h
ing to inject the correct amplitude second-harmonic pulse

The positive-P representation is useful for studying qua

l

FIG. 5. Squeezing spectrum using the Wigner representation
the simulton initial condition in Fig. 3.

FIG. 6. Squeezing spectrum using the Wigner representation
k2953.38k19, z0(k0

(2)22k0
(1))50.1104, and Dv50, n̄5109.

The initial conditions are ^fw(0,t)&50.376 808 sech2(t/5),
^c(0,t)&520.12 sech2(t/5).
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tum field propagation in dispersive nonlinear dielectrics. T
quantum statistics of coherent quantum simultons was in
tigated using a robust algorithm for overcoming difficulti
with the use of a nondiagonal coherent state representa
It can be more efficient to solve the exact stochastic eq
tions in combination with an exact Wigner representation

FIG. 7. Squeezing spectrum using the Wigner representa
for k2953.38k19 and n̄5109. The initial conditions arek51/
1.174 73, b52, ^fw(0,t)&55.652 17 sech2(kt), ^c(0,t)&
522.173 91 sech2(kt).
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a related problem to calculate the quadrature-phase squ
ing spectrum. It is expected that the technique will be use
for studying higher-order quantum correlation functions
well.

n

FIG. 8. dc squeezing versus propagation for various phase
matches with k2953.38 k19 using initial conditions ^f(0,t)&2

52b sech2(t), ^c(0,t)&50, and n̄5109.
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