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We theoretically study the Hilbert space structure of two neighboring P-donor electrons in silicon-based
quantum computer architectures. To use electron spins as qubits, a crucial condition is the isolation of the
electron spins from their environment, including the electronic orbital degrees of freedom. We provide detailed
electronic structure calculations of both the single donor electron wave function and the two-electron pair wave
function. We adopted a molecular orbital method for the two-electron problem, forming a basis with the
calculated single donor electron orbitals. Our two-electron basis contains many singlet and triplet orbital
excited states, in addition to the two simple ground state singlet and triplet orbitals usually used in the
Heitler-London approximation to describe the two-electron donor pair wave function. We determined the
excitation spectrum of the two-donor system, and study its dependence on strain, lattice position, and interdo-
nor separation. This allows us to determine how isolated the ground state singlet and triplet orbitals are from
the rest of the excited state Hilbert space. In addition to calculating the energy spectrum, we are also able to
evaluate the exchange coupling between the two donor electrons, and the double occupancy probability that
both electrons will reside on the same P donor. These two quantities are very important for logical operations
in solid-state quantum computing devices, as a large exchange coupling achieves faster gating times, while the
magnitude of the double occupancy probability can affect the error rate.
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I. INTRODUCTION

Recently several designs for silicon-based quantum com-
puter architectures have been proposed.1–7 In this work we
concentrate our efforts on the Kane model,1 which exploits a
qubit array of nuclear spins of 31P dopants embedded within
a silicon crystal matrix. The model is based on the use of 31P
nuclear spins as qubits, with the donor electrons functioning
to mediate control of single qubit operations via the hyper-
fine interaction, and interaction between individual qubits via
the exchange interaction, and permit readout of nuclear spin
states.

Performing logical operations8–10 on either electron-spin
or nuclear-spin solid-state qubits requires precise control
over single- and two-qubit unitary operations, which corre-
sponds to precise control over the electron-electron exchange
interaction and the electron-nucleus hyperfine interaction in
the Kane quantum computer architecture. Here we calculate
the exchange interaction as a function of the two donors’
relative positions in the lattice and strain. We use multivalley
effective mass theory to calculate the single donor electron
wave functions, these single-donor orbitals combine to form
our two-electron basis. This theory incorporates the Si crys-
tal lattice effects by including the Si crystal Bloch functions
into our single-donor electron basis. Instead of using the
Heitler-London �H-L� approximation, which has been used
extensively in the literature so far for impurities in Si,11–15

we describe our two-donor system using a rigorous molecu-
lar orbital method which employs our multivalley single do-
nor orbitals to form our two-electron basis, to calculate the
exchange coupling more accurately.

An important feature necessary for quantum computing is
to have well-characterized qubits and for the two-qubit case
this is the ground state singlet and triplet two-electron states.

It is meaningful to study the degree of proximity these tar-
geted ground state orbitals are to the rest of the unwanted
excited state Hilbert space.16 This energy separation gives us
an estimate for the conditions under which adiabaticity can
be attained. We have pursued this goal using a molecular
orbital method, which enables us to calculate a large number
of two-electron energy levels �144�, in the energy spectrum
for our two-donor system.

We used a molecular orbital method which includes the
single-donor ground state and first five excited states at each
donor to form the two-electron basis. This yields a basis of
78 singlet states and 66 triplet states. This method not only
gives us the exchange coupling, which is the difference be-
tween the ground singlet and triplet two-electron states, but
also the spectrum of energy levels for the two-donor system.
For comparison we also calculated the H-L exchange cou-
pling using just the symmetrized and antisymmetrized prod-
ucts of the single-donor ground states, and the Hund-
Mulliken �H-M� exchange coupling which in addition to the
H-L states, includes the two doubly occupied single donor
ground states at each donor, in our two-electron basis. We
calculated the exchange coupling and energy spectrum for
our two-electron system as a function of donor position and
strain. In addition, we also calculated the probability that
both electrons will be on the same donor. This is also an
important parameter for quantum gate operations, as these
doubly occupied states can become a potential source of er-
ror. Several authors have similarly studied the exchange cou-
pling, double-occupancy errors, and adiabaticity of spin qu-
bits in a number of different solid-state quantum computing
architectures.16–19

Much attention has been devoted to modeling the hyper-
fine and exchange interactions in these devices.11–15,20–24 In-
tervalley interference between degenerate conduction band
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minima in Si has been shown to lead to oscillations in the
exchange coupling as a function of the donor pair positioning
in the lattice.12–15 This poses serious problems for the fabri-
cation of these devices, and leads to an extreme sensitivity of
the exchange energy on the relative orientation of the P at-
oms. Koiller et al.14 demonstrated that the introduction of
external strain on the Si lattice partially lifts the valley de-
generacy in the bulk Si. They showed that the intervalley
effects could be reduced in some cases depending on the
relative orientations of the donor pairs, while in other cases
the donor exchange coupling remains oscillatory. The mo-
lecular orbital method we employ not only improves the cal-
culation of the two-donor electron wave functions, but we
also use a more flexible basis than previous studies12–15 to
calculate the single-donor electron wave functions, which are
used to construct the two-electron basis.

II. QUANTUM CHEMICAL MODELS

We advance beyond the simple H-L model for the two-
electron wave function in the Kane device that has been pre-
viously considered.11–15 In the molecular orbital method we
use the single donor wave functions to form our basis states,
and solve the six-dimensional �6D� Schrödinger equation for
the two electrons through a direct matrix diagonalization.16

In the simplest case, the H-L approximation, the donor
pair wave function is modeled as the symmetrized and anti-
symmetrized products of the two single donor ground state
wave functions �“A1” states� at each P nucleus, to form our
singlet and triplet states, respectively. In the H-M approxi-
mation, in addition to the two H-L states, the H-M basis
incorporates the two “ionized” or “polarized” doubly occu-
pied ground states, at each donor.

For the molecular orbital calculation we extended these
bases to also include the first five excited states for each
donor in our basis, in addition to the single-donor ground
states. This was chosen so that our basis included the six
symmetry ground states for the single P donor, �A1 ,T2, and E
states�. We performed calculations for the exchange coupling
to see the effect that this larger basis has on lowering the
energy of both the singlet and triplet ground states, and to
improve upon and test the validity of using H-L theory to
model the two-donor system over a range of device param-
eters.

We get a basis for our two-electron system which consists
of the spatially symmetric singlet states, and anti-symmetric
triplet states. Because the spin part of the singlet and triplet
states are orthogonal, we can consider the singlet and triplet
bases independently. Using six single-donor orbitals on both
qubits, we can form 78 singlet states and 66 triplet states.
The molecular orbital method has advantages over some
quantum chemical methods as it includes the correlation be-
tween the two electrons, by virtue of including many two-
electron orbitals to minimize the energy of the system.

We show the geometry of our two-electron problem in
Fig. 1 for two P donors, Q1 and Q2, embedded in the Si
lattice, �the origin is at Q1�. For the singlet �symmetric spa-
tial orbitals� basis we form the following two-electron wave
functions, from our basis of single-donor orbitals, �Q1

en �r�

and �Q2

em�r−R�,�en-th state at Q1, and em-th state at Q2, re-
spectively�:

�1–21
S =

1
�2�1 + �nm�

��Q1

en �r1��Q1

em�r2� + �Q1

en �r2��Q1

em�r1�� ,

for n = 0 to 5 and m = n to 5

�22–42
S =

1
�2�1 + �nm�

��Q2

en �r1 − R��Q2

em�r2 − R�

+ �Q2

en �r2 − R��Q2

em�r1 − R�� ,

for n = 0 to 5 and m = n to 5

�43–78
S =

1
�2�1 + �Snm�2�

��Q1

en �r1��Q2

em�r2 − R�

+ �Q1

en �r2��Q2

em�r1 − R�� ,

for n = 0 to 5 and m = 0 to 5

where Snm =� dr�Q1

en �r��Q2

em�r − R� .

Here we see that the two-electron singlet donor wave func-
tions �1–21

S and �22–42
S , are the doubly occupied singlet states

located at Q1 and Q2, respectively. The two-electron states
�43–78

S are the “Heitler-London-like” singlet states formed
from the single-donor ground state and excited state wave
functions.

Similarly for the triplet �antisymmetric spatial orbitals�
basis we obtain the following two-electron wave functions:

�1–15
T =

1
�2

��Q1

en �r1��Q1

em�r2� − �Q1

en �r2��Q1

em�r1�� ,

for n = 0 to 5 and m = n + 1 to 5, �m � n�

�16–30
T =

1
�2

��Q2

en �r1 − R��Q2

em�r2 − R�

− �Q2

en �r2 − R��Q2

em�r1 − R�� ,

for n = 0 to 5 and m = n + 1 to 5, �m � n�

FIG. 1. Coordinate geometry of our two-electron problem.

KETTLE, GOAN, AND SMITH PHYSICAL REVIEW B 73, 115205 �2006�

115205-2



�31–66
T =

1
�2�1 − �Snm�2�

��Q1

en �r1��Q2

em�r2 − R�

− �Q1

en �r2��Q2

em�r1 − R�� ,

for n = 0 to 5 and m = 0 to 5

It is clear that the singlet and triplet bases contain the
original H-L states, �43

S in the singlet basis, and �31
T in the

triplet basis. For the H-M calculation we include the two
additional “ionized” or doubly occupied ground states �1

S

and �22
S in our singlet basis. In the extended molecular or-

bital basis, we consider all 78 singlet states and 66 triplet
states in our two-donor electron Hamiltonians for the singlet
and triplet bases, respectively.

III. NUMERICAL METHOD

A. Solution of the single-donor wave function

To obtain our two-electron states we first need to evaluate
the single-donor wave functions at each donor to use in the
two-electron basis. We did this in the case of no strain and
with uniaxially strained Si. We calculated the single-donor
orbitals using multivalley effective mass theory. We use a
basis for the multivalley single-donor wave function which
includes the full Bloch structure at each conduction band
minimum, in our basis functions.

The Kohn-Luttinger form12,25 for the electron wave func-
tion of a donor situated at any position R0 is given by

��r − R0� = �
�=1

6

��F����r − R0�eik� .�r−R0�uk�
�r� , �1�

where F����r−R0� is the donor envelope function, and
uk�

�r�, independent of the position of the donor, is the peri-
odic part of the silicon crystal Bloch function at the conduc-
tion band minimum k�, where k1/2= ±kz= �0,0 , ±k�2� /a0,
etc., k=0.85, and a0=0.543 nm is the length of the unit cell.

The multivalley effective mass equation for the envelope
functions of a P donor in Si under strain is28

�
�=1

6

��ei�k�−k��.r�T��− i � � + U�r� + Hstrain − E� � F����r� = 0,

�2�

where:

T1�− i � � 	 
 �2

�x2 +
�2

�y2� + �
�2

�z2 = T2�− i � � ,

T3�− i � � 	 
 �2

�x2 +
�2

�z2� + �
�2

�y2 = T4�− i � �,etc.

Here T� are the anisotropic kinetic energy terms, due to the
anisotropy of the conduction band minima in Si. The impu-
rity potential U�r� is the potential term due to the effective
+1 charge of the P nucleus in the Si lattice. Here we model
the impurity potential as a screened Coulombic potential

U�r�=2/r. We are using atomic units, where the unit of
length �aB�=	2
 /m�e�2=31.667 Å and unit of energy �EB�
=m�e�4 /2	2
2=19.9436 meV, where 
=11.4 a.u. and �
=m� /m� =0.2079.20 Hstrain is the potential due to uniaxial
strain along the z direction which we will define later.

We expanded the donor electron envelope wave function
F��� in a basis of the single-valley zero field envelope wave
functions Fj

��� at each of the six conduction band minimum
k�. Here Fj

��� are the eigenfunctions of the single-valley zero
field Hamiltonian H0

���=T��−i� �+U�r�. We have discussed
previously20 how we obtained the single-valley zero-field
wave functions Fj

��� by expanding these single-valley wave
functions in a basis of deformed hydrogenic orbitals.

In Eq. �1� we expanded the donor electron wave function
��r−R0� in a basis of the donor electron envelope functions
F��� at each minimum. In addition we can also expand F��� in
our basis of single-valley donor electron wave functions Fj

���

��r − R0� = �
�=1

6

��eik� .�r−R0�uk�
�r�F����r − R0�

= �
�=1

6

eik� .�r−R0�uk�
�r��

j

Cj
���Fj

����r − R0� , �3�

where

Fj
����r� = �

n,l,m
Bnlm

��� �nlm
��� �x,y,z,a,�� ,

and Cj
��� are the expansion coefficients for our basis func-

tions Fj
����r�. We see that the single-valley envelope func-

tions Fj
��� are in turn, also a sum of basis functions: the

deformed hydrogenic orbitals �nlm
��� �x ,y ,z ,a ,�� given already

in a previous paper.20 The co-efficients Bnlm
��� are determined

already since Fj
����r� are the eigenfunctions of the single-

valley Hamiltonians H0
���, i.e., H0

���Fj
����r�=Ej

0Fj
����r�.

Note that including the expansion coefficients Cj
��� in Eq.

�3� is a generalization of the calculations of Wellard et al.12,13

where we have removed the restriction that the donor wave
function be composed of equal contributions from the six
conduction band minima. Clearly this restriction breaks
down when an external strain is applied as this will break the
degeneracy of the six conduction band minima.

So now Eq. �2� becomes

�
�=1

6

ei�k�−k��.r�
j

Cj
����H0

��� + Hstrain − E�Fj
����r� = 0. �4�

We now multiply Eq. �4� by Fi
*����r� and integrate over r.

The orthonormality of this basis is enforced by the ei�k�−k��.r

terms which appear in the matrix elements, and due to their
rapidly oscillating nature average to zero unless k�=k�.12

In the standard effective mass treatment, the intervalley
mixing terms which couple the envelope functions at differ-
ent conduction band minima in the above approximation are
neglected, and six independent equations are obtained. For
the higher donor excited states this is a valid approximation,
as their energies agree quite well with calculations using
only single-valley effective mass theory.29 However, we need
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to consider the intervalley coupling for the donor ground
state, which has the effect of lifting the sixfold degeneracy of
the 1S states predicted by the one-valley effective mass equa-
tions. In order to obtain the correct symmetry states for the

donor ground state of a singlet �A1�, a triplet �T2�, and dou-
blet �E�, we add empirically determined parameters to our
Hamiltonian, as was done by Koiller et al.14

Hence the multivalley effective mass Eq. �4� becomes

�1j�
�=1

6

C1
����,� + ����ijCi

���Ei
0 + ����

j

Cj
��� � drFi

*����r��Hstrain�Fj
����r� = E����ijCi

���. �5�

where �,� = 0, if � = � ,

− 2.1934 meV, if �,� are on perpendicular symmetry valleys,

− 1.535 meV, if �,� are on opposite symmetry valleys.
�

Here we also scale the single valley ground state energy,
E1

0=−35.19 meV, to reproduce accurately the experimental
splitting for the P-donor ground state. We only scaled the
single-valley ground state energy because the single-valley
calculation reproduces the higher excited state energies rea-
sonably accurately.29

When we consider the effect of strain on the single donor
orbitals, we consider its effect only on the lowest six energy
states, because later we construct our two-electron basis from
these lowest six single-donor states. Here we follow the
treatment of Koiller et al.14 and introduce the relative energy
shifts due to uniaxial strain along the z direction, in terms of
a dimensionless valley strain parameter �. In their paper they
discuss the physical relevance and tuning of this parameter.
For our purposes we consider four cases of the strain param-
eter, corresponding to �=0, −1, −5, and −20. Negative val-
ues of � correspond to tensile strain, which favors the z
envelopes energetically, and �=−20 represents the realistic
situation of Si grown over relaxed Si0.8Ge0.2.

14

To evaluate the Hstrain terms we first need to define �=1,
2, 3, 4, 5, 6 to correspond to the z ,−z ,y ,−y ,x ,−x valleys,
respectively. Now the Hstrain terms in Eq. �5� become

�1j�
�=1

6

C1
��� � drF1

*����r��Hstrain�F1
����r�

= �1j
�
�=1

2

C1
����2�C� + �

�=3

6

C1
����− �C�� , �6�

where C=2.16 meV is used to be consistent with Koiller
et al.14

We plot the ground state electron density without any ex-
ternal strain �=0 and with strain applied �=−20 in Figs. 2–4
using Eq. �3�. Here the P nucleus is chosen to be at the origin
on a substituted Si atom site, the Bloch functions are ob-
tained using the empirical pseudopotential technique26,27,30

and the P-donor envelope functions are obtained from the

FIG. 2. Contour plot of the ground state electron density in the
yz plane for A1 state without any strain applied. Here the P nucleus
is located at the origin.

FIG. 3. Contour plot of the ground state electron density in the
yz plane with a strain parameter �=−20. Here the P nucleus is
located at the origin.
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multivalley effective mass equations. Figure 2 is a contour
plot of the ground state electron density in the yz plane for
the symmetric A1 state corresponding to zero strain, where
the contribution from all six valleys are equivalent. However
with a strain applied in the z direction, we see in Fig. 3,
where we plotted the electron density in the yz plane, the
effective Bohr radius in the z direction is reduced. This is
because with an external strain applied, the six-valley degen-
eracy of the symmetric A1 ground state is broken. This can
be seen from Eq. �6�, and the lowest energy state is the one
in which the effective Bohr radius in the direction parallel to
the strain is reduced, i.e., the F1

�±z��1S� states. In contrast in
Fig. 4, where we plotted the ground state density in the xy
plane, we see that the strain �applied in the z direction� is
equivalent in these two directions, and the effective Bohr
radii has increased.

Table I reports the energy splitting between the ground
state and first excited state for a single-donor electron for
different magnitudes of strain applied. The energy levels be-
come closer together when a strain is applied, and the ground
“A1” state is no longer degenerate in the six valleys, and we
find that the F1

�±z� valleys become more favored. This leads to
a smaller effective Bohr radius in the z direction, and larger
effective Bohr radii in the x ,y directions, which was demon-
strated already in Figs. 3 and 4.

B. Solution of the two-electron donor pair wave function

Once the single-donor orbitals are known, we are then
able to evaluate the 6D two electron Hamiltonian matrices

for both our singlet and triplet bases H2e
S and H2e

T , and the
singlet and triplet overlap matrices SS and ST. Here the 6D
two electron Hamiltonian operator is

H2e = − �anis
2 �r1� − �anis

2 �r2� −
2

�r1�
−

2

�r2�
−

2

�r1 − R�
−

2

�r2 − R�

+
2

�r1 − r2�
+ Hstrain�r1� + Hstrain�r2� .

Thus we need to evaluate both the singlet and triplet
Hamiltonian matrix elements ��1–78

S �H2e
S ��1–78

S � and
��1–66

T �H2e
T ��1–66

T �, respectively, and singlet and triplet over-
lap matrix elements S�i , j�= ��i �� j� for varying interdonor
separation and strain.

Since our basis functions �Q1

en �r� and �Q2

em�r−R� are
eigenfunctions of the single-electron Hamiltonian operator at
each donor, we use this property in evaluating the two-
electron Hamiltonian matrix elements

�− �anis
2 �r� −

2

r
+ Hstrain�r���Q1

en �r� = EQ1

en �Q1

en �r� ,

�− �anis
2 �r� −

2

r − R
+ Hstrain�r���Q2

em�r − R�

= EQ2

em�Q2

em�r − R� .

Here when we calculate the matrix elements for the sin-
glet and triplet Hamiltonian and overlap matrices, we retain
the single plane wave part eik�.r of the Bloch functions at
each minima in the expansion for the single-donor electron
wave functions, in the integrands involving these wave func-
tions. This leads to the inherent oscillations in the exchange
energy due to the intervalley interference between these
terms at the degenerate conduction band minima. We still
neglect the periodic part of the Bloch functions uk�

�r� in the
integrands. It has been shown12 that this is an excellent ap-
proximation, and it was impossible to distinguish between
the results for the exchange coupling using this approxima-
tion, and those including the detailed Bloch structure. We did
this to make the calculations more tractable over a larger
range of device parameters.

Once we derived the matrix elements for both the singlet
and triplet Hamiltonian and overlap matrices, we needed to
solve a generalized eigenvalue problem for both the singlet
and triplet case. This is because the two-electron states are
not necessarily orthogonal, since the single-electron wave
functions, �Q1

en �r� and �Q2

em�r−R�, are not orthogonal. We
have

H2ec = ESc . �7�

Here c is a vector of the coefficients of the two-electron basis
functions. To solve this we first need to compute the
Cholesky factorization for the overlap matrix S, to give S
=LL+. We did this using a standard numerical subroutine.
Once we had obtained the Cholesky factorization, we used
this to transform Eq. �7� into the standard eigenvalue prob-
lem using another subroutine

FIG. 4. Contour plot of the ground state electron density in the
xy plane with a strain parameter �=−20. Here the P nucleus is
located at the origin.

TABLE I. Energy splitting between the ground state and the first
excited state for a single-donor electron.

� E �meV�

0 11.847

−1 8.316

−5 4.383

−20 3.378
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�L−1H2e�L+�−1��L+c� = E�L+c� . �8�

Once we derived the standard eigenvalue problem, we used a
standard eigenvalue solver, to diagonalize Eq. �8� to obtain
the energies E, for the singlet and triplet states.

The most computationally expensive task in our molecu-
lar orbital calculations is the computation of the 6D two-
electron integrals in the singlet and triplet Hamiltonian ma-
trix elements. In the singlet basis this required 3081 6D
integrals to be performed, and for the triplet basis 2211 6D
integrals to be performed. We have reduced this task greatly
by only calculating the identical 6D integrals in both the
singlet and triplet bases once. This means calculating 4131
6D integrals in total. This is also a better numerical practice
as it means that when we calculate the energy splitting be-
tween the ground singlet and triplet states, �which can be
very small�, we are using the same integral evaluations to
calculate both quantities, ET and ES. Thus the exchange en-
ergy calculated J=ET−ES will be more accurate, as the same
numerical errors will be involved in both quantities.

We have also increased the efficiency and speed of our
code by modifying a standard Monte Carlo subroutine used
to numerically evaluate the 3D and 6D integrals. We did this
because the integrals all require evaluations of our single-
donor basis functions, �Q1

en �r� and �Q2

em�r−R�. We have
greatly reduced the complexity and computing time for these
calculations by evaluating these common basis functions on
a grid, before inputting these functions into the Monte Carlo
subroutine. This has provided a speedup of our calculations
of the order of 100 times.

IV. RESULTS AND DISCUSSION

A. Results using full molecular orbital calculation

We give the results for our three quantum chemical mod-
els for the two-electron states: the two H-L states, the four
H-M states, and our extended molecular orbital basis. Fig-
ures 5�a�, 6�a�, 7�a�, 8�a�, and 9�a� show a comparison of the
exchange coupling obtained using our three methods, for
varying interdonor separations, and for Q1 and Q2 located at
lattice sites. The reason why we study the exchange coupling
in more detail for R greater than 14 nm in Figs. 6�a�, 7�a�,
8�a�, and 9�a� is because separations of about at least 14 nm
are envisioned to be needed in order for metallic gates to be
placed on top of and between adjacent qubits �currently the
smallest width of the metallic gates that can be fabricated is
about 10 nm�.1 These gates provide additional tuning of the
electron density and P nuclear spin via the application of
varying voltages to them. Here we consider the interdonor
separations along the y or �010� direction only �see Fig. 1�.
This is because executing the full molecular orbital calcula-
tion is very computationally expensive. In the next section
we use the H-M method to calculate the exchange coupling
for many different orientations of Q1 and Q2 in the lattice.

We can observe that as R increases the H-L calculation is
more accurate as the two donors become further separated,
and it becomes a better approximation to treat the two donors
as a superposition of the single-electron ground state wave
functions centered at each donor. We demonstrate this in

Figs. 5�a� and 6�a� using smaller interdonor separations �R
�12 nm�, and larger interdonor separations �R�12 nm�, re-
spectively, for �=0. We found that the exchange coupling is
improved substantially for the smaller interdonor separations
using our full molecular orbital calculations. We can also see
that even if we just include the “doubly occupied” states in
our H-M calculation we get a significant improvement in the
exchange energy over H-L theory, when we compare it with
the full molecular orbital calculation.

In part �b� of Figs. 6–9 we show the exchange splitting
between the ground singlet and triplet states using the full
molecular orbital calculations. The results for the two
P-donor-pair wave functions give a two-electron ground state
of the order −98 to −100 meV for R�14 nm and �=0,
�shown in Fig. 6�b��. The energy of two isolated P atoms
should be in the order of −91 meV. When we calculate the
singlet and triplet energy levels, the 6D and 3D integrals
involve both repulsive, direct Coulomb, and attractive ex-
change integrals. We see that the attractive terms between the
exchange charges and the nuclei outweigh the repulsive
terms, and we obtain a molecular binding energy that is
deeper than the sum of the energy of the two isolated P
atoms.31 The single-donor A1 symmetry state wave functions

FIG. 5. We compare the exchange coupling at lattice sites along
the �010� or y direction for small magnitudes of R, calculated using
our three quantum chemical models in �a�: using the H-L states,
H-M states, and our extended molecular orbital basis, for zero
strain. In �b� we plot the singlet and triplet two-electron energy
levels using our extended basis. Here we only consider values of R
such that both P donors are on substitutional donor sites.
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that form the “Heitler-London” two-electron ground state,
are not spherically symmetric, and the electron density for
these orbitals are more heavily weighted along the coordi-
nate axes �see Fig. 2�. As a result, even at large interdonor
separations for 14 nm�R�18 nm �along the y direction�,
the ground state energy of the two P-donor-pair wave func-
tions is lowered by 7 to 9 meV, from that of the isolated P
atoms.

Furthermore, in part �c� of these figures, and Fig. 5�b� we
show the energy level spectrum we calculate for our two-
electron system, using our extended basis for the singlet and
triplet states. In these plots the difference between the first
set of excited energy levels cannot be resolved, so we have
included an inset which magnifies this region. For clarity, we
only plot the first eight energy levels for both the singlet and
triplet two-electron bases. An interesting feature of these sin-
glet and triplet energy levels is that the four cases of strain
give very different spectra for the higher energy levels.

FIG. 6. We compare the exchange coupling at lattice sites along
the �010� or y direction, calculated using our three quantum chemi-
cal models in �a� for R�14 nm: using the H-L states, H-M states,
and our extended molecular orbital basis, for zero strain. In �b� we
plot the ground state singlet and triplet energy separately for clarity,
and in �c� we plot the rest of the excited two-electron energy levels
using our extended basis. Here we only consider values of R such
that both P donors are on substitutional donor sites.

FIG. 7. Comparison of the exchange coupling for �=−1 in �a�
along the �010� or y direction. In �b� we plot the ground state and
triplet state energies separately for clarity, and in �c� we plot the rest
of the excited two-electron energy levels using our extended basis.
Here we only consider values of R such that both P donors are on
substitutional donor sites.
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These plots demonstrate that the ground singlet and triplet
states are well separated from the rest of the higher excited
states in Hilbert space, for all values of the strain parameter
�. This is because the ground singlet and triplet states are
formed from the symmetric and antisymmetric combinations
of the single donor ground “A1” states, which are much
lower in energy than the next excited single donor states, the
triplet T2 and doublet E states. However as � decreases this
energy gap becomes smaller as the single donor ground state

is no longer a symmetric combination of the six conduction
band states.

Table II shows the difference between the ground triplet
state and the first excited singlet state. Here the first excited
singlet state corresponds to two-electron orbitals formed us-
ing symmetric combinations of the donor electrons at both P
donors, and there is negligible contribution from the doubly
occupied orbitals. These results are in full accordance with
the single-donor results reported earlier in Table I. We can
see clearly the trend in the plots, that as the strain parameter

FIG. 8. Comparison of the exchange coupling for �=−5 in �a�
along the �010� or y direction. In �b� we plot the ground state and
triplet state energies separately for clarity, and in �c� we plot all the
singlet and triplet two-electron energy levels using our extended
basis. Here we only consider values of R such that both P donors
are on substitutional donor sites.

FIG. 9. Comparison of the exchange coupling for �=−20 in �a�
along the �010� or y direction. In �b� we plot the ground state and
triplet state energies separately for clarity, and in �c� we plot all the
singlet and triplet two-electron energy levels using our extended
basis. Here we only consider values of R such that both P donors
are on substitutional donor sites.
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decreases the energy gap becomes smaller. However these
energy gaps all remain much larger than the exchange cou-
pling between the ground singlet and triplet states, and much
higher than kBT�0.1 meV, at the cryogenic temperatures re-
quired for quantum computing. Thus we can consider that
our targeted Hilbert space, the H-L states, are well separated
from the rest of the excited Hilbert space.

Tables III and IV list the lowest set of singlet and triplet
two-electron eigenvalues and eigenvectors for �=0 and R
=7.602 and 14.118 nm, respectively, and the corresponding
single-donor basis states contributing. Similarly, Table V

shows the singlet two-electron states for �=−20. These
tables clearly show the difference in the eigenvector basis
components with and without strain applied. For R
=14.118 nm, the ground singlet state is the Heitler-London
state �43

S , which is composed of the single-donor ground
states at Q1 and Q2. But we see in Table V for �=−20 that
this single-donor ground state is no longer the six-valley de-
generate A1 symmetry state, as the strain has broken the de-
generacy of the six valleys. The lowest energy states are
when the effective Bohr radius in the direction parallel to the
strain is decreased, i.e., the single-donor F1

�±z��1S� basis
states.

For �=0 the first two singlet and triplet excited states are
nearly degenerate and these two-electron eigenstates involve
significant contributions from the single donor A1 and T2
symmetry states. Here we see in Tables III and IV that for
�=0 these two states involve the T2 states in the ±x and ±z
valleys, and are lower in energy than the next states involv-
ing the T2 states in the ±y valleys. This is because the overall
two-electron/two-nuclei coupling leads to a more stable con-
figuration when the donor electron densities are centered to-
ward each other along the interdonor axis �y axis�, i.e., the

TABLE II. Energy gap between the ground triplet state and the
first excited singlet state E �meV�.

� R=14.118 nm R=17.376 nm

0 11.822 11.808

−1 8.283 8.315

−5 4.343 4.380

−20 3.339 3.378

TABLE III. Singlet and triplet energy levels and corresponding two-electron eigenstates for R
=7.602 nm and �=0.

�=0, R=7.602 nm

Singlet energy levels

Energy �meV� Two-electron basis states One-electron states involved

−109.18685 �43
S A1

Doubly occupied �1
S /�22

S

−97.77240 �44
S /�49

S /�46
S /�61

S A1 /T2�x�
Doubly occupied �2

S /�4
S /�23

S /�25
S and A1 /T2�x�

−97.76809 �44
S /�49

S /�46
S /�61

S A1 /T2�x�
Doubly occupied �2

S /�4
S /�23

S /�25
S and A1 /T2�z�

−96.38458 �47
S /�48

S /�67
S /�73

S A1 /E

Doubly occupied �5
S /�6

S /�26
S /�27

S

−96.32310 �45
S /�55

S /�67
S /�73

S /�48
S A1, A1 /E,

Doubly occupied �3
S /�24

S /�22
S /�1

S and A1 /T2�y�
−95.94663 �43

S /�47
S /�48

S /�67
S /�73

S /�55
S

Doubly occupied A1, A1 /E,

�5
S /�6

S /�26
S /�27

S /�22
S /�1

S and A1 /T2�y�
Triplet energy levels

Energy �meV� Two-electron basis states One-electron states involved

−106.90440 �31
T A1

−97.77305 �32
T /�37

T A1 /T2�z�
Doubly occupied �1

T /�16
T

−97.76847 �34
T /�49

T A1 /T2�x�
Doubly occupied �3

T /�18
T

−96.50967 �35
T /�36

S /�55
T /�61

T A1 /E

Doubly occupied �4
T /�5

T /�19
T /�20

T

−96.19400 �33
T /�43

T A1 /T2�y�
Doubly occupied �2

T /�17
T

−95.76107 �33
T /�43

S /�55
T A1 /T2�y�

Doubly occupied �2
T /�5

T /�17
T and A1 /E
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T2�x� and T2�z� states. In contrast, Table V shows that for
�=−20 that all the higher excited states involve significant
contributions from the F1

�±z��1S� basis states. This is because
with such a large strain applied, the lowest single-donor
eigenstates are when the effective Bohr radius in the direc-
tion parallel to the strain is decreased, ie. the single-donor
F1

�±z��1S� basis states.
Tables III and IV compare the degeneracy lifting of the T

and E states for small and large interdonor separations. This
may be interesting for or relevant to the proposed optical
Raman experiments in the unstrained case.32 We find that
lowest few energy excited states are formed when A1 mixes
with either T2 or E symmetry states. For R=7.602 nm, the
two-electron A1 /E state is even lower in energy than the
A1 /T2�y� state. As we noted earlier this is because the T2�y�
state has a smaller effective Bohr radius along the interdonor
axis. The two-electron donor pair is more stable when the
electron wave functions are more centered toward each other
along the interdonor axis. For example, at the energies cor-
responding to the states containing the E one-electron sym-
metry states, the two-electron wave functions are very mixed

and we are no longer able to assign the energy levels to pure
basis states.

For the smaller donor separation with �=0, and with a
strain applied, the two-electron wave functions contain sig-
nificant contributions from the doubly occupied orbitals. This
study shows that these doubly occupied states are important
basis functions to include. We have improved upon a previ-
ous study32 where only H-L type orbitals were considered.
Because we use an extended basis which includes both dou-
bly occupied and H-L type two-electron orbitals, we find that
the two-electron wave functions are often mixed states.

The two-electron energies given in Table V and plotted in
Figs. 7 and 9 are not scaled so that the conduction band
bottom is at zero energy. We evaluated relative energy shifts
using the valley strain parameter � for the single-donor strain
Hamiltonian matrix and neglected any shift proportional to
identity in it, to be consistent with the calculations of Koiller
et al.14 Therefore, the calculated energies do not refer to the
zero energy to be at the bottom of the conduction band. But
the energy eigenvalues shown in Table V and Figs. 7–9 give
the correct relative splitting among the eigenstates.

Even just considering the four H-M states in our two-
electron basis, gives an exchange energy which is very close
to the extended basis calculation. For the range of device
parameters we consider, the H-M calculation is the most con-
venient method to use since it is relatively inexpensive and
very accurate. For this reason we use this method exclusively
in the next section to obtain accurate results expediently and
rapidly.

B. Results using Hund-Mulliken basis

In Fig. 10�a� we show the H-M calculation for the ex-
change energy for a range of interdonor separations along the
�010� direction to compare with the previous section. This
plot demonstrates the oscillations in the exchange energy due
to the intervalley interference between the degenerate con-
duction band minima. This oscillatory nature of the exchange
coupling has already been reported by Wellard et al.12 and
Koiller et al.14,15 using a H-L calculation. We have improved
upon and checked the H-L approximation, by extending our
basis to include the H-M states, and found that the H-M basis
offers some improvement for the close interdonor separa-
tions, and also allows us to calculate the ground state double

TABLE V. Singlet energy levels and corresponding two-electron
eigenstates for R=14.118 nm and �=−20.

�=−20, R=14.118 nm

Energy
�meV�

Two-electron
basis states

One-electron
states involved

−255.87009 �43
S ��F1

�z��1S�+F1
�−z��1S�� /�2

−252.49159 �44
S /�49

S �F1
�−z��1S�

−252.45132 �44
S /�49

S �F1
�z��1S�

−249.11343 �50
S ��F1

�z��1S�−F1
�−z��1S�� /�2

−225.97320 �1
S /�22

S Doubly occupied

−225.82787 �1
S /�22

S �F1
�z��1S�+F1

�−z��1S�� /2

TABLE IV. Singlet and triplet energy levels and corresponding
two-electron eigenstates for R=14.118 nm and �=0.

�=0, R=14.118 nm

Singlet energy levels

Energy
�meV�

Two-electron
basis states

One-electron
states involved

−99.98734 �43
S A1

−88.14626 �46
S /�61

S A1 /T2�x�
−88.14312 �44

S /�49
S A1 /T2�z�

−88.12780 �45
S /�55

S A1 /T2�y�
−88.12567 �45

S /�55
S

−88.11610 �44
S /�46

S /�49
S /�61

S A1 /T2�z�
−88.11399 �44

S /�46
S /�49

S /�61
S and A1 /T2�x�

−86.83179 �48
S /�67

S /�73
S A1 /E

−86.82667 �47
S /�48

S /�67
S /�73

S

−86.82358 �47
S /�48

S /�67
S

−86.80250 �47
S /�48

S /�67
S /�73

S

Triplet energy levels

Energy
�meV�

Two-electron
basis states

One-electron
states involved

−99.96806 �31
T A1

−88.14459 �34
T /�49

T A1 /T2�x�
−88.14316 �32

T /�37
T A1 /T2�z�

−88.12656 �33
T /�43

T A1 /T2�y�
−88.12504 �33

T /�43
T

−88.11693 �34
T /�49

T A1 /T2�x�
−88.11485 �32

T /�37
T A1 /T2�z�

−86.83227 �35
T /�36

T /�55
T /�61

T A1 /E

−86.81847 �35
T /�36

T /�55
T /�61

T

−86.79819 �35
T /�36

T /�55
T /�61

T

−86.79310 �35
T /�36

T /�55
T /�61

T
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occupancy probability of both electrons on the same donor.
We observe that for the zero strain case the oscillations in

the exchange are the most conspicuous, as the inter-valley
interference is highest, because there are equal contributions
from all six valleys in the ground singlet and triplet states.
However, when a strain is applied in the z direction, we find
that the ±z valleys are favored energetically �see Fig. 3�,
which implies a larger effective Bohr radius along the inter-
donor axis �y�, and hence the exchange coupling is improved
substantially for this particular orientation of the P-donor
atoms along the �010� axis.14

In addition to calculating the variation of the exchange
coupling with interdonor separation in Fig. 10, we also cal-
culated the probability of the ground state double occupation
of the H-M singlet states ��1

S and �22
S � in Fig. 10�b�.16 The

exchange coupling with only the H-M states, matches the
exchange coupling with the full spectrum of states very ac-
curately. Thus, based on this we expect that the most appre-
ciable contribution of the doubly occupied states will be
from the H-M doubly occupied singlet states in our basis,
which is why we only report the double occupancy probabil-
ity of these states.

This double occupation probability is also an important
parameter for quantum gate operations using electron spins
as qubits. For nonzero exchange coupling the spin degrees of

freedom are also correlated with the orbital motion, and there
is some probability that both electrons will be on the same
donor.19 These doubly occupied states are not part of the
targeted computational space, and as such, are a potential
source of leakage error in solid-state quantum computers.
These plots show that as the strain parameter decreases, �and
the effective Bohr radii in the x and y directions increases�,
this double occupancy probability increases as one may ex-
pect.

Schliemann et al.18 showed that gate operations on
coupled quantum dot pairs which temporarily increase the
exchange splitting, in order to swap electronic spins, inevi-
tably lead to a finite double occupancy probability for both
dots. However they showed that this double occupancy am-
plitude does not lead to significant errors in quantum com-
puting, provided that after the gate action is completed, the
double occupancy probability is vanishingly small. But if the
double occupancy probability occurs to any sizable extent
before or as a result of the gating action, then any quantum
computer based on this hardware is likely to fail. Thus for
the fabrication of these devices we want to minimize the
double occupation probability for all states at zero voltage.

The exchange coupling increases consequently with a
uniaxial strain applied in a direction perpendicular to the
inter-donor axis, which achieves faster gating times. How-
ever, the double occupancy probability also increases corre-
spondingly, which increases the error requirement subse-
quently. In the last section we saw that both these features
also lead to a greater mixing of the ground state with the
higher excited states, which causes the energy levels to be-
come closer together. This energy splitting between the tar-
geted H-L orbitals and the rest of the excited two-electron
states informs us if during the gating action, the coupled
donor system is well isolated and the higher excited states
can be safely neglected. This can also give us an estimate for
gating times, so that the gating operation remains adiabatic.

In Fig. 11 we plot the four two-electron energy levels
predicted using our H-M basis, in order to compare with our
more rigorous evaluation of the higher excited states in Figs.
6�b�, 6�c�, 9�b�, and 9�c�. The insets in these plots magnify
the splitting between the energy levels. The bottom inset in
both plots corresponds to the ground state singlet and triplet
energy levels, and compares favorably with the results
shown for this splitting using the molecular orbital basis, in
Figs. 6�b� and 9�b� for R�14 nm.

We observe that although the H-M basis provides an ad-
equate description of the ground singlet and triplet “H-L”
states and exchange coupling, it is unable to predict the
higher energy levels accurately. This is because as we re-
ported earlier in Table IV, using our full molecular orbital
calculations, the first excited singlet state does not include
significant contributions from the doubly occupied H-M sin-
glet basis states. This leads to an erroneously large energy
splitting between the targeted ground “H-L” orbitals and the
higher excited states.

Furthermore we also investigated the variation of the ex-
change coupling for Q1 and Q2 displaced at small distances
away from a targeted interdonor separation along the �010�
or y axis. In these calculations we fixed the magnitude of the
interdonor separation to be 14 nm, and varied the two angu-
lar variables � and � defined in Fig. 12.

FIG. 10. Comparison of the Hund-Mulliken exchange coupling
for different values of strain parameter � for R in the �010� or y
direction. We also plot the strain dependence of the double occu-
pancy probability in �b�.
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The results presented earlier in this section show the ex-
change coupling for varying magnitudes of R only along the
y axis. When the interdonor separation contains nonzero Rx,
Ry, and Rz terms, we see a marked difference from the rela-
tive smoothness of the exchange coupling curves with only a
nonzero Ry term.

We show the exchange coupling for �R�=14 nm and �
=0 and −20, for varying � and � in Fig. 13. The intervalley
interference causing the wild oscillations in J�R� is highest
when the interdonor separation contains all nonzero Rx, Ry,
and Rz terms �i.e., in Fig. 13�c� where both � and � are
varied�. Similar results have already been reported12,14 using
the H-L theory, and we have confirmed these results using
our more extensive H-M basis.

For �=−20 we see that the exchange coupling changes
dramatically for nonzero Rz parts in Fig. 13 �i.e., when �
varies�. This is because for �=−20 the intervalley interfer-
ence terms come only from the ±z valleys, as the single-
donor ground state orbitals favor the F±z valleys.14

If we study the exchange coupling closely we can identify
where the peaks and troughs occur in the exchange coupling
as a function of � or �. For example, if we examine Fig.
13�a� we can identify where the peaks and troughs occur for
�=0. In calculating the two-electron Hamiltonian matrix and
overlap matrix elements, we find that several of the integrals
involving �Q2

en �r−R� in the integrand, have a common factor
of ei�k�−k��·R, in the sum over k� and k�.

In Fig. 13�a�, we are varying R in the xy plane, and con-
sider R= �Rx ,Ry ,0�, where Rx=14 cos � and Ry =14 sin �,
and 3� /8���5� /8. We recognize that for the range of �
we consider, Ry does not vary as much as Rx, and Rx ranges
over both positive and negative values. Thus we found that
Rx is the most significant factor in determining the peaks and
troughs for this plot.

In the simplest case when �=� /2 and Rx=0, and R
= �0,14,0�, there is a peak in the exchange coupling. We find
that this is due to the fact that the real part of ei�k�−k��·R is the
maximum value of 1, for 18 out of the 36 possible combina-
tions of k� and k�. Similarly we observe peaks in the ex-
change coupling when Rx= ±ma0 /k, where m is any integer,
and k=0.85. If k�= ±kx= ± �k ,0 ,0�2� /a0, we find the real
part of e±ikx·R equals 1. Again we find that the real part of
ei�k�−k��.R is 1 for 18 out of the 36 possible combinations of
k� and k�.

It is difficult to determine the magnitude of the peaks in
the exchange coupling, because this magnitude also depends
on terms involving e±iky·R=e±i�2�kRy�/a0

which is a compli-
cated function of Ry and �. However in general we observe
local maxima at values of � for which Rx= ±ma0 /k, where m
is any integer.

Conversely we find troughs in the exchange coupling oc-
curring at values of � for which Rx= ±ma0 / �2k�, where m is
an odd integer. Here we find that the real part of ei�k�−k��·R is
1 for 10 out of the 36 possible combinations of k� and k�,
and −1 for 8 of the remaining combinations. Thus at these
values of � we observe local minima in the exchange cou-
pling. Because we are only able to evaluate the exchange
coupling at finite grid points, the peaks and troughs were best
matched to the data points available, thus enabling us to
identify these trends.

For �=−20 in Fig. 13�a� we find that the exchange cou-
pling is relatively constant. This is because for �=−20 the
dominant contributions in the ground state come from the
two ±kz valleys, and only very small contributions from the
other four valleys. Thus when R= �Rx ,Ry ,0�, the real part of
e±ikz·R is 1 for all the combinations of ±kz, and since the
ground state has its largest components only in the ±kz val-
leys, the exchange coupling is maximized and almost con-
stant, for this orientation. The small fluctuations in the ex-
change coupling are most likely due to the fact there may be
small contributions from the other four conduction band
minima, which oscillate as a function of � as we saw earlier.
In Figs. 13�b� and 13�c� of this figure we observe that when
R contains nonzero Rz part, the exchange coupling may os-

FIG. 12. We evaluate the exchange coupling for fixed �R�
=14 nm and small displacements of Q2, about the targeted inter-
donor separation of R= �0,14 nm,0�, by varying � and � in our
calculations.

FIG. 11. Plot of the three singlet and one triplet energy levels
calculated with the H-M basis, for �=0 in �a� and �=−20 in �b�.
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cillate even more wildly for �=−20, as a result of the inter-
valley interference from only the two conduction band
minima ±kz.

V. CONCLUSIONS AND FUTURE DIRECTIONS

It is imperative to know precisely the single-electron
wave function and two-electron states to determine accu-

rately the parameter regime necessary for a nuclear spin or
electron spin quantum computer. In this paper we provide
detailed electronic structure calculations using a molecular
orbital method, for a pair of P-donor electrons in relaxed and
uniaxially strained Si.

We have determined the excitation spectrum of two elec-
trons on P donors in relaxed and strained Si, and studied its
dependence on donor positioning in the Si lattice. In particu-
lar, we concentrated on the targeted ground state singlet and
triplet “H-L” orbitals, and examined the isolation of these
ground states, from the rest of the excited Hilbert space.
Furthermore we calculated the exchange coupling and
double occupancy probability as a function of strain and do-
nor position.

Both the exchange splitting and double occupancy prob-
ability have a similar dependence on interdonor distance and
lattice positioning of the P atoms. Thus, a compromise is
needed to maintain a very small double occupancy probabil-
ity in zero field, while realizing a sizable exchange coupling
during a gating action. In unison with previous theoretical
studies of the exchange coupling of P donors in relaxed and
strained Si,12,14,15 we found that the exchange coupling, �and
thus double occupancy probability�, is extremely sensitive to
the relative orientation of the two P donors in the Si lattice.
However, the energy level spectrum appears not to be af-
fected by the relative orientation of the P donors, as these
energies are on a much larger scale than the exchange cou-
pling.

The oscillations in the exchange coupling due to interval-
ley interference, have serious implications for any quantum
computer architecture that relies on the exchange interaction
to couple qubits. This sensitivity can be reduced in the pres-
ence of strain, for displacements of the donors within the
plane perpendicular to the direction of the uniaxial strain. We
have also identified the values of R that lead to the peaks and
troughs in the exchange coupling.

It would be useful to investigate the effect of an applied
voltage on these oscillations, to examine the exchange cou-
pling during and after a gate operation, to determine what
device parameters are required for fault-tolerant quantum
computation. It is also important to study if the gating action
can be performed adiabatically, i.e., if during the evolution of
the two-electron system there remains a finite gap between
the ground and excited states.17

Wellard et al.13 have extended these calculations to in-
clude the voltage dependence of the exchange coupling
within the Heitler-London framework. We hope to develop
their results further by using our extended basis to calculate
the voltage dependence of not only the exchange coupling,
but also the energy spectrum of the two-electron system, and
double occupancy probability of the ground states. The en-
ergy spectrum informs us if during the gating action, the
coupled donor system is well isolated, and the higher excited
states can be safely neglected. In addition, the double occu-
pancy probability gives us an estimate of the error rate. How-
ever, including the electric field is a very computationally
intensive task, as it requires evaluating the basis functions on
our grid, over a much greater range of device parameters,
which is by far the most time consuming part for our calcu-
lations.

FIG. 13. Plot of the H-M exchange coupling for �R�=14 nm and
�=0 and −20. In �a� we calculate J�R� in the xy plane, where
3� /8���5� /8. In �b� we calculate J�R� in the yz plane, where
3� /8���5� /8. In �c� we calculate J�R� in the �111� plane,
where 3� /8�� ,��5� /8. Here the marked points correspond to
actual data points evaluated using the H-M method, the lines drawn
are a guide for the reader only.
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The results presented here using effective mass theory
provide a solid foundation for future device modeling. On-
going work on this project is focusing on extending the mul-
tivalley calculations to investigate the effect of gate voltage
on the oscillations in the exchange coupling. One would ex-
pect that as the gate voltage is turned on, it will become more
favorable for the donor wave function to distort toward the
gate. As a result, the donor wave function no longer has
equal contributions from all six valleys, and the oscillations
may smooth out as the intervalley interference effects de-
crease. We will need to implement the full molecular orbital
approach to obtain the higher excited two-electron states ac-
curately. Thus using this method we gain insight not only
into the exchange coupling and double occupancy probabil-
ity, but also the conditions required to perform adiabatic gate
operations. To make these calculations more tractable, we
envisage that the Hund-Mulliken basis should suffice in cal-
culating the exchange coupling over a greater range of de-

vice parameters, as we have shown here that this is the best
compromise between accuracy and speed.
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