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Pulsed quadrature-phase squeezing of solitary waves ig'? parametric waveguides
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It is shown that coherent quantum simultgssnultaneous solitary waves at two different frequenctes
undergo quadrature-phase squeezing as they propagate through a disp&tsiveveguide. This requires a
treatment of the coupled quantized fields including a quantized depleted pump field. A technique involving
nonlinear stochastic parabolic partial differential equations using a nondiagonal coherent state representation in
combination with an exact Wigner representation on a reduced phase space is outlined. We explicitly demon-
strate that group-velocity matcheg® waveguides which exhibit collinear propagation can produce
guadrature-phase squeezed simultons. Quasi-phase-matched KTP waveguides, even with their large group-
velocity mismatch between fundamental and second harmonic at 425 nm, can produce 3 dB squeezed bright
pulses at 850 nm in the large phase-mismatch regime. This can be improved to more than 6 dB by using
group-velocity matched waveguidd$1050-294{@7)06707-3

PACS numbegps): 42.50.Dv, 42.65.Tg, 42.50.Lc

I. INTRODUCTION cent paper has shown that solitary waves exist under a vari-
ety of conditions even when birefringence is presgi].
Recently there has been a renewed interesg'fh qua-  The observation of temporal solitary waves, though more
dratic media due to the realization that optical solitary waveslifficult than spatial forms, is therefore a possibility in the
can propagate in the presence of dispergmmdiffraction).  future.
This has been known for a long time but it is only recently  In the past ten years, the use of silica fiber as an optical
that the earlier work was recognized and extended. The thesingle transverse mode waveguide for demonstrating quan-
oretical efforts in the last few years have led to a muchym effects of nonlinear optical processes has been very suc-
greater understanding of the extent of possible solutions an@essfm[lgl The quantum noise effects of propagating co-
their stability. The related research on cascadingf ma- herent quantum solitons through silica fiber have been
terials has demonstrated possible applications X' gemonstrated in a number of experiments. In addition to be-
waveguides through the ability to induce large nonlinearyg the first experiments on quantum solitons, the physics
phase shift{1]. These solitary waves, called simultons, in i estigated has been of practical use in understanding the
quadratic medla_ are quite cﬁfferent from the Well-known S_Ol"limits imposed on optical communication channels by quan-
tons of the nonlinear Schdinger equation. Simulton stabil- tum noise. A major disadvantage of this medium for some

ity properties have been investigatt2] along with their applications is the long interaction lengths typically required

behavior during collisions [3] and their quantum ) N : o
counterparts—coherent quantum simultd#d This paper which makgs monollthlc integration d|ff|cult.. '_I’herg are al_so
lge acoustic and optical phonons of the silica fiber which

demonstrates that coherent quantum simultons can exhit o . .
quadrature-phase squeezif§] due to propagation through lead tg BnIIogm and Ramgn spatterlpg. To cgcumvent the
the dispersivey® waveguide. weak interaction of the silica fiber with lighg® analogs
The optical field propagation of solitary wavé6—9] using x(?) materials have been investigated. More generally,
called simultong3,10,11 has been theoretically predicted to cascadedy!® processes have led to qualitatively different
occur under a variety of conditions and observed experimerPehavior than just intensity-dependent phase shifts due to the
tally as spatial solitons or self-guided waves in three dimenthree-wave mixing processes involved. Consequently, the
sions[12]. Temporal (1) dimensional forms have not quantum noise effects of propagating coherent pulses
been experimentally verified yet, but promising candidates téhrough x® media can also be qualitatively different from
achieve the material parameter requirements are currentipose observed ig®) media. However, in the limiting case
available[13]. The favored materials in recent experimentsof a large phase mismatch similar behavior is expected.
on second-harmonic generation of short pulses were BBO Traveling-wave parametric amplifiers are phase-sensitive
[14] and quasi-phase-matched LINBQ15]. The latter ma- amplifiers where in general three-wave mixing processes via
terial has been used previously for squeezing experimeng x? nonlinearity include parametric down-conversion,
[16] and can be phase-velocity and group-velocity matchegecond-harmonic generation, and effecty® processes via
near 1.6um [13]. In the former case the commonly used cascadedy'? interactions. Quantum continuous-wayé&)
crystal BBO is well matched near 1/mm with respect to processes have been revisited again recently by Li and Ku-
group-velocity, however, it is not 90° phase matched. A re-mar[19,20. There the conclusion was that quadrature-phase
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squeezing was associated with amplification of the funda-

mental and amplitude squeezing was associated with deam- H=2> hoyalTal+ > hePal Tal
plification of the fundamental. Also, it was shown that in " "

second-harmonic generation the quadrature-phase squeezing 1 DD(x) D@ (x) 3

of the harmonic field is limited to 50% when exact phase - §60X(2)f d*x: = + = 5o (2D

matching is used19]. This paper describes a robust algo-

rithm for caztlculating quantum statistics of parametric pro-where the notation : : represents normal ordering. Here the
cesses iny'® waveguides, including pulsed inputs and dis- electric displacement®¥(x) in the nonlinear term are ex-
persion; in particular, we shall treat the subshot noise levehanded in terms of the boson field operators as

spectral fluctuations observed in recent experiments on ul-

trashort pulsed squeezing in parametric wavegujidé$

We also investigate the quantum noise generated by the . eitw/ kY 1’2A(i) 0 _
parametric soliton, or “simulton,” solutions of thg® in- D (X):'; —5 | amul(xexpikyz)+H.c.,
teraction including linear dispersion. Previous work pub- (2.2

lished on temporal simultons treated the classical field propa-
gation problem of stable pulse formation, whereas we arevhere the frequency dependence of the parameters has been
interested in the quantum statistics of initial coherent formskept only for the phase-shift term exd{2). The electric
of these solutions. Little is known about the quantum noisepermittivity at the frequencies, andw,=2w, are given by
properties of simultons. The techniques described in this pae; ande,, with corresponding carrier frequency wave num-
per and elsewherf22] can be used to predict the quantum bersk{’=k(w;), and group velocities/ = dw(k{’/ k.
statistics of coherent quantum simultons and generalizations The annihilation operatora) correspond to a mode with
of the Hamiltonian to include other nonlinear processes. At gropagation constant
more fundamental level, theoretical predictions of nonclassi-
cal photon correlations provide a test of the quantum theo- (i)_( ei>
retic and computational methods used for describing quan- e
tum field propagation in dispersive nonlinear dielectrics.
The stochastic partial differential equations which de-with mode spacingAk=2#/L. The mode volume is then
scribe the evolution of the photon flux amplitudes are dedefined by the normalized transverse mode functii(x)
rived in Sec. Il. These are used to formulate a hybridand the length. of the medium. Here represents the trans-
positiveP—Wigner stochastic partial differential equations verse coordinates. The mode frequenoiéﬁ are approxi-
in Sec. I, which can be used for efficient calculations of themate, corresponding to a second-order Taylor expansion, so
correlation functions of interest. Here the correlation func-that
tion required is the quadrature-phase squeezing spectrum
which is derived in Sec. IV. The methods used to integrate _
the stochastic partial differential equations and generate the wg‘q)%wﬁr(mAk)wi’Jr%(mAk 20!, (2.9
correlation functions have been described in detail elsewhere
[22]. The results for quantum squeezing in down-conversiorwhere the derivative®s; andw; are with respect t&. This
and for coherent simulton propagation are presented in Ses easily extended to include higher-order dispersion if de-
V. Finally we provide concluding remarks in Sec. VI. sired. The procedure for transforming to local field operators
has been given in the work of Drummond and Caftf].
The local field operators are defined on a lattice of lefgth
with 2M +1 points by

2,

O imAk, m=-M,...M (23
EO C

Il. QUANTUM THEORY FOR x® WAVEGUIDES

. . L . 1 Moo i27ml
The traveling-wave parametric amplifier is modeled here o= E aﬁnl)ex —iwt (2.5
as a nonlinear, dispersive dielectric waveguide which allows V2ZM +1m=-mM 2M+1

propagation in the direction in single transverse modes for
both the fundamentabkigna) and second harmonigump. so that the lattice cell denoted bycorresponds to longitudi-
We assume that the waveguide is oriented such that typedal positionz=1Az=IL/(2M +1). Local operatorsfﬂ are

phase matching for the®) process is dominant. This restric- defined analogously from tha{?) operators. The effective
tion is imposed since only a single polarization mode foryamiltonian for the time evolution af;, 5, can be written in

to type-1l phase matching for collinear propagation. Birefrin- gscillations, as

gence is not included here, so the phase matching should be

such that there is no walk off between the ordinary and ex- . o o
traordinary fields. The problem ¢8+1) dimensional propa- H/ﬁZE 2 Awﬁ”,aFawE E Awﬁrﬁrﬁv
gation in the paraxial approximation using Hermite-Gaussian b b

modes has been treatfdl] and will appear elsewhere. The .

Hamiltonian used here is the same as appears in the earlier +'_2 Xt &I’rziglJrH_C_, (2.6)
work of Raymeret. al.[23], 29
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{b)stochastic={ ) quantum (2.9
where the definition ofA ;. follows directly[24] from sub- stochaste quantum
stituting Eq.(2.5) into Eq. (2.1) and we define Correlations of just one chosen ordering can be represented
/ directly. Thus correction terms are needed for alternate or-
, ) 12 (2K @), derings. The coherent state methods correspond to normally
XIZX®P1 | A5 erTo o AL 2.7 ordered correlationglike direct photodetection while the

Wigner method corresponds to symmetrically ordered corre-
}ations (like local-oscillator homodyne detectipnin both
cases, correction terms can be included to treat alternate op-
erator orderings. For example, the Wigner method leads to a
12 stochastic field that includes vacuum fluctuation terms.
) f d2x(u(l)(x))2u(2)*(x). (2.9 These are not phys.ically measured by normal photodetectors,
so a(smal) correction term that depends on the frequency
cutoff is needed for comparisons with experimentally mea-
sured spectra, especially at low intensity.
When linearization about a mean intense field is difficult
Phase-space representations of operator equations allgi's in the case of pulsed inputs which may have no exact
the development of a theory that is equivalent to the standargolution under the influence of dispersion and nonlinepitty
Heisenberg operator equations of motion, but is more readilys therefore possible to numerically simulate the stochastic
soluble. equations using one of these operator representations. The
There are two common approaches to obtaining theesults of this procedure will be given in the following sec-
phase-space equations of motion for the electromagnetigons of the paper.
field with nonclassical statistics. The first of these is based on The purpose here is thus to explain the nature of the
an expansion of the density operator in terms of nondiagonajoupled stochastic equations obtained using various phase-
coherent state projection operators. This normally orderedpace representations for the behavior of the propagating
phase-space method, known as the posiBvepresentation, electromagnetic field. While these techniques are particularly
has proved to be useful in cases of non-classical statistics. liseful when the linearized approximations for the Heisen-
leads to a set of four stochastienumber equations equiva- berg equations break down, one can also view them as giving
lent to thequantumequations, which also reproduce ttlas-  a justification of these methods, since operator linearization
sical equations in the limit of small quantum effects, or largeis not a very well-defined procedure. The chief advantage of
photon number. these methods, relative to conventional number state expan-
This technique is related to the Glauber-Sudarg2&nhP sions, is that number state techniques tend to become very
representation, but this diagonal expansion method has a sirapidly unwieldy with large photon numbers and lattice
gular behavior for this Hamiltonian. Accordingly, a nondi- sizes, due to the enormous size of the Hilbert space — which
agonal coherent state expansion of the density matrix is prefs precisely the typical situation here.

Here, for later use, we introduce a traveling-wave nonlineal
coefficient defined as

eox(z)kél)(ﬁkgz)
X=—_

€, 2e;

A. Phase-space representations

erable. The result is a generalizBdrepresentation Fokker- The corresponding Ito stochastic differential equations
Planck equation, which is an extension of the diagonalSDE'’s) are (consider the parametey to be restricted to
Glauber-SudarshaR representation. {0,1} wheres=1 corresponds to the positie-representa-

A number of different types of generaliz&drepresenta- tion ands=0 to the Wigner representatipn
tion are known26]. Here the positive? representation will
be used, which is able to treat all types of nonclassical radia- da, . N . .
tion as a positive distribution on a nonclassical phase space, 5y =~ E Awyrap+xi o) Br+syx Bidi(t),
and is amenable to numerical simulation using stochastic !
equations. Using this method, the operator equations are sal
transformed to complex Ito stochastic equations, which only oa . a t + [~ af ot
involve c-number(commuting variables. Thus, while quan- ot +'|E, RopatxiaBisvxbid),
tum effects require that the usual classical equation be rein-
terpreted as an operator equation, the operator equation in 9B 1
turn can be transformed to equivales¥vhumber stochastic Wz—'z Awﬁ,ﬁ,,— EX'a'z’
equations. I
The other phase-space representation involves analyzing R
the problem in terms of the Wigner function, by truncating B, .
third-order derivatives in the corresponding evolution equa- ot +'Z Awﬁ,ﬂr,— EXl* aj (2.10
tion for the Wigner distribution. Thapproximatetruncation '
generates anothernumber stochastic equation for the field \yhere the noises are real Gaussian stochastic processes with
which closely resembles the classical equation. However, thggre|ations given by
classical resemblance is due to the truncation process—
whlch effectn_/ely reduce; the -exact quantum-mechanical (GG =8y 8(t—t"),
Wigner equation to a semiclassical form.
Generally, in these operator representation methods, an ., +
equivalent classical field is introduced with (GO ")=(4(1)=(Z (1) =0.
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While these equations are stochastic for the posivease, (it is a normally ordered representatjprvhile the Wigner
and deterministic for the truncated Wigner case, the reversiajectories must include operator-ordering corrections to ob-
is true for the initial conditions of these equations—whichtain the flux.

are always stochastic in the Wigner case. The initial condi- These equations can be cast into the following dimension-
tions in the case of an initial coherent state amplitu&eﬁf less equations:
area/=a,B/=pF, with

g i A
t))=p8C. 2.1 o' i
(B0)=A @13 T§=+ESgr(kl)a?¢T+¢¢T+5W§T(§,T).
In the case of the positiveP-representation since the basis
set is coherent, there are not additional fluctuations needed to i |21 1\a .o )
represent an initial coherent state. This is not the case for the Fra EA P =7 Fizo(ke” —2kg™)
Wigner representation, which must include random fluctua- 011 T2
tions to represent any coherent state—including the vacuum i k! wh\242 1
state: — s —| = '/f__¢2
' 2 K|\ wy) o7?|7 27
T 1-s ’ T
(AA (DA (1)) === 8y 8(t-1"), W B k-2
& tolw;  wy)dT 0L"0 0
<A3,(t)Aﬁf,(t')>=55.,,5(t—t’). (2.12 i Ky (wp\20%] 1 5
2 +§@w_i 254, (2.14

It is important to note that in the positiie-representation wheretv=t—z/v,k{’=d2k/dw2|k:ki= — o"Iv®, andt is the

Jime measured in the laboratory frame whileis the time

equation forW(e, B;s,t) [27] and P(a;t) [26] relies upon measuretzj in thle comoving frame WI'[.h speed w; . The
the use of partial integration, and assumes the distribution igctor (<§”—2k§") accounts for any mismatch of phase ve-
sufficiently rapidly vanishing at the phase-space boundariel®cities, while Avs=(zy/to)(1/w;—1lw;) accounts for
where |a|,| 8| —. This assumption is not always valid group-velocity mismatch, ark|{ accounts for group-velocity
[28], in which case the stochastic method is asymptotic adispersionNGVD). é=2/z, is the propagation distance scaled
small coupling constant, rather than exact. The boundarpy zy andr=t, /t, is the scaled time in the comoving frame.
terms can be checked in each case simply by monitoring thelere zo=|xW,| ! is the classical undepleted pump gain
trajectories for large departures towards infinity; these werg¢ength andt,= \'zok] is the inverse phase-matching band-
not observed for the parameters relevant to the present simwidth when ¥, is the initial peak value off’. The noise
lations. correlation is

The equivalence between a Fokker-Planck equation with
second-order derivatives and stochastic differential equations 1
also requires a positive semidefinite diffusion. However, an (LEneE,7))==d(¢-¢)o(r—7"). (219
evolution equation for the positive-distribution (s=1) can
always be found such that it has a positive semidefinite dif;\paore =
fusion using the nqnuniquenesg pf the time development Oéxpansion. The dimensionless fieldsand s are defined by
P(a;t) corresponding to the original master equatj@6].

. 9 . ()= (P, V)/¥,. In simulating quantum pulse propaga-
Although_the_exact W|gne_r distribution equations have th'rd'tion, either type of representation can be used, and is often
order derivative terms which must be truncated, these do

X o X n(i‘fuite suitable. The positive- representation is particularly
oceur in the case of the positiesepresentation, so no ad- suitable for calculating intensities, as it is a normally-ordered
ditional assumptions are needed to _transform the FOkkerr'epresentation. When calculating highly squeezed quadrature
Plan_ck equation into S.tOChaSt'c equations. fluctuations with local oscillators, it is sometimes the case
Either type of equation can be transformed to evolve IOhO’[hat the intrinsic sampling error can cause problems, due to
ton flux amplitudes by defining the very low level of quantum fluctuations in a squeezed
o |12 Wl 12 quadrature. This problem is reduced in the case of the
q)lzal(_l) ’ q,lzﬂl(_Z) el (kg k2 Wigner representation, which tends to have lower sampling
Az Az errors for quadrature squeezed staf2s]. However, the
(2.13  truncated Wigner representation equations have another dif-
ficulty; since the equations involve a truncation, it is not
where®[®,— (1-s)w;/(2Az) and W[¥,—(1-s)w,/(2AZ)  clear when they actually give correct answers. It would be
equal the number of photons per second passing,thlane  very useful to have a stochastic method that would combine
for signal and pump fields, respectively. We note that thehe intrinsic accuracy of the positive-method, with a low
positiveP equations can be used to obtain the flux directlysampling error.

?,to is the parameter governing the system size
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Ill. HYBRID WIGNER —-POSITIVE-P SIMULATIONS (MIT 2o/ 1 1\ 9
, : : : ——=| | = — | = —izo(kP - 2k{")

As stated in the preceding section, correct quantum statis- dE to\lw; wy)dr 0Lt 0
tics including a quantized pump is given by the positive- Cm 2.2
representation. However, for highly nonclassical states the n '_ﬁ @21" 9° i £¢T2 3.6
doubled dimensionality of the phase space can result in poor 2 K\ w)) o7 271 '
sampling statistics. The Wigner representation on the other
hand describes the dynamics exactly for a classical pump on ,
the reduced phase space where the stochastic fields repre- I¢2 ' " J* T N
senting the Hermitian conjugate field are in fact exactly the 9E 39k Tz dot dotet Vel(E,1), (37

complex conjugate field. This fact can be utilized to provide

a significant improvement in the sampling statistics for the 0¢T i P

positiveP representation for a quantized pump. Instead of 2L L m 2 gt * * 1

directly calculating the squeezing spectrum including the ef- 23 " ZSgr(kl)ﬁTz ot bt \/1,0_04" (&),

fects of pump depletion and fluctuations in the positie- (3.9

representation, one calculates the difference between the

squeezing spectrum for a classical undepleted pump and\ghere the classical undepleted pugphas been utilized in

quantized, depleted pump. It is essential to keep the noisge evolution of¢,. These stochastic fields then correspond

trajectories the same in both positiesimulations in order to different operator orderings and different dimensional

to reduce sampling errors. The Wigner representation is usgshase spaces. That i$, represents a restriction @f; to the

to calculate the squeezing spectrum for a classical undepletedquced phase spacé{, (]5‘{’% #*). The homodyne detec-

pump which is exact, as explained above. The addition of thgyr yses a coherent local oscillator which is considered clas-

positive difference spectra and the Wigner spectra is therjca| in the Wigner simulation and quantized in the positive-

the correct quantum statistics including quantized pump.  p simulation. Solving these six positive4to stochastic, one
The important feature is that the sampling error is considyyigner, and one classical parabolic partial differential equa-

erably smaller than in the case of the positReepresenta- tions turns out to be more efficient than solving just the

tion used alone, without incurring the problem of an un-(y ' 4 ') coupled positive® equations alone.

known truncation error if the truncate@semiclassical’) The coupled equations above can be extended to treat a

Wigner equations are used by themselves. While there is stikagnac loop interferometer analagous to the fiber loop

the potential problem of the positive-boundary correction squeezing experiments by Rosenbluh and Shelby in silica

terms, these are typically negligible under most experimentaiper [30]. In this case the local oscillator for the homodyne

conditions, and are easily checked by monitoring the numerigetector is one of the bright output pulses of a balanced

cal trajectories for large excursions. ~ Sagnac interferometer, depending upon at which frequency
The hybrid Wigner—positivé? method for the dynamics  the quantum correlations are to be measured. A similar pro-

of the x(*) interaction can be obtained from E(.14 by  cedure as above is performed for each arm of the Sagnac

writing down the appropriate stochastic equations for thenterferometer to calculate the dynamics of the two indepen-

positiveP stochastic differencing and the classical pumpdent counterpropagating simulton fields.

Wigner equations. These are given by the following coupled

equations for the dynamics of thg? interaction:
IV. SQUEEZING SPECTRUM

a i 9
IPw =— Esgr( KD == dwt+ dnibe, (3.1 The time-ordered, normally ordered current operators pro-
9& a7 vide the usuaN-photon coincident rates
e |20 1 1\a9 . 2) 1) « N
a—g_{g(a}—i—w—é E_‘Hzo(ko —2kg) GM(ty, ... )=l Ty 4.2
_ '_ﬁ “’_ﬁ 25_2 " (3.2 such that the normalized photocurrent spectrum is given by
2 K\ wy) 97%|"°" ' [31]
&¢l i (92 t ~/ ’ [ (1) ' (2) /
a—§=—§sgr(k’1’)a—r7¢1+¢l¢+ \/E{(f,T), (3.3 G(w,0")=V27G"(0w+0")+27G (0w,0"), (4.2
apl i 92 ; where
—g = T 380K b1+ by YT (g, 3.4
1213 2 or
1 S
W_[nf1 119 o G<2>(w,w’)=ﬂf fe““*"" UGt dtdt.
GE | Tolw]  wp)ar " 2olke T 2KeD), @3
i k/r (x), 2 072 1 ) ) )
___,2, _f> — |- = 2, (3.5 We can rewrite the normalized photocurrent spectrum in
2 [Ki[\ 01) a7 2 terms of the current operators as
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_ ) ot o7 otto't)) whereJ(t) is the current pulse for a photon detection event.
G(w,w )ZJ enere <|(t))dt+j Je e Typically, J(t) is taken to beZed(t) whereZ is the number
of electrons per current pulse. Hence the photocurrent power
X)) )dtdt. (4.4 spectrum is given by
The second term can exhibit nonclassical correlations. P(w)= 2?7T|J(w)|2G—(—w,w)

Now consider a homodyne detector with two input ports
a andb so that the difference current operator is

N S )
~|3(w)|2 IC,-I-TW[(:IO(—w)IO(w):)

1= (7ar2= ppt?) LD, + (1t2— 7or2) DDy, ) T
Ho(—w)X X(— | :
Frt( e+ 7) (DI + DLD,). 45 +lo(—w)X(w)+ X(— )l o(w):)]

. (4.10

27 . A
. . ) —I—?(:X(—w)X(w):}
where 7, are the detector efficiencies. We only consider a
balanced homodyne detector where one thas=1/y/2 and
1n.= M= 7. In a time intervall, the average signal observe
is

d For convenience one can define a power spectrum normal-
ized to the dc detector spectral response giving

S ) )
1+ Plw)=Tw) |°_+$[<:|0(—w)|0(w):>+<:|o(—w)X(w)
1< f_m (1_(1))dt. (4.6)

L 2w .
+x<—w)|o(w):>]+?”(:X(—w)xuu):), (4.1D)

Experiments are usually carried out not at dc but at some

convenient rf frequency to avoid the local-oscillator band- _ 2 —n)2

width, electronic, and other noigéor example, mode lock- where J(w) =[J(w)|*/|J(w=0)"

ing frequency. The ability to measure the dc photon differ-

ence number in pulsed systems has been demonstrated I VS ~

experimentally[21]. Plw)=Tw)| | <+ ?<:X(—w)X(w):> )
We define the generalized quadrature operator as

In principle, the noise spectrum can be reduced to

4.12

The last term represents the additional noise above the shot
X=y(dldy+d]d,), (4.7 noise level. One should not lose track of the fact that here the
last term represents phase-dependent noise correlations and

where y is assumed real. Since this is proportional to the'S "éferred to herein as the squeezing spectrum given by

detector efficiency, it represents the detected quadrature and 20 . .
consequently its noise also scales with the powers of the —(X(—w)X(w):). (4.13
detector efficiency. The shot noise also decreases with detec- T

tor efficiency but only linearly. That is, th-photon count- One can calculate this directly using the positReepresen-

ing probability is proportional tayN so that the two-photon .
correlations important in squeezing decrease linearly witﬁrﬁg%‘eﬁfsensemble averages correspond to normally ordered

7 when they are scaled to the shot noise level. From now on -, . . : .
It is convenient to calculate a normalized squeezing spec-

take y=1 since it is now clear what the physical effect of L ) )
i : -~ .~ trum such that the minimum value of the correlation function
reduced detector efficiency has on making quantum Ilmlteé

measurements such as in pulsed squeezing experiments, is — 1.AThe lower bouer is d(-etermmed from the commutator
The two-photon coincidence rate is of the X(t) operators, in particular,

Ry V() — T (t! 5t FTey & I ’

GA(t,t")=(:To(OTo(t):) + CXOX(E):) XOX(E): =TXOX(U) + Do (D[ Py(t"), Dp(t) ] Da(L)
5 T HTiy & T ’

where 7 denotes time ordering. Also, sinée(t) does not

T 2 f 2_ .G : : A S
and lo= (77,1 "= 7pt) o+ (7al™= 7Py . I is worth not- o qqin progucts of the formd [ d,; the productX(t)X(t')

ing that for a perfectly balanced system only the last term i - - ;
) . enerates a symmetrically ordered combination appropriate
Eqg. (32) is nonzero. In order to take into account the fre—rb y y bprop

. for calculations using the Wigner representation. Since
guency response of the detectors one can define a detector ~ i . )
response function (X(— w)X(w))=0 one has in the positivE-representation

1 T2
1 _ <x<—w)X(w)>>—2— f di(®]d,+ DDy ).
J(w)= —f e'“tJ(t)dt, (4.9 T\ J-T1r2
N2 (4.19
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Now one can define the pulsed squeezing spectrum as  \yhered, represents the signal field. The term of interest is
the Fourier transformed two-time correlation function

R Y . 1 S, ” ”
S(w): 2’7T<X( (U)X(w)> (416) Efjdtdt,elw(t —t)<x(t)x(tr)>

(T2 dt( DI+ Did,))
1 o
— ralo(t—t")
zwjfdtdte

X{(: DI Do) Dt D(t)):)

Then in the positive? representation we have

P 27T<X(§,—w)X(§,w)> .5t T N AN .

SP(Pg, & 0)=(SP(Pg,& w))= , TP ()P P(t )P o(t'):)},

(Ps.£0)=(S(Ps L)) (JAt[ D[P o+ P LDs]) 1

4.19 + o[ [araveme-y
2

where®g is the signal field andP, o is the local-oscillator X{(: DI D (DIt ) D o(t):)e 120
field.

In the Wigner representation, the stochastic moments cor- +e‘z"(:&)[o(t)&)s(t)@[o(t’)<i>s(t’):>}
respond to symmetrical operator ordering resulting in the
stochastic momentX(— w)X(w)) being non-negative. The _LJJ' Pt =)/ S e Ty At et
squeezing spectrum in the Wigner representation is then 27 dtdt'e O )+ OiE):)

+CIDT(t): ) e 204+ 2007 (1) TT(t):)}. (4.22)
N 2m(X(€,— w)X(&,w))
(JAt[| P o|*+]|Dg*—1/(AD)])’
4.1

V(g &,0)=—1 In the positiveP representation this becomes

(i(—w)iT(@)+(i"(—w)i(0)+(i(—0)i(w))e 2

whereAt ™1 is the frequency cutoff. In the case of the hybrid eI (—w)il(w)),

method apphed to parametric down-conversion the hybrldWhere f(t)=(i>;r(t)<i)Lo(t). We choose the local-oscillator
spectrum is constructed from

phase independently for each frequency to maximize the de-
tected squeezing so that

Shybrid(f,w)=<ép(®l,§,w)—ASP(q)Z,f,w» <i(—a))i(w)>efi29+ ei20<iT(—w)iT(w)>
+SM(®,, ¢ ). (4.19 ——2)(i(—w)i(w))|. (4.22

The pulsed squeezing spectrum can be calculated using

In order to specify how the beam splitter input fields re- ] - ) )
late to actual source fields, the type of experiment has to be 5 ):477[Re(|(— 0)i'(w)) = (i(—w)i(w))[]
more clearly defined. Two different detection schemes are (S di(dlo+ o] @) :
used here. One uses an external local oscillator which is (4.23
typically some fraction of the output from a source laser
which is also used, either directly or indirectly, to pump awhere R¢- - -) is the real part of the expectation value.
nonlinear crystal or waveguide to generate the squeezing.
This simple method has been employed a number of times in B. Self-generated local oscillator
traveling-wave pararr_1etric amplifier squegzing experiments.. In this arrangement a pump and signal pulse are sent into
The other approach is to use a Sagnac interferometer as In

. ; ; Sagnac interferometer. The output of the Sagnac interfer-
the soliton squeezing experiments of Rosenbluh and Shemé{meter, which contains the nonlinear medium, then consists

[30]- of a squeezed field and a bright pulse to be used for the local
oscillator. These two fields are the input to a homodyne de-
tector as before. Either the signal field or harmonic field can
be detected in this way. The difference current is given by

A. External local oscillator

Consider a local-oscillator field which can have its global
phase altered continuously and independently so that T = rLocogg((i)’{ci)l_é;ci)Z)_ rLoSine(‘i)ﬁ)ZﬂL &32&){)

(I)a:qA)s, =r|_o?10089—r|_0?28in0, (424)

Whereﬁbl represents the field transmitted through the beam
<i>b=ei "(i)Lo, (4.20 splitter to form the squeezed vacuum ahd represents the
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field transmitted through the beam splitter to form the localwidth. The asymmetry introduced by a group-velocity mis-
oscillator andr g is the reflectance of the mirror which re- match causes the measured squeezing to change as the
directs the field reflected by the Sagnac interferometer intghorter local-oscillator pulse is overlapped with different
the homodyne detector. In the positiPerepresentation the portions of the squeezed vacuum. The phase structure of the

difference current correlation is local oscillator can be matched in a practical sense with that
of the squeezed vacuum through a chirp induced from group-
%f f dtdt’ et =0 _(t)l_(t')) velocity dispersion. Significant squeezing can still be
270 achieved without the optimization of the local oscillator
) ) _ ) _ since the underlying instabilities of theg?) nonlinear pro-
=coS (i1 (— w)iy(w))+sirP6(i,(— w)ixw)) cess result in an exponential growth in fluctuations in some
1 quadrature. This can be seen from an analysis of the stability
— Esinza[(il(—w)iz(w)>+<i2(—w)il(w)>] of cw fields to fluctuations. However, the details of the in-

stabilities in the pulsed case will be different.
1 To illustrate the spectral features of the squeezing spec-
=cos6Cy;+ sinzaczz—zsinza(clfr Ca). (429 trum of the down-converted signal for pump pulses of the
same duration and which experience the same dispersion as
As before one can choose the global phase of the local oghe following simulton calculations, we plot in Fig. 1 the
cillator to maximize the amount of squeezing which issqueezing spectrum using the Wigner representation for a
equivalent to finding the minimum value of E¢.25 for  coherent pump pulse seéf#/5) with k3/2k;=0.05, n
each frequency independently and is given by =10°. In these simulations, we assumed equal group veloc-
. . . . . . . ity and exact phase matching. The local oscillator is chosen
(= w)is(@) + iz w)iz(w) = {[{i(—w)iw)=(2 5 pe equal to the initial pump pulse. This is not optimal, but
(—w)iz(w)>]2+[<i1(—w)iz(w)>+<i2(—w)il(w))]z}l/z. means that the temporal width of the local-oscillator and
squeezed signal are comparable as in the following self-
The lower bound is found in the same way as above from generated local-oscillator arrangement used for the simulton
. . . . calculations. The distinctive spectral features are the subshot
T-(OI-(t") __7{ (It noise fluctuations about the carrier frequency and the excess
S i

+
+CO§9{¢1(U noise sideband peaks. We then repeated the calculation using

the positiveP—Wigner hybrid technique, which gives the dc

Mo

Tryr ’ T =
X[P1(t"), @1 (1)] P4 (t") +P3(1) squeezing more exactly. However, for the large valua of
><[<I>£(t’),<l>2(t)]<b2(t’)} used here, it tur_ns out thgt the correcuo_ns are much smaller

than the error in the Wigner calculation. Hence, the dc
+sinze{[d)I(t’),(I)l(t)]<1>£(t’)<1>2(t) squeezing shown in Fig. 2 is the same as depicted in Fig. 1.

The dc squeezing shows the characteristic effect of group-
velocity dispersion whereby the measured squeezing de-
creases after propagating several dispersion lengths. Opti-
(4.26 mizing the local oscillator as discussed earlier reduces this
' detrimental effect. However, since the combination of non-
so that the pulsed squeezing spectrum can be calculated frofifiearity and dispersion can induce instabilities which result
in squeezing, the problem with dispersion effects is in mea-
277[ C11+ Cpo— V(C13— Cup) %+ (Cyot+ Cyp)?] suring the squeezing rather than in producing it.
Sw)= (JT2 dt(®I D, + DId,)) : Fundamental solitons of the nonlinear Safinger equa-
(4.27)  tion can exhibit large quadrature-phase squeezing as well.
There the W1) symmetry of the field provides an invariance
to arbitrary phase rotations. The nonlinearity produces an
intensity-dependent phase shift called self-phase modulation.
A. Parametric down-conversion and matched local oscillators  As a result quantum noise produces phase diffusion which

In parametric down-conversion it is known that for shortleads to quadrature-phase squeezing. The interplay between
pump pulses, that is, the pump pulse duration is of the sam@ispersion and nonlinearity leads to modulational instability
order as the inverse phase-matching bandwidth, the grougnd an exponential growth in fluctuations about a cw field.
velocity mismatch and group-velocity dispersion both needHowever, the soliton is stable to coherent quantum fluctua-
to be taken into account in determining the properties of theions. In the case of soliton propagation, the pulse does not
local oscillator. The local oscillator needs to be optimizedtemporally broaden during propagation and its intensity
with respect to its pulse width, phase structure, and temporapectrum does not change either so the type of local oscilla-
overlap with the squeezed vacuum pulse. This has been denor required will be different compared to the earlier case of
onstrated in previous work by the authg®2] by employing  parametric down-conversion. This nonlinear Sclimger
in the comoving frame temporally shifted, dispersed localsoliton squeezing can be measured using the self-generated
oscillators whose initial pulse width is intermediate betweenocal oscillator from a Sagnac interferometer. Again this is
the pump pulse width and the inverse phase-matching bandtot optimal but a practical compromise.

+OIO[DI(), Do) D (1)}

V. RESULTS AND DISCUSSION
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0.8

0.6

DC-squeezing 1+S"(£,0)
o
i

FIG. 1. Squeezing spectrum using the Wigner representation for
parametric down-conversion witky= 0.1k} , zo(k{? —2k{")=0.
02

B. Group-velocity matched simultons

Coherent simultons are coherent states whose temporal
profile is given by the solutions to the classical field equa-
tions. In particular, we consider the subset of solutions which 00,5 20 m 60
are the known bright solutions whose analytic form are the g
coupled temporal seéhpulses described elsewhef8].

These particular solutions satisfy the following simultaneous FIG. 2. dc-squeezing using the Wigner method for parametric
equations: down-conversion. The parameters correspond to those used in Fig.

1.

b= dosech(kr)e 1¢,
group-velocity dispersion at the pump frequency is small

= posech(kr)e 2¢, compared to the signal group-velocity dispersion and the
pump field contains more than 4@hotons, the pump field
1=—2k?sgn(K}), guantum dynamics is important. The corresponding dc

squeezing calculated using the hybrid method is shown in
; Fig. 4 of about 5 dB. An important parameter is the ratio of
02=zo(k32)—2k51))—2;(2m, the signal to pump group velocity dispersion. For these par-
! ticular solutions, the rati&/k] =2 when exact phase match-
ing is used. The phase m|smatch required changes sign de-

02=201, pending on whether the ratikj/k} is above or below 2.
After propagating many dispersion lengths, it is found that
~ilkil o the squeezing spectrum measured using the self-generated
0T Ta opn 1 : X -~ .
6x°k3 local-oscillator arrangement is qualitatively different depend-
ing on the sign of the phase mismatch. Figures 5 and 6 are
2_18K4k'2’ Wigner simulations fok3/2k]=0.05 andk5/2k]=1.69. The
| bol*= Ky results suggest that wavegwdes with a sméd;ék” ratio are

better for producing quadrature-phase squeezed simultons
More general solutions exist but this analytic form is conve-for small phase mismatches. By increasing the group-
nient for specifying the initial conditions to the quantum cal-
culations to follow.

The hybrid method has been demonstrated above for para-
metric down-conversion including a quantized, dispersed,
depleted pump fieldi22]. That exact calculation is often ap-
proximated in the literature by a pulsed classical pump field
which is constant with propagation. However, experiments
performed using subpicosecond pulses cannot always be de-
scribed this way because the nonlinear medium is dispersive
and depletion can be important. Also, recent experiments
using LiTaO; waveguideq 33] exhibit two-photon absorp-
tion of the short pump pulses which provides an additional
pump depletion mechanism. Although this has not been con-
sidered here it is possible to incorporate these effects in the FIG. 3. Quantum corrections for simultons due to the quantized
formulation of the problem used in this paper, if required.depleted pump versus propagation distance using the poSitive-
Figure 3 shows the corrections due to the quantized, depletdidlds ¢,,¢,,44 for n=10°. The initial conditions are
pump for a simulton withk3/2k7=0.05 and«=0.2 in the  (¢,(0,7))=0.053 66sect(7/5), (#(0,7))=—0.12sech(7/5), with
normal dispersion regime. Th|s shows that even when th&,=0.1k] andzy(k{? —2k{") = —0.152.

o
&

DO, Squeezing
o
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1.0

08

06

DC-squeezing 1+S™°"°(£,0)

FIG. 5. Squeezing spectrum using the Wigner representation for

0.0 20 40 : 6.0 80 100 the simulton initial condition in Fig. 3.

02

FIG. 4. dc squeezing versus propagation for the simulton initialthe group-velocity dispersion at the second-harmonic fre_—
condition in Fig. 3 using the hybrid positive—Wigner method. quency was less than at the f_u.ndamental frequency. _Th's
appears to be a favorable condition for generation of bright
velocity dispersion at the fundamental frequengy the in-  squeezed pulses at the fundamental frequency using simulton
teraction length required is reduced and #i¢k] ratio is  propagation for small phase mismatches. The optimal crystal
decreased. However, for the sarkf2k]=1.69 ratio it is parameters, input conditions, and local oscillator are not
possible to use shorter pulses and obtain dc squeezing whidfown. It is emphasized that no optimization of the local
persists for longer propagation distances. This is shown i@scillator was carried out for the simulton case as previously
Fig. 7 for the case8=2 giving k=1/1.174 73 where the investigated for the parametric down-conversion scheme.
phase mismatctB=z,(k{?)—2k{"). The latter property is Note also that materials such as LiNB@ave a larger posi-

not expected for pulses which are not solitary waves. tive GVD at the second-harmonic frequency.
It was found that the phase mismatch required for the

C. Cascading including phase and group-velocity mismatch ~ Particular solutions used here was important in determining
R ) the low-frequency squeezing for a particular ratio of GVDs.
As the ratioky/k; departs from 2, the phase mismaich This js obviously true when the group-velocity mismatch is
required increases in magnitude. Therefore we consider thgy; compensated but was also found for the group-velocity
experimentally easier case where the second harmonic is injpaiched case since the solutions we used for initial condi-
tially in the vacuum state and ther_e is a Iar_ge phase mlsmatctllfbnS specify the relationship between pulse duration, disper-
between the two carrier frequencies. In this case an approxkion, and phase mismatch. Numerically, solitary solutions
mate cw solution is known analytically for the adiabatically 516 known to exist for more complicated temporal pulses in
eIiminated pump figld which fpllows immgdiately from the the case of a group-velocity mismatfh7]. As a first step
solution to the nonlinear Schimger equation. One can see (oyard a simulton squeezing experiment, using a large phase
the oscillations in the dc squeezing in Fig. 8 from the phasenismatch with vacuum input at the second-harmonic fre-
mismatch and the magnitude of dc squeezing for groupgyyency is easier experimentall§s], achievable with current
velocity matching is comparable to the earlier case forkTp waveguides, and allows the variation of the squeezing
ko/ki=0.1. Except here the pump dispersion is an averag@jith phase mismatch to be investigated directly without hav-
taken from the Sellmeier equations for KTP and RTP at 428nq to inject the correct amplitude second-harmonic pulse.
nm [34] so thatw,?ky/2w1’k]=1.69. The effect of group-  The positiveP representation is useful for studying quan-
velocity mismatch can be reduced by increasing the phase-
mismatch but for these solutions this requires using higher-
intensity pulses. Figure 8 shows the effect of varying the
phase mismatch, including the group-velocity mismatch
Av 4=7o(1w1— lw,)It,, for initial conditions of the form

#(0,7)=/2B secli).

This is the fundamental soliton of the nonlinear Sclinger
equation with an effective nonlinearity 182 This configu-
ration appears to be the easiest type of experiment to perform
since it relaxes the restrictions on phase matching, group-
velocity matching, and correct input fields.

-

745 2r)
~

by

V1. CONCLUSIONS FIG. 6. Squeez;ng spectrum using the Wigner repreientation for
kp=3.3%], zo(k{P’—2k{Y)=0.1104, and Av=0, n=10.
The squeezing of coherent simultons was demonstratethe initial conditions are (¢,,(0,7))=0.376 808 sed{/5),
and the greatest noise reduction was found for the case whe¢e(0,7))=—0.12 sech(7/5).
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14 L —— B=20,Av=0
e B=10,AV =33
---- p=20.Av =33
12 —-— p=50.Av,-33 4

08

0.6

DC-squeezing 1+Sw(§,0)

0.4

0.2

FIG. 7. Squeezing spectrum using the Wigner representation
for k3=3.3&%] and n=10°. The initial conditions arex=1/ 00 ‘ ‘ ‘ ‘
117473, B=2, (¢,(0,r))=5.65217seck(«7), (y(0,7)) 00 o 2o +0 50
=-2.17391sed(«7).

FIG. 8. dc squeezing versus propagation for various phase mis-

B "n__ " . P . 2
tum field propagation in dispersive nonlinear dielectrics. ThethChes H,W'th k2_03'38_k5 “SSE_ |1n(|)t;al conditions (¢(0,7))
guantum statistics of coherent quantum simultons was inves- Bsech(7), (#(0,7))=0, andn=10".

tigated using a robust algorithm for overcoming difficulties g related problem to calculate the quadrature-phase squeez-
with the use of a nondiagonal coherent state representatiofhg spectrum. It is expected that the technique will be useful
It can be more efficient to solve the exact stochastic equéfor studying higher-order quantum correlation functions as
tions in combination with an exact Wigner representation ofwell.
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