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[1] We attempt to generate new solutions for the moisture content form of the one-
dimensional Richards’ [1931] equation using the Lisle [1992] equivalence mapping. This
mapping is used as no more general set of transformations exists for mapping the one-
dimensional Richards’ equation into itself. Starting from a given solution, the mapping has
the potential to generate an infinite number of new solutions for a series of nonlinear
diffusivity and hydraulic conductivity functions. We first seek new analytical solutions
satisfying Richards’ equation subject to a constant flux surface boundary condition for a
semi-infinite dry soil, starting with the Burgers model. The first iteration produces an
existing solution, while subsequent iterations are shown to endlessly reproduce this same
solution. Next, we briefly consider the problem of redistribution in a finite-length soil. In
this case, Lisle’s equivalence mapping is generalized to account for arbitrary initial
conditions. As was the case for infiltration, however, it is found that new analytical
solutions are not generated using the equivalence mapping, although existing solutions are
recovered. INDEX TERMS: 1866 Hydrology: Soil moisture; 1875 Hydrology: Unsaturated zone; 3210
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1. Introduction

[2] Richards’ equation [Richards, 1931] has stimulated
much analytical and numerical analysis over several deca-
des. Its strong nonlinearity and seemingly near-pathological
behavior engender continuing interest in its underlying
structure and symmetries [e.g., Yung et al., 1994; Sopho-
cleous, 1996; Vijayakumar, 1997].
[3] Lisle [1992] discovered an extended set of equiv-

alence transformations for Richards’ equation. This set
was initiated by writing Richards’ equation in potential
form

@I

@z
¼ �q; ð1Þ

and

@I

@t
¼ q; ð2Þ

where I(z, t) is the cumulative volume of water that has
passed location z (positive downward) at time t, and q is the
volumetric content. The Darcy flux q is given by

q ¼ K qð Þ � D qð Þ @q
@z

; ð3Þ

where K is the hydraulic conductivity and D is the capillary
diffusivity.
[4] Lisle’s [1992] equivalence transformations were used

recently by Barry et al. [2001] in the context of body
force scaling of unsaturated flow experimental data. They
defined the new class of similar soils, called Lisle-similar
soils, for which mapping of experimental results is per-
mitted. Miller-similar soils [Miller and Miller, 1955a,
1955b, 1956; Miller, 1980] were shown to be a special
case of the new class. On the basis of the mildly nonlinear
Burgers equation solution, we show in some detail how
the set of equivalence transformations can be used to solve
Richards’ equation for constant flux infiltration at the
surface into a uniformly moist unsaturated soil but with
a sequence of diffusivity and hydraulic conductivity func-
tions. However, this sequence is shown to reduce to an
existing solution. Next, we seek new solutions for redis-
tribution in a finite-length profile. Again, the analysis
yields solutions that are known.
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2. Infiltration

[5] The infiltration model we wish to solve is given by
Richards’ [1931] equation and associated boundary and
initial conditions, namely,

@q
@t

¼ @

@z
D qð Þ @q

@z

� �
� dK qð Þ

dq
@q
@z

; 0 < z; 0 < t; qr � q � qs

ð4Þ

q ¼ q0; z ¼ 0; 0 < t ð5Þ

q z; 0ð Þ ¼ qi; 0 < z; qr � qi � qs ð6Þ

and

lim
z!1

q z; tð Þ ¼ qi 0 < t ð7Þ

where q0 is the constant surface flux, while qr and qs are the
residual and saturated moisture contents, respectively. The
soil is uniformly moist initially, with moisture content qi.
Note that Richards’ equation is written with moisture
content as the dependent variable. Thus there are some
limitations on its applicability [LaBolle and Clausnitzer,
1999], e.g., it should not normally be used for soil-water
pressure greater than atmospheric pressure.
[6] For convenience, equations (4)–(7) are normalized

usingz

Z ¼ z K qsð Þ � K qið Þ½ 	
D qsð Þ�q;

ð8Þ

t ¼ t K qsð Þ � K qið Þ½ 	2

D qsð Þ�q2;
ð9Þ

Q ¼ q� K qið Þ
K qsð Þ � K qið Þ; ð10Þ

q Z; tð Þ ¼ q z; tð Þ � qi
�q;

ð11Þ

D �ð Þ ¼ D qð Þ
D qsð Þ ð12Þ

and

K �ð Þ ¼ K qð Þ � K qið Þ
K qsð Þ � K qið Þ; ð13Þ

where �q = qs � qi. The scaled diffusivity, D, satisfies 0 <
D � 1, while the hydraulic conductivity, K, is bounded
according to 0 � K � 1.
[7] The various transformations, equations (8)–(13), give

dimensionless forms of equations (4)– (7). These are,
respectively,

@�

@t
¼ @

@Z
D �ð Þ @�

@Z

� �
� dK �ð Þ

d�

@�

@Z
; 0 < Z; 0 < t; 0 � � � 1

ð14Þ

Q ¼ Q0 ¼
q0 � K qið Þ

K qsð Þ ; Z ¼ 0; 0 < t ð15Þ

� Z; 0ð Þ ¼ 0; 0 < Z ð16Þ

and

lim
Z!1

� Z; tð Þ ¼ 0: 0 < t ð17Þ

Below, we present a procedure with the potential for
producing new analytical solutions satisfying equations
(14)–(17). The hydraulic functions, D and K, for which the
solutions apply, will emerge as part of the solution process.

2.1. Lisle’s Equivalence Transformations

[8] Lisle [1992] presented the set of transformations that
map equations (1) and (2) into equations of exactly the same
form. The set is the most general in existence. For the
normalized Richards’ [1931] equation given in equation
(14), Lisle’s equivalence transformations would produce an
identical equation to (14), with different symbols. Below,
we seek to generate new solutions to equations (14)–(17)
from existing solutions. We denote the given solution using
a superscripted asterisk: It is mapped to the system without
an asterisk. The set of equivalence transformations is [Lisle,
1992]

I* ¼ l aI � bZð Þz�1 � Jt� I0; ð18Þ

Z* ¼ l dZ � gIð Þz�1 þ ntþ Z0; ð19Þ

t* ¼ l2tz�1 þ t0; ð20Þ

�* ¼ a�þ bð Þ g�þ dð Þ�1; ð21Þ

Q* ¼ lQþ z an� gJð Þ�þ z bn� dJð Þ½ 	l�2 g�þ dð Þ�1; ð22Þ

K* ¼ lK þ z an� gJð Þ�þ z bn� dJð Þ½ 	l�2 g�þ dð Þ�1; ð23Þ

and

D* ¼ g�þ dð Þ2z�1D; ð24Þ

where a = (1 + bg)d�1. The 10 constants appearing in
equations (18)–(24), l, g, z, b, d, n, J, I0, z0, and t0, will be
specified to match the problem to be solved.
[9] As already stated, this set of mappings will be used

below to derive exact solutions to equations (14)–(17). We
will start with a known solution, indicated by the asterisk in
equations (18)–(24), and map it to another constant flux
infiltration problem of the same form. That is, the equivalence
mapping ensures that the new solution will satisfy Richards’
[1931] equation, and if the constants are suitably chosen, then
the new boundary conditions will also be appropriate for
constant flux infiltration into a uniformly moist soil.

2.2. Choice of Constants

[10] The constants in equations (18)–(24) are determined
using the correspondences shown in Table 1. In addition to
the 10 constants listed in section 2.1 a new constant, Qo,
appears (assuming that the asterisked solution is known),
giving 11 constants in all. There are 8 conditions in Table 1,
which can be shown to determine 10 of the 11 constants (the
independent parameter is d), giving the values shown in
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Table 2. Taking these parameter values ensures that the
mapped infiltration solution satisfies the same form of
problem in both the asterisked and nonasterisked domains.
That is, if the solution �*(Z*, t*) is known, it can be
mapped to a solution, �(Z, t), of a constant flux infiltration
problem, albeit with diffusivity and hydraulic conductivity
functions given by

K �ð Þ¼ K*
�

d2þ 1� d2
� �

�

" #
d2 þ 1� d2

� �
�

� �
� 1� d2
� �

�Q0*

( )


 1� 1� d2
� �

Q0*
� ��1 ð25Þ

and

D �ð Þ ¼ D* � d2 þ 1� d2
� �

�
� ��1

n o
d2 þ 1� d2

� �
�

� ��2
; ð26Þ

respectively. In equations (25) and (26) the parameter d can
be used to define new hydraulic functions in the solution to
the transformed problem.

2.3. Exact Solution

2.3.1. Solution to Burgers’ Equation
[11] The simplest nonlinear model for infiltration is given

by Burgers’ equation [e.g., Pearson, 1990b]. To be specific,
equations (14)–(17) are written as

@�*

@t*
¼ @2�*

@Z*2
� 1� B

2
þ Bq*


 �
@�*

@Z*
;

0 < Z*; 0 < t*; 0 � �* � 1

ð27Þ

1� B

2


 �
�*þ B

�*2

2
� @�*

@Z*
¼ Q0*; Z* ¼ 0; 0 < t* ð28Þ

�* Z*; 0ð Þ ¼ 0; 0 < Z* ð29Þ

lim
Z*!1

�* Z*; t*ð Þ ¼ 0; 0 < t* ð30Þ

where B is an arbitrary constant. Note that equation (27) is
Burgers’ equation with an additional advection term. It can
be solved using the Hopf-Cole transformation [Hopf, 1950;
Cole, 1951]. In equation (27) the diffusivity is

D* ¼ 1; ð31Þ

while the hydraulic conductivity is

K* ¼ 1� 2�1B
� �

�*þ 2�1B�*2; ð32Þ

where B is a soil-dependent parameter.
[12] The solution to equations (27)–(30) is [e.g., Clothier

et al., 1981; Barry and Sander, 1991]

�* Z*; t*ð Þ ¼ � 2

B

wZ* Z*; t*ð Þ
w Z*; t*ð Þ ; ð33Þ

where [van Genuchten and Alves, 1982, p. 19]

2w Z*; t*ð Þ ¼ 2�M Z*; t*ð Þ þ exp 2�1t*BQ0*
� �

N Z*; t*ð Þ;
ð34Þ

with

M Z*; t*ð Þ ¼ erfc
Z*� At*ffiffiffiffiffiffiffiffi

4t*
p


 �
þ exp AZ*ð Þerfc Z*þ At*ffiffiffiffiffiffiffiffi

4t*
p


 �
;

ð35Þ

N Z*; t*ð Þ ¼ exp
A� X

2
Z*


 �
erfc

Z*� Xt*ffiffiffiffiffiffiffiffi
4t*

p

 �

þ exp
Aþ X

2
Z*


 �
erfc

Z*þ Xt*ffiffiffiffiffiffiffiffi
4t*

p

 �

; ð36Þ

X ¼ A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2Q0*BA�1

p
; ð37Þ

and A = 1–2�1B. The function wz*(Z*, t*) is just
@w(Z*,t*)/@Z*, or

wZ* Z*; t*ð Þ ¼ 1

2
exp

t*BQ0*

2


 �
@N Z*; t*ð Þ

@Z*
� @M Z*; t*ð Þ

@Z*

� �
;

ð38Þ

where

@M Z*; t*ð Þ
@Z*

¼ Aexp AZ*ð Þerfc Z*þ At*ffiffiffiffiffiffiffiffi
4t*

p

 �

� 2ffiffiffiffiffiffiffiffi
pt*

p exp
� Z*� At*ð Þ2

4t*

" #
; ð39Þ

Table 1. Conditions to Be Satisfied in the Equivalence Transfor-

mation Mapping Between the Asterisked and Nonasterisked

Systems

Class of Condition
Asterisked

System Condition
Nonasterisked

System Condition

Moisture content �* = 0 � = 0
�* = 1 � = 1

Initial time and position t* = 0 t = 0
Z* = 0 Z = 0

Constant flux I*(0, t*) = Qo*t* I(0, t) = Qot
K* = 0 K = 0

Hydraulic function limits K* = 1 K = 1

D* = 1 D = 1

Table 2. Parameter Values Determined by Application of

Conditions in Table 1a

Equivalence Transformation Constant Value

g d�1 � d
l d + (d�1 � d)Q0

z d�2

b 0
n 0
J [d2 + (1 � d2)Q0](1 � d2)Q0

I0 0
z0 0
t0 0
Q0[d

2 + (1 � d2)Q0]
�1 Q0*

Q0 d2Q0*[1�(1 � d2)Q0*]
�1

aThe last two entries are equivalent (presented for convenience).
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and

@N Z*; t*ð Þ
@Z*

¼ A� X

2
exp

A� X

2
Z*


 �
erfc

Z*� Xt*ffiffiffiffiffiffiffiffi
4t*

p

 �

þAþ X

2
exp

Aþ X

2
Z*


 �
erfc

Z*þ Xt*ffiffiffiffiffiffiffiffi
4t*

p

 �

� 2ffiffiffiffiffiffiffiffi
pt*

p exp
AZ*

2
� Z*2 þ X 2t2

4t*


 �
: ð40Þ

2.3.2. First Iteration: Solution Generated From the
Burgers’ Equation Model
[13] We now seek the functional forms of D and K that

allow equations (14)–(17) to be mapped to equations (27)–
(30) using equations (18)–(24). From equations (26) and
(31) the diffusivity generated is given by

D ¼ 1� d2
� �

�þ d2
� ��2

: ð41Þ

Similarly, the hydraulic conductivity function generated
from equations (25) and (32) is

K �ð Þ ¼ � 1þ2�1B Q0� �d2� d2 � Q0

� �
�d2 � d2 ��
� ��1

h in o
:

ð42Þ

[14] For the hydraulic functions defined by equations (41)
and (42) the solution to equations (14)–(17) is given by

� Z; tð Þ ¼ d2 d2 � 1þ 1

�* Z*; t*ð Þ

� ��1

; ð43Þ

where, as noted above, d is an independent parameter. It can
be fixed by choice of the capillary diffusivity, equation (41).
To determine �*(Z*, t*), equation (33) is used. To obtain
Z, we need to find Z and I simultaneously from Z* and I*.
For any given Z* and t*, the corresponding value of
I*(Z*, t*) is

I* Z*; t*ð Þ ¼ 2B�1ln w Z*; t*ð Þ½ 	: ð44Þ

With I*(Z*, t*) known, Z is given by

Z ¼ d�2
n

Z*þ 1� d2
� �

I*
� �

d2 þ 1� d2
� �

Q0
�1
��

� 1� d2
� �

Q0t
o
: ð45Þ

The solution to equations (14)–(17) presented here appears
similar to that presented by Sander et al. [1988a], albeit
obtained by a much more straightforward method. Indeed,
setting d2 = (1 � e)�1 and B = 2(e + P)(1 � eQo)

�1 allows
equations (41) and (42) to be written as

D ¼ 1� eð Þ2 1� e�ð Þ�2 ð46Þ

and

K ¼ 1� e� Pð Þ�þ P�2
� �

1� e�ð Þ�1: ð47Þ

respectively. With trivial notation and scaling changes,
equations (46) and (47) are identical to the hydraulic

functions for which the analytical solution of Sander et al.
[1988a] applies.
2.3.3. Second Iteration: Solution Generated From the
Sander et al. [1988a] Model
[15] We take as hydraulic functions equations (41) and

(42), written in the form

D* �*ð Þ ¼ 1� d21
� �

�*þ d21
� ��2 ð48Þ

and

K* �*ð Þ ¼ �* 1þ Pd21 �*� 1ð Þ
� �

1� d21
� �

�*þ d21
� ��1

; ð49Þ

where d1 and P are now considered as free parameters to be
determined by soil type. The asterisked infiltration solution
is simply that of Sander et al. [1988a]. As before, we seek to
map this to a new solution using equations (18)–(24) and
the parameters listed in Table 2. The functions in equations
(48) and (49) map, using equations (25) and (26), to

D �ð Þ ¼ 1� d2d21
� �

�þ d2d21
� ��2 ð50Þ

and

K �ð Þ ¼ K* �ð Þ d2 þ 1� d2
� �

�
� ��

� Q0*� 1� d2
� �

g 1� Q0* 1� d2
� �� ��1

; ð51Þ

where

K* �ð Þ ¼
� Pd21d

2 þ 1� d2
� �

�þ d2 1� Pd21
� �� �

d2 þ 1� d2
� �

�
� �

d21d
2 þ 1� d21d

2
� �

�
� �

:
ð52Þ

Clearly, equations (48) and (50) are identical in form if we let
d2
2 = d2d12 in equation (50). Similarly, taking this same
relationship and P1 = [d2

2 � d1
2 + Qo*(d2

4 � d2
2 + d12 � d1

2d2
2)]d1

�2

d2
�2 + P(2 � d1

2d2
�2) reduces equation (51) to the form of

equation (49). Thus no new solution has been generated,
merely a more algebraically complicated form of the starting
solution.

3. Redistribution in a Finite-Length Soil Profile

[16] We treat this case briefly as the details closely follow
that for infiltration presented above in section 2. To be
precise, equation (14) is considered to apply in the spatial
domain 0 < Z < l. Boundary conditions to be applied are
those of constant and equal flux at the top and bottom
boundaries (the case of zero flux at the boundaries was
solved by Sander et al. [1991]),

Q ¼ Q0; Z ¼ 0 l; 0 < t ð53Þ

The initial condition is

� Z; 0ð Þ ¼ �i Zð Þ: 0 < Z < l ð54Þ

As a first step, we extend the equivalence transformations
presented in section 2.1 to account for the case when the
normalized initial moisture content in the soil profile is
nonuniform. Details are presented in Appendix A. Then, we
proceed as in section 2 and determine the parameter set such
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that the mapping produces another redistribution problem to
be solved on a fixed spatial domain. This step results in the
same parameter set as given in Table 2, with the additional
constraints A ¼Rl

0

�i Zð ÞdZ and l* = [d2 + Qo(1 � d2)] [d2l +
A(1 � d2)], where A is proportional to the total mass of
water in the profile and l* = Z*(l ). The key point is that the
relationships already presented relating the asterisked and
nonasterisked hydraulic functions, equations (25) and (26),
are unchanged. Thus starting the solution generation
iteration using the solution to Burgers’ equation on a finite
domain [Sander, 1992] will produce an existing solution for
the mapped hydraulic functions as presented in equations
(41) and (42) or, equivalently, equations (46) and (47). This
solution is detailed by Sander [1992] and so will not be
presented here. Thus carrying out an additional iteration, in
the manner of section 2.3.3, does not produce a new solution.

4. Discussion and Conclusions

[17] The diffusivity for which most of the above results
pertain was first presented by Fujita [1952], who provided
an exact solution for the nonlinear diffusion equation with-
out gravity. A variety of solutions with the gravity term
included have been presented [Fokas and Yortsos, 1982;
Rosen, 1982; Rogers et al., 1983; Broadbridge and White,
1988; Broadbridge et al., 1988; Rogers, 1988; Sander et al.,
1988a, 1988b, 1991; Warrick et al., 1990, 1991; Kuhnel et
al., 1990; Barry and Sander, 1991; Parkin et al., 1992,
1995; Sander, 1992]. These solutions are all members of the
same family in that the capillary diffusivity and hydraulic
conductivity are closely related. In essence, the equivalence
mapping approach used here allows these solutions to be
obtained in a more transparent fashion. However, it has
been shown that for the problems considered here, that is,
constant flux infiltration into a semi-infinite medium or
redistribution in a finite medium with constant flux boun-
dary conditions, the generation of new solutions from
existing ones is not feasible because the new solutions are
algebraically identical to known solutions. That is, the
mapping converges to a single endpoint, beyond which
the same endpoint is endlessly repeated.
[18] Our results do not mean that new solutions do not

exist, rather that the equivalence mapping method has been
proved incapable of producing new solutions. There are, we
suggest, two different avenues for systematically develop-
ing new analytical results for the constant flux infiltration
and redistribution problems considered here. First, if a new
analytical solution for either problem were discovered, the
equivalence mapping could immediately be used to inves-
tigate the potential for generating new solutions. Second, if
a more general mapping of Richards’ [1931] equation into
itself was discovered, then the existing solutions could be
used to produce new results so long as the boundary and
initial conditions mapped appropriately.

Appendix A: Mapping From Richards’ [1931]
Equation Onto Itself for the Case of a
Nonuniform Initial Moisture Content

[19] Richards’ [1931] equation is written as

@�

@t
¼ � @Q

@Z
; t > 0; 0 < Z < l: ðA1Þ

Darcy’s law, equation (3), is, in normalized form,

Q ¼ K �ð Þ � D �ð Þ @�
@Z

: ðA2Þ

Rewrite equation (A2) in terms of Z,

Z ¼
Z� 0;tð Þ

�

D Q�Kð Þ�1
d�: ðA3Þ

In potential form, equation (A1) can be written as the pair of
equations

@I

@t
¼ Q ðA4Þ

and

@I

@Z
¼ � ���ið Þ; ðA5Þ

where �i(Z ) is the nonuniform, initial normalized moisture
content. Integration of equation (A4) gives

I ¼
Zt
0

Q Z; tð Þdt; ðA6Þ

while the corresponding operation on equation (A5) results
in

I ¼
Z l
Z

� Z; t
� �

��i Z
�

ÞdZ þ
Zt
0

Ql tð Þdt; ðA7Þ

where Ql is the flux at Z = l.
[20] We wish to map equations (A1) and (A3) to equiv-

alent expressions written with a superscripted asterisk, i.e.,

@�*

@t*
¼ � @Q*

@Z*
; Zl* t*ð Þ > Z* > Zi* t*ð Þ; t* > ti*; ðA8Þ

and

Z*� Zi* t*ð Þ ¼
Z�* 0;t*ð Þ

�*

D* Q*�K*ð Þ�1
d�*; ðA9Þ

where Zi*(t*) is the value that Z* takes for Z = 0, Zi*(t*) is
the corresponding value for Z = l, and maps to ti* = 0.
[21] Consider the transformation consisting of equation

(20),

d�* ¼ g �ð Þd�; ðA10Þ

D* �*ð Þd�* ¼ D �ð Þ
f �ð Þ d�; ðA11Þ

K* �*ð Þ ¼ K �ð Þ þ h �ð Þ
u �ð Þ ; ðA12Þ
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and

Q* ¼ Qþ h �ð Þ
u �ð Þ ; ðA13Þ

where f, g, h and u are functions to be determined.
[22] Using equations (A11) – (A13), equation (A9)

becomes

Z*� Zi* t*ð Þ ¼
ZZ
0

u

f
dZ: ðA14Þ

Similarly, each side of equation (A8) is transformed. First,

@�*

@t*
¼ @ �*; Z*ð Þ

@ t*; Zð Þ
@ t*; Z*ð Þ
@ t*; Zð Þ

�

¼ zg
l2

@�

@t
� f

u

@�

@Z

dZi*

dt
þ
ZZ
0

d uf �1ð Þ
d�

@�

@t
dZ

2
4

3
5

8<
:

9=
;;

ðA15Þ

where the middle term denotes the Jacobian [Pearson,
1990a]. Next,

� @Q*

@Z*
¼ � f

u

@

@Z

Qþ h

u


 �
: ðA16Þ

The right-hand sides of equations (A15) and (A16) are
equated and forced to reduce to equation (A8), in which
case we must have

zl�2g ¼ fu�2; ðA17Þ

d hu�1ð Þ
d�

¼ gznl�2; ðA18Þ

d uf �1ð Þ
d�

¼ lgz�1; ðA19Þ

and

d u�1ð Þ
d�

¼ �ggl�2: ðA20Þ

The new constants, n and g, appearing in equations (A18)
and (A19) permit the reduction to equation (A8) so long as
they are finite. In equation (A15) the integral in brackets on
the right-hand side is simplified using equation (A19):

dZi*

dt
þ lgQ0z�1 ¼ n: ðA21Þ

Integration of equation (A21) is immediate:

Zi* ¼ nt� lgz�1

Zt
0

Q0 tð Þdtþ Z0: ðA22Þ

From equation (A19) we find

uf �1 ¼ l g�þ dð Þz�1: ðA23Þ

[23] An expression for Z* can now be derived from
equations (A7), (A14), (A22) and (A23):

Z* ¼ lz�1 dZ � g I �
ZZ
0

�i Z
� �

dZ

2
4

3
5

8<
:

9=
;þ ntþ Z0: ðA24Þ

Using equations (A17) and (A23), equation (A20) can be
solved, yielding

u ¼ l g�þ dð Þ: ðA25Þ

Now, equation (A17) can be solved for g and f, i.e.,

g ¼ g�þ dð Þ�2 ðA26Þ

and

f ¼ z; ðA27Þ

where equations (A23) and (A25) were utilized.
[24] In equation (A18) the only unknown left is h, and so

h ¼ z g�þ dð Þ an� gJð Þ � n½ 	 lgð Þ�1; ðA28Þ

where, as in section 2.1, a = (1 + bg)d�1 and, from equation
(A10),

�* ¼ a�þ bð Þ g�þ dð Þ�1: ðA29Þ

The transformed diffusivity is, from equations (A11), (A27),
and (A29),

D* �*ð Þ ¼ g�þ dð Þ2z�1D �ð Þ: ðA30Þ

From equations (A12), (A25), and (A28), the transformed
hydraulic conductivity is

K* �*ð Þ ¼ lK �ð Þ þ z � an� gJð Þ þ bn� Jd½ 	f gl�2 g�þ dð Þ�1;

ðA31Þ

with a corresponding expression for Q*. Finally, integration
gives

I*�
Z Z*

Z* Z¼0ð Þ
�i* �*
� �

d�*

¼ lz�1 a I �
Z Z

0

�i Z
� �

dZ

� �
� bZ

! "
� Jt� I0: ðA32Þ
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