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Abstract

Background: A variety of methods for prediction of pep-
tide binding to major histocompatibility complex (MHC)
have been proposed. These methods are based on binding
motifs, binding matrices, hidden Markov models (HMM),
or artificial neural networks (ANN). There has been little
prior work on the comparative analysis of these methods.
Materials and Methods: We performed a comparison of
the performance of six methods applied to the prediction
of two human MHC class I molecules, including binding
matrices and motifs, ANNs, and HMMs.
Results: The selection of the optimal prediction method
depends on the amount of available data (the number of
peptides of known binding affinity to the MHC molecule
of interest), the biases in the data set and the intended
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purpose of the prediction (screening of a single protein
versus mass screening). When little or no peptide data are
available, binding motifs are the most useful alternative to
random guessing or use of a complete overlapping set of
peptides for selection of candidate binders. As the number
of known peptide binders increases, binding matrices and
HMM become more useful predictors. ANN and HMM are
the predictive methods of choice for MHC alleles with
more than 100 known binding peptides.
Conclusion: The ability of bioinformatic methods to
reliably predict MHC binding peptides, and thereby
potential T-cell epitopes, has major implications for
clinical immunology, particularly in the area of vaccine
design.

Introduction
Major histocompatibility complex (MHC) molecules
play a critical role in immune system function by
binding short peptides and presenting them for
recognition by T-cell receptors (TCR). Peptides pre-
sented by MHC class I molecules mostly originate
from the cytoplasm (endogenous proteins or intra-
cellular pathogens) whereas peptides presented by
MHC class II molecules are mainly derived from
exogenous antigens. Peptide-MHC complexes acti-
vate T cells to destroy abnormal (infected or neo-
plastic) or foreign (transplanted) cells.

The MHC has the highest level of polymorphism
among all known functional loci in the human
genome. The number of human leukocyte antigen
(HLA) alleles characterized at the three classical
HLA class I loci (A, B, and C) is shown in Table 1.
Polymorphism in HLA molecules is concentrated
around nucleotides encoding peptides adjoining the
HLA peptide-binding groove. Each distinct HLA al-
lele thereby encodes a slightly different peptide-
binding domain. A discrete, albeit large, spectrum of
peptides bind each particular HLA molecule and
HLA-binding peptides are characterized by specific
binding motifs (1). Peptides that bind HLA class I

are 7–12 amino acids long (2). Because peptide
binding to HLA is a prerequisite for peptide presen-
tation and T-cell recognition, T-cell epitopes com-
prise a subset of HLA-binding peptides.

HLA class I restricted T-cell epitopes are poten-
tial vaccine candidates for use in immunization
against cancer (3) or infectious disease (4,5). The as-
certainment of which peptides bind to a given HLA
molecule is a useful first step in the identification of
T-cell epitopes. Although the number of peptides
that can bind to a specific MHC molecule is large, it
is approximately two orders of magnitude smaller
than the number of peptides that can be generated
by the degradation of protein antigens. T-cell epi-
tope mapping, including HLA peptide-binding
studies, is one of the most intensively researched ar-
eas of molecular and cellular immunology. Because
of extensive HLA allelic variation, a systematic lab-
oratory approach to T-cell epitope mapping, even of
a single protein antigen, requires a large number of
experiments. Consequently, prediction of peptide-
MHC binding is useful for preselection of potential
T-cell epitopes. For maximum benefit, computer
models must be treated as experiments analogous to
more typical wet-lab experimental procedures. This
requires the definition of standards and protocols for
application of predictive models (6).

The most important requirements for predic-
tive modeling are accuracy, broad coverage and
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generalizability. Accuracy requires low levels of false-
positive and false-negative predictions. Broad cover-
age refers to the ability of the model to predict dif-
ferent subsets of binding peptides and not only
those that belong to the most numerous groups. For
example, 9-mer peptides that are “ideal” binders to
HLA-B15 molecules (with primary anchors at posi-
tions P2 and P9 in concordance with experimentally
determined motifs) have been estimated to represent
only 29% of all HLA-B15 binders (7). The majority
of peptides for which experimental binding data are
available are motif concordant, implicating strong
biases in peptide preselection. Generalizability is an
important quality of predictive models, which must
be able to accurately generate new data rather than
simply fit existing data to the model.

Peptide Preselection Using Theoretical Predictions

Several methods have been used for prediction of
peptide binding to MHC molecules, including data
binding motifs identified by pool sequencing (1),
quantitative matrices (8–12), artificial neural net-
works (ANNs) (13–16), hidden Markov models
(HMMs) (17), and molecular modeling (18–20). The
majority of the methods predict whether peptides
are binders to a given MHC, whereas some of the
later developments focus on predicting peptide
binding affinity to MHC receptors (19,20). The for-
mer are more suitable for a large-scale screening of
potential T-cell epitopes, and the latter are computa-
tionally intensive and are better suited for detailed
analysis of short immunogenic regions of antigens.

Binding motifs indicate the positions and the
amino acids of primary anchors, secondary anchors,
and other preferred or observed amino acids at spe-
cific positions within a peptide. Quantitative matri-
ces provide coefficients for amino acids at each posi-
tion within the peptide and an appropriate formula
to calculate the peptide binding scores. Binding mo-
tifs and quantitative matrices assume the indepen-
dent contribution of individual amino acids to pep-
tide binding. ANN- and HMM-based predictions use
more sophisticated computational algorithms that
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allow capturing of the complex patterns that define
peptide binding. Molecular modeling uses detailed
knowledge of the crystal structure of MHC molecules
and of protein-peptide interactions. Molecular mod-
eling has been useful for visualization and detailed
analysis of pocket interactions in clefts of various
MHC molecules (21), but this methodology is cur-
rently less useful for large-scale screening of poten-
tial HLA-binding peptides. Quantitative matrices
based on amino acid yields during Edman degrada-
tion from multiple independent pool sequences of
eluted self-peptides have been reported for several
HLA class II molecules (22,23). This method quanti-
fies amino acids adjoining the peptide binding core,
which may also be involved in antigen processing.

Predictive models have been successfully used
in the discovery of novel T-cell epitopes involved in
cancer immunity (24–26), autoimmunity (27), infec-
tious diseases (28,29), and allergies (30). Theoretical
T-cell epitope predictions have been shown to min-
imize the time and cost of epitope mapping. How-
ever, before theoretical prediction methods can be
used as standard methodology for T-cell epitope dis-
covery and mapping, it is essential to first assess the
accuracy, coverage, and potential biases these meth-
ods may introduce.

Early T-cell epitope prediction methods based
on identifying amphipathic helices or generalized
motifs performed poorly (31). Comparative perfor-
mance of various predictive methods has been re-
ported in several studies and these have shown
binding motifs to be amongst the least accurate of all
predictive methods. Gulukota et al. (15) compared
the performances of quantitative matrices and ANNs
for prediction of peptide binding to the class I mol-
ecule HLA-A*0201 and reported that quantitative
matrices have high specificity and that ANNs have
high sensitivity. Brusic et al. (16), compared the per-
formance of an experimentally derived matrix and
ANN for prediction of peptides that bind HLA-
DRB1*0401, and found the ANN to be more accu-
rate. This finding has been independently confirmed
by Borrás-Cuesta et al. (32), who compared the per-
formance (using HLA-DRB1*0401) of four different
matrix-based methods and ANN. Mamitsuka (17)
reported the superior predictive power of HMM
compared to ANN models for prediction of peptide
binding to HLA-A*0201. Finally, Andersen et al.
(33) compared predictions of two publicly available
prediction programs (SYFPEITHI and BIMAS) with
the results of experimental peptide binding. They
reported poor correspondence between predicted
and experimental binding of peptides to two com-
mon HLA class I molecules. Although these findings
are indicative of the relative strengths of individual
methods, a systematic comparison of prediction
methods for peptide–MHC binding has not been
previously performed.

Here we report the results of a systematic com-
parison of six methods for prediction of peptide

Table 1. Number of allelic variants of classical HLA
Class I Molecules*

Number of Functional
Locus Allelic Variants

HLA-A 200

HLA-B 416

HLA-C 92

Total 708

*As of October, 2001. Available from URL;
http://www.anthonylan.com/HIG/index.html.
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HLA-B*3501 data set is composed of 234 peptides.
The binders in each data set comprised reported 
T-cell epitopes, eluted peptides (naturally processed),
poly-Alanine variants, and other synthetic peptides
(Table 2). Peptide reported only as binders (eluted
peptides) were assigned the moderate binding affinity
for predictive modeling. Peptides reported as T-cell
epitopes, but for which binding affinity was not de-
termined, were also assigned moderate binding affin-
ity. All binders were nine amino acids long; non-
binders also included longer peptides.

Quantitative Matrices and Motifs

SYFPEITHI (www.uni-tuebingen.de/uni/kxi/) is a
predictive method based on scoring binding motifs.
The SYFPEITHI matrix is based on the selection of
positive or negative scores (based on the observed
amino acid frequencies and the positions of primary
anchors) to each amino acid at each position in the
peptide. The scoring reflects the frequency of the re-
spective amino acid in natural MHC ligands, T-cell
epitopes, or binding peptides (12).

We have also assessed the predictive performance
of several binding matrices. The HLA-A*0201 matri-
ces include BIMAS (8; bimas.dcrt.nih.gov/molbio/
hla_bind/), and two new matrices derived in this
work, YK0201 and YKW0201. The BIMAS HLA-A
*0201 matrix was derived experimentally from the
measurements of half-time dissociation rates of pep-
tide-HLA complexes. The YK0201 matrix was gener-
ated using logarithmic equations based on the fre-
quency of amino acids at specific positions within the
training set of peptides using the following formulae:

 SAA � �log2 aFAAn � FAAp

FAAp � FAAn
� 1b�if FAap 6 FAAn

 SAA � log2 aFAAp � FAAn

FAAp � FAAn
�  1b  if FAap 7 FAAn

binding to two HLA class I molecules, HLA-A*0201
and HLA-B*3501. These methods include binding
motifs (SYFPEITHI), experimentally derived quan-
titative matrices (BIMAS), data-derived matrices
(YK and YKW), ANNs, and HMMs. This comparison
clarifies the strengths and deficiencies of these pre-
diction methods. It also serves as a practical guide
for the use of predictive models in identification of
potential T-cell epitopes. To compare predictive per-
formance, we considered multiple factors, including
multiple measures of the goodness of prediction, in-
fluence of the number of peptides available for
building the predictive system, effects of biases in
the data set, validation method, scaling of predic-
tion values, and inclusion of expert knowledge for
the refinement of predictions. The performances of
various methods were also tested for prediction of
subsets of MHC-binding peptides, namely sets of re-
ported T-cell epitopes, naturally processed peptides,
poly-Ala peptides, and other synthetic peptides.

Materials and Methods
Experimental Peptide Binding Data

Binding sequences were extracted from MHCPEP, a
database of MHC binding peptides (2). Nonbinding
peptides (available from the authors upon request)
were extracted from a collection of MHC experimen-
tally determined nonbinding data retrieved from
the same literature sources as the MHCPEP entries
(V. Brusic, unpublished). Binding data have been de-
rived using a variety of experimental methods and
have been assigned descriptive values of high, moder-
ate, low, and nonbinding as defined in the MHCPEP
database (2). The initial HLA-A*0201 data set is com-
posed of 1146 peptides and the expanded set includes
1230 peptides. The expanded HLA-A*0201 data set
included an additional 60 T-cell epitopes and 24 nat-
urally processed peptides. These peptides were added
to the HLA-A*0201 set of the SYFPEITHI database
after analysis of the initial set was completed. The

Table 2. Data sets used for building prediction methods and the partitions used for assessing predictive
performances

Binders

Naturally
T-cell Processed Other Total 

HLA Nonbinders Epitopes Peptides Poly-Ala Synthetic Binders

A*0201a* 787 123 33 44 159 359

A*0201b† 183 57 44 159 443

B*3501 128 24 — — 82 106

*Initial data set.
†Expanded data set.



where SAA is the matrix coefficient for a particular
amino acid at a particular position in the peptide,
FAAp refers to the proportion of a particular amino
acid at the observed position within binders, and
FAAn refers to the proportion of a particular amino
acid at the observed position within nonbinders.
We weighted the columns of YK0201 matrices ac-
cording to the reported binding motifs to derive
the YKW0201 matrix. The respective division coef-
ficients for columns 1–9 were 4, 1, 4, 4, 4, 5, 2, 3,
and 1. The division coefficients were derived using
a search program for the best fitting of binding
data.

The B35CS matrix for predicting peptide bind-
ing to HLA-B*3501 was constructed from rank
scores of amino acid frequencies in HLA-B*3501
binding peptides identified in a single study (10).
We modified the coefficients from the original pub-
lications: non-anchor amino acids at the primary an-
chor positions P2 and P9 were assigned 0 values,
and the proline at the anchor position P2 was as-
signed value of 1 (Table 3). The B35CS binding
scores were calculated by multiplication of the coef-
ficients for each peptide.

Artificial Neural Networks

ANNs are connectionist models commonly used for
classification (34) and pattern recognition (35)
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tasks. In this study, ANN models were built as pre-
viously described (13,27). We trained a fully con-
nected, three-layer, feed forward ANN using PlaNet
software (36). The training set consisted of binding
and nonbinding 9-mer peptides (Table 2). The
ANN architecture is composed of 180 input units
(corresponding to the binary representation of 9-
mer peptides), two hidden layer units, and a single
output unit. The learning algorithm was error back
propagation (37). The ANN training was performed
for 300 cycles. The values for momentum and learn-
ing rate were 0.5 and 0.2, respectively. Each pre-
diction result was calculated as the average of four
independent prediction runs. Each amino acid was
encoded as a binary string of length 20 with a
unique position set to “1” and all other positions
set to “0.” A 9-mer peptide was represented as a
sparse binary string of length 180, sequentially
combining representations of each amino acid. The
output value was scaled 0–10, representing a range
from no affinity to very high binding affinity. Bind-
ing scores used for ANN training were 1, 4, 6, and
8 for no-, low-, moderate-, and high-affinity binders,
respectively.

Hidden Markov Models

HMM is a statistical model that can learn general-
ized probabilistic rules from data sets. The most

Table 3. B35CS matrix for prediction of peptide binding to HLA-B*3501

P1 P2 P3 P4 P5 P6 P7 P8 P9

A 0.27 0 0.88 0.91 1.30 0.86 1.14 1.06 0.00

C 1.29 0 1.31 1.53 1.32 1.23 1.09 1.37 0.00

D 1.54 0 0.91 0.75 1.50 1.25 0.88 1.18 0.00

E 1.54 0 0.91 0.75 1.50 1.25 0.88 1.18 0.00

F 1.31 0 0.25 0.91 0.25 1.00 0.60 0.40 1.30

G 0.27 0 0.88 0.91 1.30 0.86 1.14 1.06 0.00

H 1.31 0 0.25 0.91 0.25 1.00 0.60 0.40 0.00

I 1.42 0 1.65 1.04 1.43 1.06 2.00 1.11 0.64

K 0.83 0 0.54 1.00 0.39 0.67 0.38 0.44 0.00

L 1.42 0 1.65 1.04 1.43 1.06 2.00 1.11 1.04

M 1.42 0 1.65 1.04 1.43 1.06 2.00 1.11 0.50

N 0.56 0 0.86 0.38 1.25 1.36 1.22 1.17 0.00

P 0.00 1 1.00 0.91 0.88 1.25 0.75 1.00 0.00

Q 0.56 0 0.86 0.38 1.25 1.36 1.22 1.17 0.00

R 0.83 0 0.54 1.00 0.39 0.67 0.38 0.44 0.00

S 1.29 0 1.31 1.53 1.32 1.23 1.09 1.37 0.00

T 1.29 0 1.31 1.53 1.32 1.23 1.09 1.37 0.00

V 1.42 0 1.65 1.04 1.43 1.06 2.00 1.11 0.00

W 1.31 0 0.25 0.91 0.25 1.00 0.60 0.40 0.00

Y 1.31 0 0.25 0.91 0.25 1.00 0.60 0.40 1.56
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derive their predictive models. The testing criteria
were neutral for all other methods using leave-one-
out method, and slightly unfavorable for ANN pre-
dictions (because ANN models were trained on data
sets composed of 90% of the total number of pep-
tides). The exclusion from the training test of all
peptides highly similar to the test peptide was done
to minimize bias and enhance the assessment of gen-
eralization ability of the tested models.

Nonbinding peptides were decomposed into
overlapping (by one amino acid) 9-mers that were
used for model training, as previously reported (41).
For testing, each nonbinding peptide was consid-
ered as a single data point. If any one of the subse-
quences within a nonbinding peptide was predicted
as a binder, the whole peptide was considered a
false positive.

Measures of Predictive Accuracy

The accuracy of predictive models was assessed us-
ing common statistical measures of sensitivity (SE)
and specificity (SP). SE indicates the quantity of pre-
dictions (the proportion of correctly predicted true
positives). SP indicates the quality of predictions,
namely the proportion of correctly predicted true
negative examples. These measures are calculated
by the formulae SE � TP/(TP � FN) and SP � TN/
(TN � FP), where TP stands for true positives (pep-
tides that are both predicted and experimentally
measured as binders), TN for true negatives (both
predicted and measured as nonbinders), FP for false
positives (predicted as binders but measured as
nonbinders), and FN for false negatives (predicted
as nonbinders but measured as binders).

To better understand the overall performance
of studied predictors, we also used receiver operat-
ing characteristic (ROC) curve analysis (42). ROC
analysis provides the Aroc measure by integration
of the function SE � f(1 � SP) for various decision
thresholds. The area under the ROC curve (Aroc)
provides a single measure of the accuracy of pre-
dictive models. Values of Aroc � 50% indicate
random choice; Aroc � 80%, moderate accuracy;
and Aroc � 90%, high prediction accuracy (42).

Comparison of Predictive Performances

Predictive performance was assessed for all peptides
and various subgroups: T-cell epitopes, naturally
processed peptides, synthetic binders, or poly-Ala
peptides (Table 2). We compared the overall perfor-
mance for each method by calculating Aroc values.
High specificity predictions of peptide–MHC bind-
ing are needed because high-affinity binding pep-
tides occur at low frequency in naturally processed
antigens. A broad estimate (6) is that between 0.1%
and 5% of the overlapping peptides derived from a
typical protein may bind to a given MHC molecule.
In practice, it means that a low threshold for pre-
dicted binders results in high sensitivity but at the
expense of low specificity due to the overwhelming

common use of HMM in molecular biology is as a
probabilistic profile of a protein family. HMMs are
commonly used to model a family of unaligned se-
quences or a common motif within a set of un-
aligned sequences (38,39). The aligned peptides re-
ported as binders to HLA-A*0201 or HLA-B*3501
were used to train first-order profile HMM models.
HMM models were built using the HMMER pack-
age (40). The training set consisted of the alignment
of the binding 9-mer peptides (Table 2). We used the
program HMMbuild to create a profile HMM using
the training set, HMMcalibrate to refine the model,
and the HMMsearch to score the test data. HMMcali-
brate was used with the fixed length of sequences of
9 amino acids; the cutoff expectation value in HMM-
search was set to E � 60. The observed range of out-
put values was between �0.3 and �23. Higher val-
ues corresponded to predicted binders, lower values
to predicted nonbinders.

Model Training and Validation

The accuracy of matrices (YK0201 and YKW0201)
and HMM-based predictions was assessed by the
leave-one-out cross-validation (34). The variation of
the method used in this study included several
steps: a) a single peptide (test peptide) was removed
from the peptide set, b) all peptides that differed by
only a single amino acid from the test peptide were
removed, c) a predictive model was generated using
all the remaining peptides, d) the binding of the test
peptide was predicted, e) test peptide was returned
into the peptide set, f) steps a–e were repeated until
all peptides are exhausted, and g) the accuracy of the
model was assessed using prediction values for all
test peptides. Because of the long time required for
training ANN models, leave-one-out cross-validation
could not be used, and the accuracy of the ANN
models was assessed by a 10-fold cross-validation
(34). The variation of the method applied in this
study consisted of the following steps: a) a data set
was randomly divided into 10 partitions, each of
which had mutually exclusive training and test sets;
the 10 test sets were also mutually exclusive, b) in
each partition, all peptides in the training set that
differed by only a single amino acid from any of the
test peptides of the same partition were removed
from the corresponding training set, c) a training set
was used to build a predictive model, d) binding of
the peptides from the test set was predicted with the
corresponding model, e) steps a–d were repeated for
each partition, and f) the accuracy of the model was
assessed using prediction values for each peptide.
For SYFPEITHI and BIMAS methods, all peptides
from the HLA-A*0201 set were tested and these re-
sults were used for assessing the respective predictive
performances. All peptides from the HLA-B*3501
set were used to assess the predictive performance of
the B35CS matrix. The testing criteria slightly fa-
vored SYFPEITHI and BIMAS methods because the
testing set included some of the peptides used to



number of false positive predictions. In addition to
the assessment of the overall accuracy of predictions,
we compared the performance of individual predic-
tive methods for values of specificity � 0.8.

Results
Overall Prediction of Peptide Binding to HLA-A*0201

The Aroc values for the studied methods (Fig. 1)
ranged from 0.81–0.87. These values indicate good
overall performance for each method. The Aroc val-
ues of predictions using ANN, HMM, and YKW0201
were slightly higher than those using BIMAS and
SYFPEITHI methods. The frequency-based matrix
YK0201 produced the lowest Aroc value of all stud-
ied methods. The 23% increase in the number of
peptides available for the HLA-A*0201 model re-
finement (Table 2) was expected to improve the
accuracy of the data-driven prediction methods
(YK0201, YKW0201, ANN, and HMM), but not the
accuracy of experimentally derived matrix (BIMAS)
or motif-based prediction (SYFPEITHI) methods. Un-
expectedly, except for the ANN method, predictions
performed using the expanded set of HLA-A*0201
binders (443 binding peptides) produced similar or
lower Aroc values than predictions using the initial
data set (359 binding peptides). To clarify the dis-
crepancy between the expected and observed results,
we reassessed the predictive performance of all meth-
ods using subsets of HLA-A*0201 binding peptides.

Binding of Peptide Subsets to HLA-A*0201

The Aroc values of predictions by peptide subsets are
shown in Figure 2. The predictions of the subset
of peptides corresponding to the reported T-cell
epitopes (Fig. 2a) were similar to the overall results
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shown in Figure 1. The Aroc values of the T-cell epi-
tope subset ranged from 0.81–0.87. For T-cell epi-
tope predictions, BIMAS, ANN, or HMM predic-
tions had a slightly higher accuracy than other three
studied methods.

The Aroc values of predictions of the subset of
naturally processed peptides (33 in the initial set
and 57 in the expanded set) showed a significant
difference for predictions using the initial set of pep-
tides (787 nonbinders and 359 binders) and the ex-
panded set (787 nonbinders and 443 binders). The
highest accuracy was achieved by the SYFPEITHI
method, followed by the ANN- and BIMAS-based
predictions (Fig. 2b). The Aroc values for predictions
of naturally processed peptides using the extended
set were significantly lower (p � 0.0008, paired t-test)
than the predictions using the initial set across all
predictive models.

The prediction of artificial poly-Ala sequences
proved to be of high accuracy (Aroc � 0.9) for all meth-
ods except in BIMAS. These sequences have little rel-
evance for the prediction of biologically relevant sub-
sets of T-cell epitopes or naturally processed peptides.
Indeed, the removal of the poly-Ala peptides from the
training sets did not affect the prediction of biologi-
cally relevant peptide sets (data not shown).

The Aroc values for predictions of the subset of
other synthetic peptides were generally lower than
for other subsets, with the ANN, HMM, and YKW
models yielding the highest accuracy. There was no
difference of Aroc values between predictions using
the initial data set and those using the expanded
data set, except for the ANN-based predictions. The
ANN predictions using the expanded data set
improved the accuracy of predictions of synthetic
peptides consistent with ANN-based methods being

Fig. 1. Aroc values of six models cross-validated for prediction of peptide binding to HLA-A*0201. White bars represent
predictions with the initial HLA-A*0201 data set, black bars represent predictions with the expanded data set, as described in
Materials and Methods.
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other methods (Table 5). The r2 coefficient indicates
that for HMM or ANN methods approximately 70%
of predictions can be explained by the presence of
the extended motif. For remaining methods, the pres-
ence of the extended motif can explain approximately
80% of predictions. Of the six methods studied, the
accuracy of ANN predictions was the highest and that
of HMM equal second (Fig. 1). Together with the
correlation analysis, this indicates that ANN and
HMM models tend to capture binding patterns of
higher complexity than other methods studied here.
Higher complexity patterns and stronger generaliza-
tion properties have been emphasized in ANN mod-
els, which showed a general increase in the accuracy
of predictions with the increase of the size of the
training set of peptides.

High Specificity Predictions of Peptide Binding 
to HLA-A*0201

The comparison of performance of the studied meth-
ods for values of SP � 0.8 is shown in Figure 4. The
best performance using the initial data set (Fig. 4A
and 4B) was achieved by the ANN and BIMAS meth-
ods. The frequency-based weighted matrix YKW was
third best; HMM, SYFPEITHI, and YK methods were
less accurate. The accuracy of the models derived/
tested by the expanded data set (Fig. 4C and 4D)

robust and capable of being refined by addition of fur-
ther peptide binding data. Heuristic rules describing
relative importance of specific positions within pep-
tides are also useful. These rules, extracted from bind-
ing motifs, can be used for modification of frequency-
based quantitative matrices for higher accuracy.

Analysis of HLA-A*0201 Binding Motifs

Historically, the identification of MHC-binding pep-
tides has often involved the preselection of pep-
tides based on the presence of binding motifs. This
has resulted in an overrepresentation of motif-
containing peptides in the available data sets. We
have therefore analyzed the subsets of peptide
binding data for the presence of binding motifs
(Table 4). The proportion of non-motif containing
peptides in the initial data set (T-cell epitopes and
naturally processed peptides) is lower than in the
expanded data set.

The analysis of the peptide sets for presence of
basic and extended motifs established that there is a
positive correlation between the overall accuracy of
the predictive models and the number of peptides
containing the extended motif x(T,A,V,I,L,M)xxxxxx
(T,A,M,I,V,L) (41). Representative correlation plots
are shown in Figure 3. The correlation coefficients in
ANN- and HMM-based prediction were lower than in

Fig. 2. Aroc values of six models cross-validated for prediction of binding of peptide subsets to HLA-A*0201. Peptide repre-
sented in subsets are exclusively (as reported) T-cell epitopes (a), naturally processed peptides peptide (b), poly-A (c), and synthetic
peptides (d). White bars represent predictions with the initial HLA-A*0201 data set, and dark bars represent predictions with the
expanded data set, as described in Materials and Methods.



remained unchanged, except for the ANN-based
method whose prediction accuracy markedly im-
proved. This finding is consistent with the overall
improvement of the ANN-based predictions with the
increased size of the peptide set (Fig. 1).
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Prediction of Peptide Binding to HLA-B*3501

The Aroc values for the studied methods (Fig. 5)
ranged from 0.65–0.75, indicating poor overall per-
formance across all methods. The Aroc values of
predictions using experimentally derived matrix

Fig. 3. The accuracy-motif correlation.
Representative graphs showing correlation
between the accuracy of (A) BIMAS and 
(B) ANN predictions and the percentage of
peptides containing the extended motif
x(T,A,V,I,L,M)xxxxxx(T,A,M,I,V,L). The cor-
relation coefficient values are given in Table 3.

Table 4. Binding motif in HLA-A*201 binding peptides

Peptides

Peptide Set Data Set Basic Motif* Extended Motif†

T-cell epitopes Initial 75 (61%) 114 (92.7%)

Extended 75 � 28 (56.3%) 114 � 55 (92.3%)

Naturally processed Initial 13 (39.4%) 33 (100%)

Extended 13 � 14 (47.4%) 33 � 17 (87.7%)

Poly-Ala Initial 36 (81.8%) 43 (97.7%)

Other synthetic Initial 80 (50.3%) 138 (86.8%)

Nonbinders Initial 23 (2.9%) 243 (30.1%)

*Basic motif defined as x(L,M)xxxxxx(V,L).
†Extended motif defined as x(T,A,V,I,L,M)xxx(T,A,M,J,V,L)
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Table 5. Correlation between Aroc values and the percentage of peptides containing extended binding motif

Method YK YKW BIMAS SYFPEITHI ANN HMM

Correlation 0.89 0.90 0.90 0.88 0.84 0.85

coefficient r

r2 0.79 0.81 0.81 0.77 0.70 0.72

on their similarity to the proposed binding motifs.
This results in overrepresentation of such peptides
with a relative paucity of random “non-motif-bearing”
peptides. Although all of the predictive methods
studied here inevitably encode biases present in the
data, ANN and HMM appear to be less bias sensitive.
ANN and HMM provide better predictions, therefore,
of binding peptides that do not fit proposed consensus
motifs.

Although quantitative matrices are simple to use
they are based on the assumption that each amino
acid in a peptide contributes independently to over-
all binding. The analysis of MHC-peptide crystal
structures suggests that binding energy for individ-
ual amino acid residues within the peptide is not in-
dependent of neighboring residue effects (44). This
may account for the failure of matrix-based binding
predictions to identify good binders that do not con-
tain proposed binding motifs. By comparison, ANNs
have the advantage that they can a) generalize from
input data, b) tolerate noise and errors in data, c)
deal with nonlinear problems (i.e. beyond simple or
extended motifs), and d) are adaptive and self-refine
with the addition of new data. The disadvantage of
ANNs is that it is difficult to extract the explanation
and rules learnt from the data. The poor performance
of the ANN for prediction of HLA-B*3501 binding is
likely to reflect the insufficient size of the training
set of peptides. HMM-based methods for making
predictions of peptide binding have not been exten-
sively studied previously. Our results do, however,
suggest that HMMs provide similar advantages as
ANNs when used for this purpose. An additional
advantage of HMMs is that they require a smaller
number of training peptides than ANNs to build
useful predictive models. The predictions using
quantitative matrices can potentially be improved
by defining multiple high-specificity matrices for a
single HLA molecule.

Computational binding predictions provide use-
ful data complementary to wet-lab experimentation.
Predictions are useful for peptide selection for bind-
ing studies, planning of experiments, and better un-
derstanding of biological processes. Given the large
amount of peptide binding data that are publicly
available in respect of human and mouse MHC mol-
ecules (2) (data is available for over two dozen
human HLA alleles) plus data available privately,
ANN or HMM will increasingly be the favored

B35SC, HMM, and YKW0201 were 0.75, 0.75, and
0.72, respectively. Empirically (42), the values 0.7 �
Aroc � 0.8 indicate that these methods are potentially
useful, but not of high predictive accuracy. ANN, BI-
MAS, and YK methods had Aroc values lower than
0.7, indicating that they are not good predictors with
the current data set. Together with the results for
HLA-A*0201 predictions, these results show the im-
portance of the number of peptides used to develop
predictive models of peptide binding.

Conclusions and Discussion
This comparative analysis demonstrates that no pre-
dictive method of peptide–MHC binding consis-
tently outperforms the rest. Rather, the most appro-
priate predictive model depends on the amount of
available data (the number of peptides of known
binding affinity for the HLA molecule of interest),
the extent of bias in the training data set, and the in-
tended purpose of the prediction. A number of con-
clusions can be drawn from these results.

Experimentally derived binding matrices, such
as BIMAS HLA-A*0201 and B35CS, are useful when
relatively small amounts of data are available for the
development of predictive models. Over time, as in-
creasing HLA binding peptide data become avail-
able, binding matrices will be outperformed by
data-driven models such as frequency-based matri-
ces, ANN, or HMM. If a relatively small number of
data (approximately 100 binding peptides) are
available, the methods of choice are HMM or fre-
quency-based weighted matrices, such as YKW0201
or YKW3501. When larger amounts of data are avail-
able, ANN or HMM are the methods of choice. Pro-
vided that binding data on a sufficient number of
peptides are available, ANN is the most useful
method to provide high specificity although at the
cost of slightly lower sensitivity. This will be use-
ful where large numbers of proteins are to be
scanned to identify at least some high-probability
HLA binding peptides. On the other hand, where
high sensitivity is required (e.g., screening a single
protein for all binding peptides for a particular
HLA molecule), HMM may be the most suitable
method.

Currently available HLA binding data sets con-
tain significant biases. This is due to selection of
peptides for laboratory binding verification based
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Fig. 4. Values of sensitivity (SE) for various specificity (SP) thresholds. (A) Initial HLA-A*0201 peptide set. (B) Initial HLA-A*0201 set with fitted curves. (C)
Extended HLA-A*0201 peptide set. (D) Extended HLA-A*0201 peptide set with fitted curves.
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