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[1] Predictions of water table fluctuations in coastal aquifers are needed for numerous
coastal and water resources engineering problems. Most previous investigations have been
based on the Boussinesq equation for the case of a vertical beach. In this note an analytical
solution based on shallow water expansion for the spring-neap tide-induced water table
fluctuations in a coastal aquifer is presented. Unlike most previous investigations,
multitidal signals are considered with a sloping coastal aquifer. The new solution is
verified by comparing with field observations from Ardeer, Scotland. On the basis of the
analytical approximation the influences of higher-order components on water table
elevation are examined first. Then, a parametric study has been performed to investigate
the effects of the amplitude ratio (l), frequency ratio (w), and phases (d1 and d2) on the
tide-induced water table fluctuations in a sloping sandy beach.
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1. Introduction

[2] Tidal dynamics in coastal aquifers plays a role in
numerous environmental issues in coastal and estuarine areas,
such as saltwater intrusion, contaminant transformation and
migration, control of erosion and biological activities [Cheng
and Ouazar, 2004]. Numerous analytical solutions for mod-
eling of tide-induced groundwater fluctuations are available,
which take into account the effect of the vertical beach,
sloping beach, aquifer leakage, density differences and vary-
ing tidal signal along the estuary [e.g.,Nielsen, 1990; Li et al.,
2000a; Teo et al., 2003]. Most analytical solutions are based
on the assumption of monochromatic tides, which may over
simplify the tidal wave conditions. In reality, tides are more
complicated and often bichromatic, containing oscillations of
at least two different frequencies. For example, in Ardeer,
Scotland, a semidiurnal solar tide has periodT1 = 12 hours and
frequency w1 = 0.5236 rad/h, while T2 = 12.42 hours and w2 =
0.5059 rad/h for a semidiurnal lunar tide (X. Mao et al., Tidal
influence on behaviour of a coastal aquifer adjacent to a low-
relief estuary, submitted to Journal of Hydrology, 2005,
hereinafter referred to as Mao et al., submitted manuscript,
2005). As a result, the spring-neap cycle (i.e., the tidal
envelope) is formed with a longer period, Tsn = 2p/(w1 �
w2) = 14.78 days. The nonlinear propagation of the bichro-
matic tides in the aquifer results in low-frequency water table
fluctuations over the spring-neap period, as has been mea-
sured in the field by Raubenheimer et al. [1999] and demon-

strated mathematically by Li et al. [2000b]. These low-
frequency water table fluctuations, called spring-neap tidal
water table fluctuations hereafter, propagated much further
inland than the primary tidal signals (i.e., diurnal and semi-
diurnal tides). Such fluctuations have been analyzed recently
[Li et al., 2000b; Su et al., 2003], with results demonstrating
the effects of interacting tidal components. However, these
results were based on only the zeroth-order shallow water
expansion, i.e., the Bouniessq equation, which may be
insufficient for some tidal conditions [Teo et al., 2003].
[3] The objective of this note is to extend these results by

deriving an analytical solution for spring-neap tide-induced
water table fluctuations in a sloping sandy beach, based on a
higher-order shallow water expansion. The proposed ana-
lytical solution will be compared briefly with field obser-
vations from Adreer, Scotland (Mao et al., submitted
manuscript, 2005), and previous analytical solution based
on Boussinesq equation [Li et al., 2000b]. Then a paramet-
ric study to investigate the influence of amplitude ratio,
frequency ratio and phases is conducted.

2. Theoretical Formulation

2.1. Analytical Solution

[4] In this study, the flow is assumed to be homogeneous
and incompressible in a rigid porous medium. The config-
uration of the groundwater flow in the coastal aquifer is
shown in Figure 1. In Figure 1, h(x, t) is the total tide-
induced water table height, D is the thickness of the aquifer
and b is the beach slope. Seepage face effects are ignored.
Since the fluid is incompressible, the free surface flow of
groundwater satisfies the conservation of mass, leading to
Laplace’s equation [e.g., Bear, 1972]:
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¼ 0; ð1Þ

where f is the potential head.
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[5] Equation (1) is to be solved subject to the following
boundary conditions,

@f
@z

¼ 0; at z ¼ 0; ð2aÞ

f ¼ h; at z ¼ h; ð2bÞ
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; at z ¼ h; ð2cÞ

h x0; tð Þ ¼ Dþ A1 cos w1t þ d1ð Þ þ A2 cos w2t þ d2ð Þ
at x0 ¼ A1 cos w1t þ d1ð Þ þ A2 cos w2t þ d2ð Þ½ � cot b; ð2dÞ
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Note that the soil properties are defined by the soil porosity
(ne) and hydraulic conductivity (K).
[6] Following Teo et al. [2003], the tide-induced water

table fluctuation can be expressed as

h x; tð Þ ¼ D 1þ aH01 þ a2H02

� ��
þ e aH11 þ a2H12

� �
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�
;
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where e =

ffiffiffiffiffiffiffiffiffiffiffiffiffi
new1D

2K

r
is the shallow water parameter and

a =
A1

D
is the amplitude parameter. Detailed derivation

of the analytical solutions and Hij coefficients are
available in the auxiliary material.1

2.2. Comparisons With Field Data

[7] To test the analytical solutions, field data of water
table fluctuations at Ardeer, Scotland, are used as an
example. Ardeer is a former industrial site containing a
substantial waste deposit. The low-relief estuary adjacent to
the site has a mildly sloping sandy beach. Between low and

high tide the beach length varies by 180 m. Field monitor-
ing was conducted to characterize the tidal influence on the
groundwater dynamics and contaminant migration as well
as the saltwater intrusion. Detailed information on the field
observations is available elsewhere (Mao et al., submitted
manuscript, 2005).
[8] Analysis on tidal signals shows that the fluctuation

amplitude decreases exponentially with distance from the
estuary, accompanied by a phase lag, as has been shown by
the FFT analysis of the observed data (Mao et al., submitted
manuscript, 2005). FFT analyses of the estuarine tides have
shown the dominant frequencies are M2, S2 and O1. To
simplify the analytical solution, we only considered M2 and
S2 components. The fitted expression modeling the estua-
rine tides is

h x; tð Þ ¼ Dþ 1:1745 cos w1t � 1:6676þ p
2

� �
þ 0:08 cos


 w2t � 1:3377þ p
2

� �
; ð4Þ

where h is measured in meters, w1 = 2p/0.52 rad/d and w2 =
4p rad/d.

Figure 1. Sketch of tidal dynamics in coastal aquifers.

Figure 2. Comparison of analytical solution with field
data. See color version of this figure in the HTML.

1Auxiliary material is available at ftp://ftp.agu.org/apend/wr/
2005WR003945.

2 of 4

W07026 JENG ET AL.: TECHNICAL NOTE W07026



[9] The calculated groundwater table fluctuation based
on the analytical solution with the above estuarine tide is
shown in Figure 2 where the damping of the amplitude is
compared against observed data. In the development of
the analytical solutions, we assume the coastal aquifer is
homogeneous with a uniformly sloped beach. However,
the real aquifer is multilayered and inhomogeneous in
both vertical and horizontal direction near the intersection
of the ocean and the aquifer. It has been reported that
inhomogeneity will affect water table fluctuations [Trefry,
1999]. Furthermore, the variations of beach slope are
expected to affect the water table level, but no solution
is available yet. In addition, seepage face effects have
been ignored. Finally, we consider two main frequencies
of tidal waves (M2 and S2) in equation (4), based on
FFT analysis. The inclusions of other tidal components
may improve the prediction of the analytical solutions.

3. Results and Discussions

[10] The major difference between the present solution
and previous solution [Li et al., 2000b] is the higher-order
component. It is of interesting to examine the effects of
higher-order component here. The input data for the com-
parison are listed in Table 1. As seen in Figure 3, the
previous solution [Li et al., 2000b] overestimates the water
table elevation.

[11] As shown in analytical solutions presented in
section 2, numerous parameters are involved in the
solutions. The objective of this parametric study is to
investigate three parameters. These are (1) amplitude ratio
(l = A2/A1), (2) frequency ratio (w = w2/w1), and
(3) phases (d1 and d2). Although spring-neap tides nor-
mally have the frequencies ration (w) close to unity, the
variation of frequency ration (w) is also considered here
for the general applications of other cases rather than
limited to spring-neap tides. Recently, Li et al. [2000b]
discussed part of the above parameters briefly based on
Boussinesq equation, it is worthwhile to reexamine the
effects of eth above parameters with the new solution
presented in section 2. The input data of numerical
examples are given in Table 1.
[12] The amplitude ratio (l) is the ratio of the amplitudes

of two tidal components (A2/A1). Here we allow l to vary

Figure 3. Effects of higher-order components on water
table fluctuations in coastal aquifers (solid line is from the
present solution, and dashed line is from Li et al. [2000b]).
X1 = 2, l = 0.5, w = 0.5, and (d1, d2) = (0, 0). See color
version of this figure in the HTML.

Table 1. Input Data for Figures 3–6

Parameter Value

Soil porosity ne 0.22
Hydraulic conductivity K, m/d 50
Slope of the beach b, rad 0.02
Thickness of aquifer D, m 5
Amplitude of the first tidal wave A1, m 2
Frequency of the first tidal wave w1 4p
Amplitude parameter e 0.372
Shallow water parameter a 0.2

Figure 4. Effects of amplitude ratio (l) on water table
fluctuations in coastal aquifers. Here w = 0.5, and (d1, d2) =
(0, 0), t = 0. See color version of this figure in the HTML.

Figure 5. Effects of frequency ratio (w) on water table
fluctuations in coastal aquifers. Here l = 0.5 and (d1, d2) =
(0, 0), t = 0. See color version of this figure in the HTML.

W07026 JENG ET AL.: TECHNICAL NOTE

3 of 4

W07026



from zero (0) to unity (1). l = 0 represents the case without
the second tidal component, which is the case reported by
Teo et al. [2003], while l = 1 represents the case of equal
weight of two tidal signals.
[13] Figure 4 illustrates the effects of the amplitude ratio

(l) on the tide-induced water table height above the mean
thickness of aquifer at T = 0, i.e., H � 1 = (h � D)/D. As
shown in Figure 4, the water table height increases as the
amplitude ratio (l) increases, i.e., it increases as the ampli-
tude of the second tidal signal increases.
[14] Besides the amplitude ratio (l), the frequency ratio

(w) is another factor, which may affect the tide-induced
water table fluctuations. The distribution of water table
heights versus the horizontal distances (X) for various
values of frequency ratio (w) is presented in Figure 5. As
shown in Figure 5, the water table height decreases as w
increases when X < 1.8. When X increases (X > 1.8), the
influence of w perform an irregular trend, which may
require more advanced theories.
[15] Another major difference between the previous

solution [Teo et al., 2003] and the present solution is
the phase differences between two tidal signals. Figure 6
illustrates the effects of phase differences of two tidal
components on the tide-induced water table heights. To
see the influence of phase difference, we fix d1 = 0, and
vary d2 from zero (0) to p. Generally speaking, the phase
difference significantly affects the water table height. For

example, the water table height decreases as d2-d1
increases.

4. Conclusions

[16] In this note, an analytical solution up to the second-
order shallow water expansion for spring-neap tides-
induced water table fluctuations in a sloping coastal aquifer
has been derived. The analytical solution was verified by
the field observation in Ardeer, Scotland. A parametric
study indicates that the amplitude ratio, frequency ratio
and phase differences significantly affect the water table
elevations in a sloping coastal aquifer.
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Figure 6. Effects of phases (d1 and d2) on water table
fluctuations in coastal aquifers. Here l = 0.5, w = 0.5, t = 0.
See color version of this figure in the HTML.
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