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We perform a quantum-mechanical analysis of the pendular cavity, using the positive-P representation,
showing that the quantum state of the moving mirror, a macroscopic object, has noticeable effects on the
dynamics. This system has previously been proposed as a candidate for the quantum-limited measurement of
small displacements of the mirror due to radiation pressure, for the production of states with entanglement
between the mirror and the field, and even for superposition states of the mirror. However, when we treat the
oscillating mirror quantum mechanically, we find that it always oscillates, has no stationary steady state, and
exhibits uncertainties in position and momentum which are typically larger than the mean values. This means
that previous linearized fluctuation analyses which have been used to predict these highly quantum states are
of limited use. We find that the achievable accuracy in measurement is far worse than the standard quantum
limit due to thermal noise, which, for typical experimental parameters, is overwhelming even at 2 mK
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I. INTRODUCTION

The pendular cavity, or Fabry-Perot cavity in which one
of the mirrors is free to oscillate, has previously been inves-
tigated by a number of researchers, both experimentally
[1–3] and theoretically[4–13]. Closely related schemes have
been theoretically proposed to entangle mirrors[14] and cre-
ate superposition states of a mirror[15]. Common to almost
all the theoretical treatments is a linearization of quantum
Langevin equations around their classical steady-state solu-
tions [16]. This then allows for the relatively simple calcula-
tion of spectral quantities which may be measured outside
the cavity. Results obtained in this way have been used to
analyze the sensitivity of gravity wave interferometers[17],
predict the suppression of quantum noise[4,5], propose
quantum nondemolition measurements of photon number
[6], analyze the quantum limits to measurements with an
atomic force microscope[7], analyze the quantum noise in
position measurements of the oscillating mirror[9], calculate
the phase noise in the cavity field[11], predict the entangle-
ment of macroscopic oscillators via radiation pressure[14],
and propose the quantum locking of interferometer mirrors
[13]. Using the state-vector approach so common in quantum
computing theory, it has been proposed that quantum super-
positions, entanglement, and near-number states of the cavity
field, along with superposition states of the mirror, can be
produced with this system[8]. Using a similar state-vector
approach, it has been proposed that quantum superpositions
of a mirror may be created by the interaction with a single
photon[15].

It is well known that the linearized fluctuation analysis
used in the majority of the theoretical papers cited above is
limited in its applicability. It has been shown, for example,
that the mean-field equations derived in this way can give
misleading results for traveling-wave second harmonic gen-
eration [18–20] and for the intracavity interaction between

light and condensed atoms[21–23] as well as in Raman pho-
toassociation of atomic Bose-Einstein condensates[24–27].
The spectra calculated via this method are also known to not
be accurate near any critical points of the system, as has been
shown with the optical parametric oscillator[28,29]. There
are two conditions which must be fulfilled for a linearized
analysis to be trustworthy. The first has to do with the sign of
the real part of the eigenvalues of the drift matrix of the
equations written for the fluctuations; if these have the wrong
sign the fluctuations can grow exponentially and the analysis
loses its validity. The second has to do with the size of the
fluctuations themselves, in relation to the classical steady-
state values. As we will show, this second condition is not
fulfilled for this system, as the quantum state of the mirror, or
more accurately, of the mirror phonons, is reasonably ex-
pected to be thermal. A characteristic of a thermal state is
that the variance is larger than the mean value, which there-
fore makes any expression of the mirror phonons as having
some well-defined classical mean value plus small fluctua-
tions rather dubious. Even though cooling of the mirror via
feedback mechanisms has been achieved[30], and analyzed
theoretically[31], due to the nature of the coupling between
the electromagnetic field and the mirror phonons, it seems
that all that can be achieved is a thermal state at a lower
temperature, so that the problem remains.

To treat the macroscopic mirror quantum mechanically we
will begin with the Hamiltonian approach of Law[32], in the
approximation that only a single optical mode is important,
and extended to include cavity pumping and damping. To
treat the fluctuations of the mirror which result from its cou-
pling to a thermal reservoir, we will use the Brownian mo-
tion master equation developed by Diósi[33], which is suit-
able for the temperatures we will consider here. Following a
common procedure in quantum optics[34], we will develop
a Fokker-Planck equation in the positive-P representation
[35]. This Fokker-Planck equation allows us to write stochas-
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tic differential equations which are an exact mapping from
the system master equation, and which can be used to calcu-
late any desired normally ordered operator moments.

II. SYSTEM AND HAMILTONIAN

We consider a system of a pumped Fabry-Perot cavity in
which one of the mirrors is free to undergo oscillatory mo-
tion due to both the light pressure and thermal fluctuations.
We use the standard annihilationâ and creation,â† operators
for the electromagnetic field, and the operatorsx̂ and p̂ for
the displacement from the equilibrium position and the mo-
mentum of the mirror, which will be treated as a harmonic
oscillator. Neglecting the coupling of the mirror to its bath
for the moment, we can write the Hamiltonian as

Ĥ = Ĥfree+ Ĥint + Ĥpump+ Ĥbath, s1d

where

Ĥfree= "v0â
†â +

1

2m
p̂2 +

1

2
mvm

2 x̂2,

Ĥint = − "gâ†âx̂,

Ĥpump= i"esâ†eiv0t − âe−iv0td,

Ĥbath= Gâ† + G†â. s2d

In the above,v0 is the field frequency,e represents the clas-
sical real pump,m is the mass of the mirror,vm is the mirror
oscillation frequency, andg=v0/L is the coupling between
the mirror and the cavity field, withL being the length of the
cavity. TheG’s represent optical bath operators. The damping
of the mirror, which we will treat as Markovian, will be
included at the next step.

We now wish to write a master equation for the density
matrix of our combined system in a frame rotating atv0. To
do this, we will make two different, but consistent approxi-
mations for the damping of the cavity and the mirror. The
cavity reservoir will be considered to be at zero temperature,
which is consistent with the very high temperatures neces-
sary to produce thermal photons at the frequencies involved.
The mirror reservoir will be treated as being at a finite tem-
perature, which is necessary because of the number of ther-
mal phonons which will be present in the system. As the
temperatures required to create these respective excitations
differ by many orders of magnitude, these approximations
are not contradictory. This process gives us

i"
]r̂

]t
= fĤ,r̂g + L̂r̂

= F 1

2m
p̂2 +

1

2
mvm

2 x̂2 − "gâ†âx̂ − i"esâ − â†d,r̂G
+ i"gs2âr̂â† − â†âr̂ − r̂â†âd + Dmr̂, s3d

whereg represents the loss rate through the fixed mirror and

Dmr̂ represents the mirror damping, using the Brownian mo-
tion master equation developed by Diósi[33],

Dmr̂ = gmfx̂,hp̂,r̂jg −
i"gm

2ldB
2 †x̂,fx̂,r̂g‡ −

ikgmldB
2

"
†p̂,fp̂,r̂g‡.

s4d

In the above,gm is the mirror damping rate, which depends
on temperature through the mechanical quality factor,ldB

=" /Î4mkBT, the thermal de Broglie wavelength of the mir-
ror, with kB Boltzmann’s constant andT the temperature.k is
a numerical factor which must be greater than 1 for this
master equation to be of the Lindblad form, but is not im-
portant here as it leads to terms of the order"vm/kBT, which
we will show to be insignificant at the temperatures we con-
sider.

III. EXPANSION OF THE MIRROR
IN COHERENT STATES

Rather than writing the Heisenberg equations of motion,
which are difficult to solve, we will make use of the original
definition [34] of the annihilation and creation operators in
terms ofx̂ andp̂ and develop stochastic differential equations
in the positive-P representation[35]. This allows us to use
c-number equations which describe all the quantum proper-
ties of the mirror dynamics contained in the original master
equation. We will describe the operatorsx̂ and p̂, in terms of

the operatorsb̂ and b̂†, where

x̂ = Asb̂ + b̂†d, p̂ = Bsb̂ − b̂†d, s5d

with

A =Î "

2mvm
, B = − iÎ"mvm

2
, s6d

andfb̂,b̂†g=1. Writing the equations using these variables is
advantageous because it allows us to automatically define a
P-representation of the density matrix in terms of an expan-
sion in the minimum uncertainty(coherent) statesubl, de-

fined asb̂ubl=bubl. It also means that the mirror quadrature
variances have a coherent state or vacuum value of 1, the
same as for the electromagnetic field. In fact,A and uBu rep-
resent the standard quantum limits(SQL’s) for measure-
mentof the mirror position and momentum, respectively. We
note that these phonon annihilation and creation operators
have previously been used to describe the mirror, but not in
the context of developing phase-space representation sto-
chastic differential equations[8,36,37].

In terms of these new variables, the master equation for
the mirror damping is now written as

Dmr̂ = gmABfb̂ + b̂†,hb̂ − b̂†,r̂jg −
i"gmA2

2ldB
2 †b̂ + b̂†,fb̂ + b̂†,r̂g‡

−
ikgmldB

2

"
B2
†b̂ − b̂†,fb̂ − b̂†,r̂g‡. s7d
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IV. STOCHASTIC EQUATIONS

Using the well-known operator correspondences for theP representation[34], we may map the master equation onto a
partial differential equation for theP function of the system,

dP

dt
= X− F ]

]a
se − ga + igAafb + b * gd +

]

]a*
se * − ga * − igAa * fb + b * gd +

]

]b
s− ivmb + igAuau2 − gmfb − b * gd

+
]

]b*
sivmb * − igAuau2 − gmfb * − bgdG

+
1

2
H ]2

]a]b
s− igAad +

]2

]b]a
s− igAad +

]2

]a * ]b*
sigAa * d +

]2

]b * ]a*
sigAa * d

+
]2

]b2SgmF1 −
2kBT

"vm
+

k"vm

4kBT
GD +

]2

]b*2SgmF1 −
2kBT

"vm
+

k"vm

4kBT
GD

+
]2

]b]b*
S− gmF1 −

2kBT

"vm
−

k"vm

4kBT
GD +

]2

]b * ]b
S− gmF1 −

2kBT

"vm
−

k"vm

4kBT
GDJCPsa,a * , b,b * , td. s8d

The diffusion matrix of the above equation is

D = 3
0 0 − igAa 0

0 0 0 igAa*

− igAa 0 gmS1 −
2kBT

"vm
+

k"vm

4kBT
D − gmS1 −

2kBT

"vm
−

k"vm

4kBT
D

0 igAa* − gmS1 −
2kBT

"vm
−

k"vm

4kBT
D gmS1 −

2kBT

"vm
+

k"vm

4kBT
D 4 . s9d

We note here that this drift matrix has diverging terms asT→0, but this is not a problem as the Diósi master equation is valid
in the limit wherekBT@"vm. As a physical example, in Ref.[2], we find vm=1.63105 s−1, so that"vm=1.72310−29 J,
whereaskBT=5.8310−23 J at 4.2 K, the temperature which we will mainly use in our investigations.

If we wish to treat Eq.(8) as a genuine Fokker-Planck equation which we may map onto stochastic differential equations,
the matrix D must be positive-definite. Numerical investigations using typical parameters show that this is not the case,
therefore for quantum calculations we will have to use the positive-P representation[35]. The positive-P representation
equations in a doubled phase space can be found by the simple change of variablesa* →a+,b* →b+, so that(noting that
a+=a* only in the mean and similarly forb+), we now have four independent stochastic variables. Ignoring the terms
proportional to"vm/kBT due to their small relative size, one possible factorization of the diffusion matrix,D=NNT, of Eq. (9)
is

N = 3
0 Î− igAa

2
Î igAa

2
0 0

0 0 0 Î igAa+

2
−Î− igAa+

2

−ÎgmS1 −
2kBT

"vm
D Î− igAa

2
−Î igAa

2
0 0

ÎgmS1 −
2kBT

"vm
D 0 0 Î igAa+

2
Î− igAa+

2

4 , s10d

which allows us to write a set of four stochastic differential
equations(note that the Itô form and the Stratonovich form
of these equations are identical),

da

dt
= e − ga + igAasb + b+d +Î− igAa

2
sh2 + ih3d,
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da+

dt
= e * − ga+ − igAa+sb + b+d +Î igAa+

2
sh4 − ih5d,

db

dt
= − ivmb − gmsb − b+d + igAa+a −ÎgmS1 −

2kBT

"vm
Dh1

+Î− igAa

2
sh2 − ih3d,

db+

dt
= ivmb+ + gmsb − b+d − igAa+a +ÎgmS1 −

2kBT

"vm
Dh1

+Î igAa+

2
sh4 + ih5d. s11d

In the above, the real Gaussian noise terms have the corre-
lations

histd = 0, histdh jst8d = di jdst − t8d. s12d

The set of coupled equations(11) may be integrated numeri-
cally, with averages taken over a large number of stochastic
trajectories, which allows for the probabilistic calculation of
any desired normally ordered operator moments. As an ex-
ample, withN trajectories, we have

kâ†mânl = lim
N→`

1

No
j=1

N

a+man, s13d

where j labels the results from thej th trajectory.

V. CLASSICAL ANALYSIS

A. Steady-state solutions

Before we return to the full stochastic equations, which
we will solve numerically, we will investigate some of the
classical properties of the system, which allow for analytical
insights. From the drift part of Eq.(8), we can immediately
write the mean-field equations using the notationz̄ for the
classical mean-field value ofz,

dā

dt
= e − gā + igAāsb̄ + b* d,

db̄

dt
= − ivmb̄ − gmsb̄ − b* d + igAuau2, s14d

from which we may find the classical steady-state solutions.
Solving Eqs.(14) for the steady states, we find thatbss is

real, which means that the steady-state momentum is zero.
(Note that this will not be the prediction of stochastic inte-
gration of the full equations.) However, using this fact we
may write the solutions as

bss= bss
* =

gA

vm
uassu2, ass=

e

g − 2igAbss
.

Although the solutions above are not closed(the solution for
ass is a function ofbss, etc.), we can make an iterative ex-

pansion, beginning with the result for fixed mirrors,

ass
0 =

e

g
, s16d

and substitute this into the solution forbss. This can then be
substituted into the solution forass, the process being re-
peated until we attain the required degree of convergence.
We note here that there are parameter regimes for which this
expansion does not converge and that these are regions
where we do not find classical steady-state solutions, but
rather a limit-cycle, self-pulsing behavior[4].

Although we will demonstrate below that the classical
steady-state solutions, especially forx andp, are not accurate
in any parameter regime, they do allow for some insight into
which property of the electromagnetic field outside the cav-
ity is most likely to allow for an inference of the mirror
position. The usual candidates are the intensity, which may
be measured by photodetection, and the quadratures, which
may be measured by homodyne detection. Defining the int-

racavity quadratures asX̂a= â+ â† and Ŷa=−isâ− â†d, with
their classical equivalents written in terms ofass andass

* , we
find

Xa =
2eg

g2 + g2x2, Ya =
2gex

g2 + g2x2 ,

uau2 =
e2

g2 + g2x2 , s17d

where we have sete as real and usedx=2Ab, with b real. As
g2 is typically much larger thang2x2, we may make a series
expansion of these expressions. We find that

Xa <
2e

g
S1 −

g2x2

g2 D ,

Ya <
2gex

g2 S1 −
g2x2

g2 D ,

uau2 <
e2

g2S1 −
g2x2

g2 D . s18d

It is immediately obvious thatYa depends onx to first order,
while the other two exhibit only a second-order dependence.
This shows that homodyne measurements of theYa quadra-
ture will be more sensitive to variations in the position of the
mirror than will be the other two measurements, as previ-
ously noted by Vitaliet al. [31], although theXa quadrature
will show a weaker dependence rather than being totally in-
dependent ofx as in the linearized analysis of Ref.[31].

B. Bistability

It has been predicted that, with a nonzero detuning be-
tween the field and the cavity resonance, this system can
exhibit bistability in the optical intensity[5]. To find the
condition for bistability, we start with the classical equations
with detuningD included,
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dā

dt
= e − sg + iDdā + igAāsb̄ + b* d,

db̄

dt
= − ivmb̄ − gmsb̄ − b* d + igAuau2. s19d

These have the steady-state solutions,

bss= bss
* =

gA

vm
uassu2,

uassu2 =
e2

g2 + sD − 2gAbssd2 , s20d

which immediately leads to the cubic equation inI = uassu2,

4g4A4

vm
2 I3 −

4g2A2D

vm
I2 + sg2 + D2dI − e2 = 0. s21d

We find the condition for bistability by differentiating this
expression with respect toI, which gives

12g4A4

vm
2 I2 −

8g2A2D

vm
I + sg2 + D2d = 0. s22d

The condition for bistability is that this quadratic equation
has two positive real roots. The roots are written as

r± =
Dvm

3g2A2 ±
vm

6g2A2
ÎD2 − 3g2, s23d

giving the inequality

D ±
1

2
ÎD2 − 3g2 . 0. s24d

A necessary, but not sufficient, condition is thatD be posi-
tive, asI must be positive. This immediately contradicts the
condition given by Mancini and Tombesi[5], uDu.Î3g,
which allows for negative intensities. AsI must also be real,
we find the condition for bistability asD.Î3g.

VI. STOCHASTIC RESULTS

A. Initial conditions

To numerically integrate Eq.(11), we make use of the fact
that the Itô and Stratonovich forms are identical so that we
may use a standard three-step predictor-corrector method.
The convergence of the algorithm was checked by compari-
son with a four-step method, and also by halving the time
step. In all the quantities shown, the sampling errors are
comparable to the thickness of the plotted lines.

We will use the published experimental parameters of
Ref. [2], and make comparisons with the theoretical predic-
tions reported elsewhere. The oscillating mirror is considered
as being perfectly reflecting, with a mass ofm=10−5 kg, a
mechanical quality factor ofQ=43106 at 4.2 K, decreasing
to 2.253106 at 70 K, and a resonance frequencyvm/2p
=26 kHz. The damping rate of the mirror isgm=0.5vm/Q
=0.0363s−1 at 4.2 K. We consider a cavity length ofL

=1 cm, with cavity finesseF=153103, which gives g
=pc/2FL=3.143106 s−1. We consider an optical wave-
length ofl=1064 nm, which givesv0=1.7731015 s−1, and
a coupling between the light and the mirror ofg=v0/L
=1.7731017 m−1 s−1. The optical pumping of the cavity is
e=ÎgP /"v0, whereP is the laser power in W.

In stochastic integration of the equations which describe
an intracavity optical system, the standard approach is to
begin with the state inside the cavity as vacuum so that, with
a continuous pump, the system enters the steady state(or its
limit cycle behavior in the case of self-pulsing) after a few
cavity lifetimes. In the present case the situation is somewhat
different, as not only the electromagnetic field, but also the
oscillating mirror, has to reach the steady state. As the relax-
ation time of the mirror can be orders of magnitude larger
than that of the intracavity field, and we need to average over
a large number of trajectories to obtain reliable results, it is
not practical to begin the integration with an arbitrary initial
condition for the mirror. Naively beginning withbs0d
=b+s0d=0, the ground state of the mirror, leads to extremely
long-lived transients, as this is far from the equilibrium state
at finite temperature. To give some idea, even at 4.2 K,
which is perhaps thelowest easily achievable temperature,

the average number of mirror quanta becomesubū2
=kBT/"vm=3.363106. For purposes of comparison, we will
therefore choose the initial mirror state in two different ways
and integrate the equations without any pumping of the cav-
ity. First, as a(real) coherent state, which has uncertainties in
position and momentum at the SQL, with theP function

Psbd = dsb − ÎkBT/"vmd, s25d

and, second from the thermal distribution

Psbd =
1

pn̄
e−ubu2/n̄, s26d

wheren̄=kBT/"vm. Note that, at the beginning of each tra-
jectory,b=sb+d* and the phase is completely random for the
thermal distribution. We stress here that the variance in the
number of mirror phonons for a thermal state isVsnd= n̄2

+ n̄, which is very much larger thann̄. Using the Planck
distribution,

n̄ = se"vm/kBT − 1d−1, s27d

we find that to achieven̄=1, we would needT=1.8 mK, and
even then the variance would be 2, or twice the mean value.

It is important to note here that the number of phonons
does not enter into the equations, but rather the quadratures

X̂b andŶb. In a linearized approach using our equations, it is
the uncertainties in these which are important. We can easily
calculate these for a thermal state of the mirror with an un-
pumped cavity. A simple integration gives

VsX̂bd = VsŶbd = 1 + 2ÎpS kBT

"vm
D3/2

, s28d

equal to 2.231010 at T=4.2 K for our system. This is in
stark contrast to a coherent state of the mirror, sometimes

QUANTUM PHASE-SPACE ANALYSIS OF THE… PHYSICAL REVIEW A 70, 043815(2004)

043815-5



used to facilitate the mathematics of a linearized analysis,

and for whichVsX̂bd=VsŶbd=1.
We have calculated the stochastic results for the means

and standard deviations of the mirror position, without any
optical pumping and for initial thermal and coherent states of
the mirror at temperatures of 4.2 and 70 K. In Fig. 1 we
show the stochastic results for the positionx of the mirror,
with initial coherent states at these two temperatures. Con-
sidering only these mean values could give the erroneous
impression that the mirror is in a nonstationary steady state,
which we can immediately see is not the case when we look
at Fig. 2, which shows the standard deviationsssxd for the
same parameters. Although we have shown the standard de-
viations here, the variances for the initial coherent state con-
tinue to increase linearly for more than twice the time shown,
which was as far as we continued the integration. In contrast,
for an initial thermal state, the mean value of the mirror
displacement is, by definition, zero as can be seen from the
equation for theP function (26). We note here that our sto-
chastic results over more than 23106 trajectories still
showed oscillations of the order of 10−16 m, but that we are
confident that this small, but nonzero, value is due to the
difficulty of sampling the distribution with a finite number of
trajectories. By comparison with the coherent state values,
for an initial thermal statessxd<1310−14 m at T=4.2 K,
and is almost constant, indicating that this is a good choice
of initial condition. This value agrees well with the expres-
sion given in Ref. [2] for the thermal noise,ssxd
=ÎkBT/mvm

2 , which gives a value of 1.47310−14 m. Note
that, over the time scales shown in Fig. 1 we do not see any
decay in the oscillations towards the thermal state values, as
this would be expected to happen on a time scale of 1/gm,
which is approximately 50 s for the parameters used here. In
fact, although an initial coherent state of the mirror has been
used in theoretical analyses(see, for example, Boseet al.

[8]), it is not at all obvious how this particular state may be
constructed experimentally. A thermal state arises naturally,
and will be equal to a coherent state forT=0 K, but absolute
zero cannot be reached experimentally. In optics, a coherent
state can be described theoretically as a displacement of the
vacuum by the displacement operatorDsad=expsaâ†

−a* âd, which we can see has some relation to the optical
pumping term of the Hamiltonian,Hpump. Therefore an ideal
empty cavity with this pumping term will naturally develop
an intracavity coherent state. We are not aware of any similar
candidate for the mirror, even if it could begin in theT=0
vacuum state. Therefore we will use an initial thermal state
in our investigations.

When we examine the stochastic results for the intracavity
field intensity, for an input powerP=5 mW, we find that the
field exhibits a self-pulsing behavior at approximately the
resonance frequency of the mirror, as previously predicted
[4]. However, the oscillations are of very small relative am-
plitude, at approximately 0.2% of the average mean intensity.
With increasing input power, the oscillations become larger
until, for a power of 100 mW, for example, they are more
than half the maximum intensity. At the lower power, the
mean motion of the mirror is an oscillation between 0 and
1.2310−12 m, while at the higher power oscillates between
−1 and 3310−11 m. Even though these displacements are
truly microscopic, they have a noticeable effect on the mean
intensity, which should be easily detectable experimentally.
Interestingly enough, these results are almost identical to
what we find by numerical integration of the classical equa-
tions (14), although these can tell us nothing about the quan-
tum correlations which we wish to investigate. Among these
quantum correlations are the variances of the intracavity field
and the Fano factor, defined asFsNad=VsNad /Na. These re-
sults, which we averaged over 6.713105 trajectories, are
shown in Fig. 3. For a coherent state, all three values are 1,
which would be zero on the logarithmic vertical scale used

FIG. 1. Mean values forx at T=4.2 K andT=70 K for an initial
coherent state of the mirror and no optical pumping. These results
are the averages of 7.63103 and 2.73104 trajectories, respectively.
Note that, unless otherwise stated, the values plotted here and in
subsequent graphs are dimensionless.

FIG. 2. Standard deviations forx at T=4.2 K andT=70 K for
an initial coherent state of the mirror and no optical pumping. Note
that these quantities were still increasing at twice the time shown
here and would be expected to eventually attain the thermal values.
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here. As all three correlations are greater than or equal to 1,
we do not see any squeezing of the field in the time domain,
but do see excess noise in all three quantities. As is common

with Kerr media, there is more excess noise in theŶa quadra-

ture than in either theX̂a quadrature or in the intensity.

B. Position measurements

Much of the theoretical and experimental interest in this
system has been in indirectly measuring small displacements
or small forces which act on the oscillating mirror, by means
of measurements on the optical field. Generally theoretical
results are presented in terms of output spectra which allow
for an inferred value of the mirror position at various fre-
quencies. These spectra are simple to calculate in a linearized
analysis which treats the system as an Ornstein-Uhlenbeck
process[16], but we do not consider linearization valid here,
for the reasons we have stated. To calculate spectra from the
results of stochastic integration is also possible in many
cases, but here is made difficult by the stiffness of our equa-
tions, where the field and the mirror oscillate on vastly dif-
ferent time scales. The length of time needed to integrate a
large enough number of trajectories over a sufficient time to
give reliable results upon Fourier transformation is prohibi-
tive. Hence we will show results which were obtained in the
time domain.

The first results we show for the mirror, in Fig. 4, are for
the uncertainties in the mirror position and momentum, de-
fined asssxd=AÎVsXbd and sspd= uBuÎVsYbd. The interac-
tion with the field has not noticeably changed these quanti-
ties from the values we found via stochastic integration in
the unpumped thermal state case, but has given the momen-
tum a mean value which oscillates between approximately
±1310−19 kg ms−1, whereas it was stable at zero in the un-
pumped case. It is readily seen that the fluctuations in mo-
mentum are several orders of magnitude larger than the mean
value. We also note here that the uncertainties shown are

certainly underestimated, due to the difficulties of simulating
the largeb values with small probabilities in the initial con-
ditions used. This result also shows that, when the likely
thermal state of the mirror is taken into account, the back-
action noise of the field on the mirror has very little effect at
the laser power considered here. At an increased power of
100 mW the standard deviations in both position and mo-
mentum both increase due to this back-action noise, reaching
oscillatory values around means of<1310−13, while the
mean momentum oscillates between ±3310−17 kg ms−1.

We next investigate the degree of correlation between the
position of the mirror, the intracavity optical intensity, and

the X̂a andŶa quadratures. This correlation function between
two quantitiesw andz is defined as

Cswzd =
kwzl − kwlkzl
ÎVswdVszd

, s29d

where a perfect correlation gives a value of 1, a perfect an-
ticorrelation gives a value of −1, and zero signifies no cor-
relation at all. In Fig. 5 we see that, as predicted by Eq.(18),
the strongest correlation is betweenŶa and the mirror posi-
tion, these two being almost perfectly correlated. The corre-
lation functionsCsxXad andCsxNad oscillate at the frequency
vm between a value of almost −1 and a value of approxi-
mately 0, ranging from being almost perfectly anticorrelated
to almost perfectly uncorrelated. This behavior is quite dif-
ferent from that shown in a linearized fluctuation analysis,
where we found that all three of these functions showed an-
ticorrelation around the mirror frequency and were zero at
other frequencies. The difference between our fully quantum
nonlinear results and the usual linearized predictions is dra-
matically demonstrated when we consideruCsXaYbdu2, used to
analyze a possible quantum nondemolition measurement by
Jacobset al. [6]. Their prediction[see their Eq.(31)] is for a

FIG. 3. The variances of the intracavity electromagnetic field for

a laser power of 5 mW. The solid line isVsX̂ad, the dash-dotted line

is VsŶad, and the dotted line is the Fano factor.

FIG. 4. The standard deviations in the mirror position and mo-
mentum for a laser power of 5 mW. The standard S.I. units for
position and momentum are used. Note that a minimum uncertainty
state of the mirror hasssxd=5.6824310−18 m and sspd=9.283
310−18 kg ms−1.
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maximum spectral value of 0.9757 for the parameters we use
in this work, whereas our stochastic prediction in the time
domain oscillates between 0 and 6310−3, showing almost
no correlation at all. We think that it is unlikely that this
difference can be explained by the difference between a
spectral measurement and a time-domain measurement, but
that it is due to the inappropriateness of the linearization
procedure for this system.

Another way to infer the mirror position is by linear esti-
mation following measurements of the optical field. We fol-
low a method proposed by Reid[38] in the context of a
demonstration of the Einstein-Podolsky-Rosen paradox, and
also outlined in Dechoumet al. [39]. We assume that a mea-

surement of theŶa quadrature allows for a linear estimate of

X̂b, X̂b
est=cŶa+d. This is consistent with the expansion ofYa

given above, in Eq.(18). After optimizing for d, the RMS
error in this estimate is given by

VinfsX̂bd = ksX̂b − cŶad2l − kX̂b − cŶal2, s30d

which we may minimize as a function ofc, finding

c =
VsX̂b,Ŷad

VsŶad
. s31d

We may then write

VinfsX̂bd = VsX̂bd −
fVsX̂b,Ŷadg2

VsŶad
, s32d

a quantity which we may calculate via stochastic integration.
The inferred uncertainty in a measurement ofx̂ will then be

sinfsxd=AÎVinfsX̂bd, which will be equal to the standard
quantum limit when the mirror is inferred to be in a mini-
mum uncertainty state. We have also calculated the inferred

position uncertainty using measurements ofX̂a andNa in the
same manner. As shown in Fig. 6, and expected from the

previous discussion, using theŶa quadrature gives better re-

sults than using eitherX̂a or Na, which give oscillatory infer-
ences. As it is, all of these give inferred uncertainties well
above the SQL ofA=5.68310−18 m for the parameters used.
We note here that the actual calculated value ofssxd, which
oscillates between 1.025310−14 m and 1.03310−14 m, is
greater than the value inferred through measurement of the

Ŷa quadrature, which has a steady-state value of approxi-
mately 5310−16 m. This is also the case with the inferred
measurements of Ref.[38], and is due to the almost perfect

correlation between the position of the mirror and theŶa
quadrature.

VII. NONCLASSICAL STATE PREPARATION

The pendular cavity and variations on the theme have
been proposed as useful devices for the preparation of non-
classical states of the cavity field and also of the mirror or
mirrors. In this section we will give a brief review of some of
these proposals, in chronological order, and explain why our
results lead us to believe that they may not be as practical as
the original authors suggest.

Boseet al. [8] suggest that this system may be used to
prepare multicomponent quantum superpositions of states
(Schrödinger cat states) of the field, near number states, and
entangled states when two or more modes interact with the
mirror, as well as Schrödinger-cat-like states of the mirror
prepared via quadrature measurements of the field. Begin-
ning with a simple Hamiltonian without any pumping or dis-
sipation terms, they develop a time evolution operator which
is seen to have a Kerr-like term, which leads them to believe
that this system may exhibit some of the nonclassical fea-
tures of a Kerr interaction. They then assume that both the
cavity field and the mirror are initially in coherent states.
While this simplifies the mathematics, and is reasonably ac-

FIG. 5. The intracavity correlation functions,CsxXad (solid line),
CsxYad (dash-dotted line), and CsxNad (dashed line), for an input
power of 5 mW.

FIG. 6. The inferred uncertainties in the mirror position,

AÎVinfsX̂bd, calculated as in Eq.(32). The solid line is the estimate

using Ŷa, the dash-dotted line usesX̂a and the dotted line usesNa.
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curate for the cavity field, our calculations have shown that a
coherent state is not a reasonable initial condition for the
mirror. As the nonclassical features predicted depend on this
initial condition, which at one stage of the paper is taken to
be a vacuum state(for simplicity), and interaction of the
mirror with the environment is considered to be equivalent to
that of a cavity field with a zero-temperature reservoir, our
results lead us to believe that these predicted nonclassical
states will be, at the very least, extremely difficult to observe.

In a subsequent article[36], the same authors propose that
the pendular cavity may be used to probe the decoherence of
a macroscopic object, namely the mirror. In this work the
authors accept that the mirror will begin in a thermal state
and note that a mixture of Schrödinger cat states of the mir-
ror can therefore be produced by the interaction with the
field. It is assumed that a superposition of the Fock statesu0l
and unl can be prepared inside the cavity, with the most sim-
ply prepared value ofn=1. Using theP-representation ex-
pansion of the density matrix in terms of coherent states, an
expression is found for the time development of this density
matrix. The field can then be measured via the interaction
with a ground-state two-level atom which is passed through
the cavity. The probability of the atom being excited can be
related to the decoherence rate of the spatially separated su-
perposed coherent states of the mirror’s motion. Examining
this scheme with our parameters, we find that, withn=1, the
spatial separation between two of the superposed coherent
states has a maximum ofDxmax=1.4310−22 m, which is less
than the thermal de Broglie wavelength,ldB=2.19
310−21 m, so that it becomes difficult to claim we have a
spatially separated superposition. When we take into account
that the decomposition of the thermal state will include a
huge number of coherent states, all with different phases, it
seems that the practical realization of this scheme may be
more demanding technologically than the authors had sup-
posed.

Another proposal uses radiation pressure to entangle two
macroscopic mirrors[14], but relies on Langevin equations
which are linearized around their classical steady-state solu-
tions. As we have shown above, this process is of rather
doubtful validity when the mirrors are coupled to thermal
reservoirs. A further idea is to produce an Einstein-Podolsky-
Rosen(EPR) state in the position and momentum of two
spatially separated oscillating mirrors using the output of a
nondegenerate optical parametricoscillator(OPO) [37]. We
note here that, although the authors call the oscillator an
optical parametric amplifier, the nonlinear crystal is inside a
pumped cavity, so we will follow the usual terminology(see
their Fig. 2). Unlike most other treatments, this work uses an
effective linear coupling between the light and the mirror.
Like most of the others, the authors linearise Langevin equa-
tions around their steady-state solutions. The OPO is treated
via two-mode equations which do not describe the normal
well-known threshold behavior of such a device at all, and
lead to the prediction of an entangled state of two combined
quadratures, which is said to demonstrate an EPR correla-
tion. The two output fields of the OPO are used to drive the
two mirrors, which drives them into an EPR state of position
and momentum. The mechanical damping of the mirrors in-
troduces a noise term Vb=1+2nT, where nT

=coths"vm/2kBTd is the mean thermal phonon number. This
noise term seems to be the quadrature variance assuming a
number stateunTl, of the mirror. For the parameters we use,
this expression gives a value ofVb=6.73106, several orders
of magnitude lower than our estimate in Eq.(28), which
givesVb=2.231010. Due to the issues we have raised here,
we are led to believe that the EPR state of the two mirrors
may not be as easily demonstrated as indicated by the au-
thors. Manciniet al. [40] have also put forward a proposal to
entangle two movable mirrors which form part of a four-
mirror ring cavity. This work has the advantage of a descrip-
tion for the Brownian motion that is consistent with quantum
mechanics at all temperatures, but the results presented are
also obtained following a linearization process, which we
have shown to not be valid for reasonable temperatures. The
final proposal we will consider here is by Marshallet al.
[15], which treats the creation of superposition states of a
macroscopic mirror(<1014 atoms) via the interaction with a
single photon. This work again uses a Hamiltonian approach
without dissipation and assumes that the mirror can be pre-
pared in its ground stateu0l which then allows for analytical
solutions. The inclusion of decoherence and finite tempera-
ture follow the approach of Ref.[36] and we therefore have
the same doubts about the physical viability of this proposal.

VIII. COOLING BY FEEDBACK

It may be thought that to reduce the thermal noise of the
mirror it is sufficient to cool to a lower temperature and
impressive reductions in thermal noise, of the order of 103,
have been achieved[10,30]. However, it seems that the
method of feedback cooling leads to a thermal equilibrium of
the mirror at a lower temperature. For our system, using Eq.

(28), a reduction by this factor leads toVsX̂bd=VsŶbd<107,
which is still far above the coherent state level where linear-
ization of the equations may be expected to work. Reference
[15] suggests that a mirror may be cooled to as low as 2 mK

by dilution refrigeration, which would give usVsX̂bd
=VsŶbd<2.273105, which, if we assume that feedback
cooling from this temperature is as efficient as at room tem-
perature, would allow the variances to be further reduced to
something of the order of 102. This is now actually smaller
than the mean number of quanta,ubu2, equal to 1.63103,
although the variance in the number will now be of the order
of 106, so that linearization will still not be reliable.

Standard cooling by feedback depends on the interaction
of the electromagnetic field with the mirror phonons, which

is proportional toâ†âX̂b, which will not drive the mirror
toward a coherent state. A coupling term proportional to

â†b̂− âb̂† may be expected to do this, while squeezing of the
mirror position would conceivably be possible with a cou-

pling of the typeâ†2b̂− â2b̂† or b̂†2â− b̂2â†. It is interesting to
note that an effective coupling of the type required to drive
the mirror toward a coherent state was used by Zhanget al.
[37], although the physical parameters used to develop the
coupling Hamiltonian are far from those we have used in our
analysis. As an example in that work,vm@g, whereas we
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have used the valuesvm=1.633105 s−1 and g=3.14
3106 s−1. Zhanget al.also consider that the mirror damping
is of the amplitude form, which is not what we find using the
Diósi master equation. Manciniet al. [41] have actually pre-
sented a feedback scheme based on an effective Hamiltonian
which couples a light quadrature withXb, later proposing that
this method, which they call stochastic cooling, could be
used to beat the SQL by achieving steady-state position
squeezing of the mirror[31]. The effective coupling used
again depends on the linearization of the equations of mo-
tion. We feel that whether feedback can be used to cool a
macroscopic oscillator towards, or even beyond, the SQL
remains an open question and subject to further research.

IX. CONCLUSION

In conclusion, we have presented a fully quantum analysis
of the pumped pendular cavity which does not depend on
linearization of the equations of motion. We have shown that
the thermal noise of the mirror is overwhelming for typical
temperatures and experimental parameters. This means that
the linearization procedure commonly used is of doubtful
validity. Unless ways can be found to change the quantum

state of the mirror in respect to the thermal excitations, we
expect that the nonclassical states predicted in a number of
theoretical analyses will not be able to be demonstrated ex-
perimentally. Feedback cooling techniques, while able to
lower the effective temperature to an impressive degree,
serve merely to produce another thermal state of the mirror at
a lower temperature. The noise is still overwhelming if we
wish to reach the SQL, or even beat it, which would be
necessary for the detection of gravity waves. This is also the
case if we wish to observe some of the quantum superposi-
tions and entanglement which have been theoretically pre-
dicted.
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