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Macroscopic test of quantum mechanics versus stochastic electrodynamics

S. Chaturvedi
School of Physics, University of Hyderabad, Hyderabad 500 046, India

Peter D. Drummond
Department of Physics, University of Queensland, St. Lucia, Queensland, Australia

~Received 15 May 1996!

We identify a test of quantum mechanics versus macroscopic local realism in the form of stochastic elec-
trodynamics. The test uses the steady-state triple quadrature correlations of a parametric oscillator below
threshold.@S1050-2947~97!07901-8#

PACS number~s!: 03.65.Bz, 42.50.Dv
is
om
e

ef
in
-
i

e-
o
t.
f
i
rs
ill

-
rs

a
y
e

a
d
d

i
m
x
r

ho
lle
d
t
ec

x
ng

m

on
by
ator
o
rge

evi-

ture
rod-
is
x-
he
ith
r
uite
is

ua-
tions
n-
r-

nti-
ng.
if-
the
the
ic
d to
her
an
den

ree-
he

ir-
Local hidden variable theories are known to be incons
tent with quantum mechanics at the microscopic level, fr
the Bell inequalities@1#. Experimental tests at this level hav
decided in favor of quantum mechanics@2#, although there
are still some experimental problems with low detection
ficiency. The situation is different as particle numbers
crease. There are nomacroscopictests of quantum measure
ment theory versus hidden variable theories. While it
possible to obtain Bell-type inequalities@3#, these are diffi-
cult to implement experimentally. However, it is in this r
gion that quantum mechanical measurement theory is m
open to question, as Bell@1# has most cogently pointed ou

It is the purpose of this paper to demonstrate that an e
cient test of quantum mechanics is possible, in a regime
volving quantum correlations with large particle numbe
The test is a simple extension of a recent parametric osc
tor Einstein-Podolsky-Rosen~EPR! @4# experiment, which
first demonstrated the EPR@5# paradox of quantum mechan
ics in its original form. That is, the experiment was the fi
to employ observables having the Heisenberg algebra
@ x̂i ,p̂ j #5\d i j , as used in the original EPR paper. Reid h
recently shown@6# that this experiment is also intrinsicall
multiparticle in nature, since the quadrature operator m
surements involve multiple particle detection.

In testing quantum mechanics, it is useful to have an
ternative as a comparison to the quantum mechanical pre
tions. We choose to compare quantum mechanical pre
tions with those of stochastic electrodynamics@7#—a
classical theory with added vacuum fluctuations. This
known already to reproduce many features of quantum
chanics. In fact, theories of this type, in the guise of appro
mate Wigner @8# representations with a positive Wigne
function, have been used in quantum optics@9# to obtain
convenient approximations to quantum theory at large p
ton number. In this regime, the theory is sometimes ca
the semiclassical method@10#. Of course, we do not regar
this as a practical alternative atsmall photon number, as i
cannot violate the Bell inequality. However, stochastic el
trodynamics is a possible alternative to quantum theory
large particle number.

Either theory produces identical predictions for many e
periments involving second-order correlations, includi
both squeezing~quadrature noise reduction! and the original
EPR proposal. An EPR experiment in its original for
551050-2947/97/55~2!/912~3!/$10.00
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shows thateither quantum mechanics is incompleteor we
must abandon local realism. It gives no information
which alternative is preferred. In this paper, we show that,
taking additional measurements on the parametric oscill
pump output beam, it is possible to differentiate the tw
principal alternatives in an operational measurement at la
photon number.

Suppose that the parametric oscillator experiments pr
ously used to demonstrate squeezing or EPR@4,11# correla-
tions are extended to include pump output phase quadra
measurements. These can then be correlated with the p
ucts of the signal and idler quadratures. This information
always present implicitly, but was ignored in previous e
periments. The crucial triple correlation of this type is t
triple correlation of pump phase quadrature, together w
orthogonal~uncorrelated! quadratures of the signal and idle
beams. For this measurement, the two theories predict q
different results below threshold. The essential difference
that the semiclassical theory predicts that vacuum fluct
tions behave as real fields, causing measurable correla
in the absence of a driving field. This is not found in qua
tum theory, which predicts smaller correlations—propo
tional to the input intensity well below threshold.

There are different results also predicted for other qua
ties, like squeezing, but only to higher orders in the coupli
In the case of triple correlations, we find that there is a d
ference predicted even to lowest nonvanishing order in
calculation. Since this difference is not dependent on
strength of the driving field, it survives in the macroscop
regime, where the semiclassical result might be expecte
be correct. While this test cannot presently rule out all ot
hidden variable theories, the experiment would provide
additional test of quantum mechanics versus a typical hid
variable theory, in a different multiphoton regime.

The theory presented here deals with an idealized th
mode parametric oscillator, triply resonant in a cavity. T
standard interaction Hamiltonian is@4,11#

H5 i\S Eâ31gâ1
†â2

†â31(
j

Ĝj â j D 1H.c.

The termsĜj represent damping reservoirs or output m
rors, g is the nonlinear coupling due to ax (2) nonlinear
material, whileE is the external driving for the pump field
912 © 1997 The American Physical Society
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55 913MACROSCOPIC TEST OF QUANTUM MECHANICS . . .
â3. This field is resonant at frequencyv3 both with the cav-
ity and with the sum-frequency (v11v2) of the signal and
idler modesâ1 and â2.

The simplest treatment within quantum mechanics is
use the coherent-state expansion, leading to stochastic e
tions in the positive-P representation@11#. This is valid when
boundary terms are negligible, which we have checked c
putationally to be valid for large pump threshold phot
numbers~i.e., g2!g1g2).

This method results in stochastic equations for the tw
amplitudesa j ,a j

1 , representing an off-diagonal coheren
state projector in the system density matrix:

ȧ15~2g1a11ga2
1a3!1~ga3!

1/2j1~ t !,

ȧ25~2g2a21ga1
1a3!1~ga3!

1/2j2~ t !,

ȧ35~E2g3a32ga1a2!.

There is a similar set of equations fora j
1 , with the re-

placement ofj i by j i
1 , where

^j i~ t !j j~ t8!&5^j i
1~ t !j j

1~ t8!&5d i ,32 jd~ t2t8!.

The noise-sources are complex Gaussian stochastic
cesses, and all their other correlations vanish. While th
equations are numerically soluble, more insight is obtain
on expanding them analytically as a power-series in the c
pling g, which is applicable for driving fields below the crit
cal region~i.e.,E,ET[Ag1g2g3 /g):

a i~ t !5 (
n50

`

a i
~n!~ t !gn21.

It is of most interest to calculate the steady-state corr
tions of quadratures below threshold, which we define
usual to be

xi5a i1a i
1 , yi5~a i2a i

1!/ i .

To zeroth order, the usual classical result is obtained
x1
(0)5y1

(0)5x2
(0)5y2

(0)5y3
(0)50; x3

(0)52E. We regardE 5
Eg/g3 as of order unity in the expansion@12#.

To obtain results to the next order, it is simplest to co
sider the combinations~for j< 2!

x̄ j5a j1a32 j
1 , ȳ j5~a j2a32 j

1 !/ i .

In the symmetric case ofg15g25g, these diagonalize
the stochastic equations, allowing their immediate solutio

x̄ j
~1!~v!5AĒ@j j~v!1j32 j

1 ~v!#/~2 iv1g2!,

ȳ j
~1!~v!5AĒ@j j~v!2j32 j

1 ~v!#/~v1 ig1!.

Herex(v)5*exp(ivt)x(t)dt/A2p, and we have defined new
damping ratesg6[(g6E). The steady-state pump quadr
ture solutions arex3

(1)5y3
(1)50, to first-order in the expan

sion. It is simple to verify from the above solutions th
external quadrature measurements ofx1(v) are strongly cor-
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related with x2(2v), and similarly with y1(v) and
y2(2v). This is the reason for the EPR paradox observed
this type of experiment.

If results of higher order again are calculated, a new re
is obtained. Of most interest is the triple correlation betwe
three distinct quadratures in the external fiel
Xj (v),Yj (v), whereXj (v)5A2g j xj (v). These are

^X1~v1!Y2~v2!Y3~v3!&Q

5
g

2
A2g3^@ x̄1~v1!ȳ2~v2!1 x̄2~v1!ȳ~v1!

1 ȳ1~v1!x̄2~v2!1 ȳ2~v1!x̄1~v1!#y3~v3!&.

The twelve other terms of form̂x̄1(v1) x̄2(v2)y3(v3)&
or ^x̄1(v1) ȳ1(v2)y3(v3)& ~etc.!, all vanish owing to the
symmetry properties of the Hamiltonian. On calculating t
lowest order nonvanishing triple correlation, we find

^X1~v1!Y2~v2!Y3~v3!&Q.gE 2D~vW !1~v1↔v2!,

where

D~vW ![
2gAg3 /pd~v11v21v3!

~v1
21g2

2 !~v2
21g1

2 !~g32 iv3!
.

In the stochastic electrodynamics or semiclassical the
the calculation is more complicated. Second-order terms
ist in all three quadratures, and there are additional te
arising from reflected vacuum fields—giving rise to 192 d
ferent combinations. Most vanish, as before, owing to sy
metry properties. With a little algebra, we obtain the follow
ing simple result to lowest order in the expansion:

^X1~v1!Y2~v2!Y3~v3!&S

.gS E 21 1

4
~g21 iv1!~g11 iv2! DD~vW !1~v1↔v2!.

This is like the quantum theory prediction, except for
extra term which isindependentof the driving fieldE, as
E→0.

This effect also shows up in the total intracavity trip
correlation, which can be obtained on integrating the ab
results over all frequencies. Here, we find that quant
theory predicts that

^x1y2y3&Q5MQ5
gE 2

2~g22E 2!~g312g!
,

while the SED~semiclassical! theory predicts that

^x1y2y3&S5MQ1
g

2~g312g!
.

These results are easily verified computationally, sim
by integrating the relevant stochastic equations numerica
We find that the simulation results agree very well with t
analytic calculations, except for the obvious critical fluctu
tion divergence that occurs in the vicinity of threshold
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914 55S. CHATURVEDI AND PETER D. DRUMMOND
E5g, where this simple perturbation theory no longer hol
In fact, other technical problems occur at threshold, so
this test it is preferable to use a finite fraction of thresh
intensity—even though the triple correlations are greatly
creased at threshold.

While the triple correlation varies with the couplingg
~which is small in current experiments!, any operational
measurement ofXj effectively turns it into a Schwinger op
eratorâ j b̂ j

†1â j
†b̂ j , thus amplifying it by the local-oscillato

amplitudeb̂ j . In particular, a phase-shifting interferometr
measurement of the pump output phase would increaseX3
by a local oscillator term proportional to the intracavi
pump amplitudeAn3, which varies with (1/g) at any finite
le
-

og
.
r

-

proportion of threshold intensity. This implies that the d
crepancy in the final current correlations is always fini
even for small g, and relatively intense driving fields. D
spite this, practical limitations, such as thermal refractiv
index fluctuations and background counts due to rand
triple correlations, would strongly indicate that largeg ~small
n3) values are preferable.

In summary, the two theories presented here give co
pletely different results for triple correlations. It seems po
sible that these predictions could be tested in ultrasm
waveguide-based parametric oscillators with integrated m
rors, in order to reduce the size of the intracavity phot
number at threshold.
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