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Ideal Soliton Environment Using Parametric Band Gaps
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Simultaneous solitary wave solutions for laser propagation in nonlinear parametric media with up to
(3 + 1) dimensions are proved to exist. The combination of the large dispersion of a Bragg grating
and the strong nonlinearity of® optical material results in stable behavior with short interaction
distances and low power requirements. The solutions are obtained by using the effective mass
approximation to reduce the coupled propagation equations to those describing a dispersive parametric
nonlinear waveguide, and are verified by solving the complete set of coupled band-gap equations
numerically. [S0031-9007(97)03325-5]

PACS numbers: 03.40.Kf, 42.70.Qs

Simultaneous solitary-wave (“simultons”) solutions in niques of second-harmonic phase matching [13], which
dispersive parametric waveguides, involving a wave cohave been observed experimentally in periodic multilayer
propagating with its second harmonic, were first foundGaAs structures [14]. Extending this concept to doubly
theoretically by Karamzin and Sukhorukov [1,2]. Re- periodic Bragg gratings allows a simultaneous band gap
cently, new solutions of different types were found byto open up at both fundamental and second-harmonic fre-
many researchers [3—11]. Parametric simultons havgquencies. We show in this Letter that the novel double
now been experimentally observed using continuous wavbkand-gap structure is an ideal candidate for the formation
propagation [12], iny® media, but time-dependent si- of y? simultons with short interaction distances, by trans-
multons have yet to be generated experimentally. forming the coupled equations to an exactly soluble form.

This is due to a number of material requirements, es- Using a Bragg grating also helps solve other problems

pecially that of group-velocity matching, and the require-that occur with conventional parametric solitons. Group-
ment of having dispersions of identical sign in both thevelocity matching is no longer necessary with band gaps:
signal and its harmonic. In addition, nonlinear crystalssolitons can form even at low or zero velocity in the labo-
have a relatively small dispersion, which usually resultsatory frame. In addition, we will show that it is always
in long formation distances that are easily achieved onlypossible to choose branches of the dispersion relation
in optical fibers (which normally have g rather than that give anomalous dispersion at both wavelengths, thus
a x@ nonlinearity). Despite this, there are clear advan-allowing higher-dimensional solitons to form. We have
tages to the parametric medium for soliton formation. Theverified the stability of these in thd (+ 2) dimensional
nonlinear phase shift is much larger at low intensities forcase, using a direct numerical simulation of the complete
parametric nonlinear materials, since it scalesasnot  set of equations. By comparison, gap solitons yét)
E3. Furthermore, tempora}t® solitary waves are known media are known to occur both theoretically and experi-
to exist in higher dimensions (provided the dispersion ismentally [15,16]. However, due to the small nonlinear
anomalous), unlike the bright nonlinear Schrédinger equacoupling, formation of these single-wavelength solitons
tion solitons of ay® medium, which are always unstable requires very large powers, and cannot occur in higher
in higher dimensions. transverse dimensions.

Bragg grating optical materials have a strong disper- Consider a Bragg grating structure with(z) = ; +
sion when the wavelength is near the band gap. Thidn;(z), where7; is the spatial average oi;(z) (the
characteristic has been used to theoretically propose techefractive index at frequencjw,), wherej = 1,2. Here
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Anj(z) is a periodic function with period/. We can 2wa;/A;, where A, is the free-space wavelength of the

expandAn;(z) in a Fourier series, with fundamental field. More general types of grating can be
treated, but this is sufficient to illustrate our main point.
Anj(z) = D Anjy, cod2mkiz), 1) Assuming a quasimonochromatic electric field in a
m second-harmonic generation process, we can write solu-
given thatAn;, is a real coefficient, an¢, = 7/d =  tions to Maxwell's equation as

E = e[F1+(z, e @ 0D 4+ F\_(z,0)e @RI 4 )[Fay(z,1)e @70 4 Fy (7,0)e” @ HhI] 4 cc,

wheree, are the polarizations, and the signrepresents symmetric § = 1, upper branch) standing waves at

right or left propagation. Q = 0. NearQ = 0, these modes satisfy the orthogo-
Substituting the above ansatz into Maxwell’s equatiomality conditions

and assuming slowly evolving envelopes, we obtain the

following coupled first order equations: (L)~ f n3 (@) [ulo()ulg() ] dz = 8,985, (8)
d d
<§ + £>f1+ + k1 Ei- + xeE e = 0, whereL is the quantization length.
5 Neglecting dispersion, the Hamiltonian in a nonlinear
(E _ £>fli + s + s Fr T =0, medium [17] can be written as
1
(2) H = f Z(—B;‘B,- Z(Z)D D; >Adz

( 9 + i - i5k2>f2+ + Ky Er + XEfler =0,
T a9z (Z)
9 + [ L =(D*D, + D}D;)Adz, (9)
d

-(i _
aT

Here xe = yPk, /i3, k;j = wAnj;j/\;j, T = vt, and
8ky = wy(i, — 1)/c represents the phase mismatch
between the fundamental at frequeney, and the second -
harmonic at frequency, = 2w;. We neglect dispersion 2 wlfo NS
of the medium, as it is usually much smaller than the gap S_Zﬂ Z (@) 2itLA diguig(c)e
dispersion. For simplicity, the two group velocities are

i i ﬁwZEO —2w
taken qual tay, with no mlsmatch. _ + Z an(z) I ZQMQQ(Z)el(QZ 2wt)

Following standard techniques [15], we introduce a =4

— i6k2>f2, + ko Ery + ,\/Eflz_ =0
<

wheren®(z) = —X(z)/[fon (1)][18].
In terms of the symmetric or antisymmetric modes, the
electric displacement field can be expanded as

i(Qz—wot)

vector for the right and left propagating fields: ¥ cc. (10)
> Ei+ o : —
Ei(z,1) = £ | (3) Substituting Eg. (10) into the above Hamiltonian, we
_ 7= find that the linear part can be written in terms of photon
Inserting the ansatz, annihilation and creation operators as
Fiz.1) = (Q)e @0, =12, (4 b
into the linear part of the above equations, one obtains two Ho = Z Z]: %_hijanan. (11)
sets of normalized eigenvectors, corresponding to linear '
propagation above and below the band gap: We are interested in photon properties near the center of
the band-gap region in momentum space, whiZ2re «;.
_ [,.2 2\T J
f‘?(Q) _ (k0 —s Kj T 0 ) 5) Therefore, the well-known effective-mass approximation
J \/Z(sz + Q2 — SQW) ’ (EMA) in solid state physics gives
212
where the eigenvalues corresponding tee =1 are iwiy = hoi + ﬁz—QY j=12, (12)
QJS-(Q) = v(s\/Qj + ki — 6kj), j=12. (6) | - j
Next, we introduce normalized mode functions: where the effective mass#s; = shi«;|/v, and the mode

ujQ(z) _ fj+(Q)ef”“Z n f;,(Q)e’f”“Z, i=12. frequency at the gap center is
(7) sz- = ja)1 + Q;(O) = ja)1 + (SlKjl - 5/(,)1) (13)

For example, whenk; > 0, the mode functions Itis convenient to work in the coordinate representation.
stand for symmetrics(= —1, lower branch) and anti- Taking a Fourier transform of the annihilation operators
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aj, we obtain the following envelope field operators forber. However, this technique does permit us to obtain

the photon field: novel solutions of some experimental interest.
' We can now apply the known topological properties [19]
Yiz) = L7'2Y ale'®,  j=1,2. (14)  of the parametric soliton equations to the band-gap case.
0 From the above Hamiltonian, we derive classical equations

The Hamiltonian can therefore be expressed in terms dbr two coupled waves with symmetriegs ands:

these field operators, provided that;| < |«;l: o hoo2yl o e
i i =i~ — iy +ixG'y
a Z Z 9 ;Tas + oot Ty d ot 2my 0z
i —\ 2° Z¢j z¢j w; lp] lpj z 52 2,82 b (17)
s J oY, . A 0%y, NI .)((S) 25
XG) st s 52, st st ar lZmS2 972 iy gy i 2 o
- Z] T(‘/fz i b Yy ) dz, 2 )
§ (15) Transforming the new coupled equations ly =
_ o ;e a pair of equations is obtained that is identical to
where the nonlinear coupling is the usual description of a nonlinear dispersive parametric
v [win waveguide, with dispersions; = h/m;/, and an effec-
x(3) = 81/ = [sor(k2) — sisis2].  (16)  tive phase mismatch of
2n 2€pA s R
The nonlinear part of the Hamiltonian, Eq. (15), van- 8 = Qoi' — w)) = (8ky + 2s1lki] = sl
ishes if the total coupling between gaps is antisymmet- (18)
ric. We consider only cases with nonvanishing coupling,=.o -, ;
i - ) previously known results [19], Egs. (17) support
ands; = s, S0 thats, = —sgrix,). These possible cou- o (i.e., topological) solitary waves & = —s,. Also,

plings between gaps are illustrated in Fig. 1. _bright type solitary waves can occur, if the dispersions
The Hamiltonian approach therefore affords a physiy,,ve identical sign, i.eg; = 52 = s = —sgriky). We

cally intuitive understanding of the coupling processes, ;i focus on this case in what follows.

Not only does the use of the gap modes eliminates linear g iton type solutions to (17) can be written as [19]
cross couplings, but it also introduces a powerful symme-

try principle; the second harmonic that is coupled must _ K1 i(g—w)t /(>

have the same type of symmetry as the product of the 1= *lgl P Viz/z0)e™ 7/ x (5),

two subharmonic modes. Because of this, the use of gap — slalv 2ilg—w)t | (= (19)
modes permits great simplifications even in this nonlin- o = si1lqlVa(z/z0)e /x(5),

ear problem. Either quantum soliton or classical soli-wheregq is an arbitrary parameter describing the (inverse)
ton behavior can result; the classical solutions would, okoliton time scale, and the corresponding length scale is
course, be approximately valid only at large photon numz, = \/|v/(2g«)|.

Assuming the conditiorD < «;, we can expand the
mode functionujy(z) into a Taylor's series up to first
order abou®) = 0. Hence, the electric field at= 0 can
be expressed as

fj(Z) - Z 217!2-6014
5 j

iz
(v@nte) - 222

s

61/!5'0(Z)> .
(20)
Substituting Eq. (19) into the above result gives

o ia1<V1[SgT;q)} B #Kll c;_‘;l[sgr(lxl)s D

oo} gD

Here a) = \/Ik1/2k| lgle’=“V" /(cxe/n) and a, =
lgle 4= [(cx/R).

It has been proved that there is a family of one
Q parameter solitary wave solutions of Eq. (17) [19]. The

parametep in this case is
FIG. 1. Possible nonlinear couplings between gaps. Cou-
plings 1 and 2 generate bright simultons while couplings 3 and
4 generate dark simultons.
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Pquihded that ttr?;k effecti\;e ma?]s ??ﬁroxirl?ation i; vallid, . .77%
which means iZo > 1, each of these known simul- 0
taneous solitary w;ves—simultons—generates a corre- 3 ’II'/I'I;I%'”]]?}]‘\-
sponding band-gap soliton, which has an additional phase & % "I‘%’I/I”III%;””I%;[,”””I
modulation when compared with the usual solitons. L 0, Uity
For example, in cases with = 1, the corresponding S "Iz‘%&%g%l[[%%l[[%%&\
solutions can be worked out for the cage> 0, s; = O W '
so = s3 = —1, which involves coupling b%tween”ower 0 '(9’5&!!"%’5/’[%;””[]/;‘;”””[[&}}&\\
branches. The solutions are e "‘%f,’{"%’#%zlll[%;lﬁ&&\\\}
il
Vi(z) = %secﬁ(i), ) %N/:\% % L#g%l
3 < = -~
Valz) = ESGCH<2—ZO>.

. ¢ FIG. 2. First harmonic of a2(+ 1) dimensional gap simul-
Cases that involve cross couplings between the uppeaon. Initial conditions were cylindrically symmetric in the

branch and the lower branch of different gaps result ineduced (EMA) coordinate system. The dimensionless pa-
dark simulton solutions. These are not available analytifameters used for simplicity werg = 1/8, —«, =2k = 8,
cally, and therefore must be calculated numerically—ag® — '# = v =10k = 3/16, andyy = 1.
is also necessary for all cases wjth# 1.

These solutions have many interesting properties, al- ) ) )
though space is too limited here to present all of them. Arft Numerical example, we consider a WavegU|d%)rnade of
experimentally relevant point is that the solutions giventiNPOs. ‘We use the following typical valuesy'™ =
already are completely stationary in the laboratory frame! -9 PMVV [21], 7 = 2.5, Any; = Any; = 0.025, and
This creates an unexpected problem: how can they be iff@velength of the first harmonia, ” 19? pm.  This
troduced into the band-gap material? In fact, this is easily'/S _cloupllng parameters_gcfl 5 10°m™, wy =2 X
solved. If the gap structure is fabricated with = 2m;, 10" M ', andyg =3 X 107 V™". In order to satisfy
there is a symmetry in the equations which allows forth? 'requwem.ents of the eﬁec_tlve mass approximation, the
moving solutions with an identical form to the stationary Minimum soliton length possible is aroungl = 25 xm.
ones. Thus, they can be generated at the boundary, aiith this chﬁolce, the soliton period or (eshaplng time
then move into the bulk medium. would _be g '=1ps. The correspolndlng energy is

The dispersive parametric equations we obtain a|sélpprOZX|mat¢IyE = 1nJ, for a waveguide area of =
support higher-dimensional soliton solutions [6,19,20] ind #M"- This pulse energy is many orders of magnitude
(2 + 1) and @ + 1) dimensions. These correspond tolower than the usual values for the corresponditt gap
striped or layered band-gap structures, respectively, antP!itons. . , o
are described by adding a transverse Laplacian to each of 11€S€ characteristics of fast interaction times, low pulse
the earlier propagation equations. Solutions of this typ&n€rgy, and stability in higher dimensions make the gap
do not appear to exist in conventional?) gap solitons. parametric system an ideal spllto_n environment for both
Our Hamiltonian mapping from band-gap to dispersivefundamemal physics and applications of solitons.
equations, therefore, proves that the parametric band-
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