metal-organic compounds

Acta Crystallographica Section C Crystal Structure Communications ISSN 0108-2701

Ni^{II} and Zn^{II} complexes of the hexadentate macrocyclic ligand *cis*-6,13dimethyl-1,4,8,11-tetraazacyclotetradecane-6,13-diamine

Paul V. Bernhardt

Department of Chemistry, University of Queensland, Brisbane 4072, Australia Correspondence e-mail: bernhardt@chemistry.uq.edu.au

Received 21 February 2000 Accepted 10 March 2000

The title pendent-arm macrocyclic hexaamine ligand binds stereospecifically in a hexadentate manner, and we report here its isomorphous Ni^{II} and Zn^{II} complexes (both as perchlorate salts), namely (*cis*-6,13-dimethyl-1,4,8,11-tetraazacyclotetradecane-6,13-diamine- $\kappa^6 N$)nickel(II) diperchlorate, [Ni-(C₁₂H₃₀N₆)](ClO₄)₂, and (*cis*-6,13-dimethyl-1,4,8,11-tetraazacyclotetradecane-6,13-diamine- $\kappa^6 N$)zinc(II) diperchlorate, [Zn(C₁₂H₃₀N₆)](ClO₄)₂. Distortion of the N-*M*-N valence angles from their ideal octahedral values becomes more pronounced with increasing metal-ion size and the present results are compared with other structures of this ligand.

Comment

The coordination chemistry of the isomeric pendent-arm macrocycles *trans*- and *cis*-6,13-dimethyl-1,4,8,11-tetraazacyclotetradecane-6,13-diamine (L^1 and L^2 , respectively) has revealed a number of interesting variations in the structural and physical properties of their complexes. Complexes of the hexadentate-coordinated *trans* isomer (Curtis *et al.*, 1987; Bernhardt *et al.*, 1989, 1990, 1991; Borzel *et al.*, 1998) are more common than the corresponding *cis* complexes (Bernhardt *et al.*, 1992, 1993, 1997; Lye *et al.*, 1994). It is an interesting feature that L^1 and L^2 can only bind in one configuration when coordinated as hexadentates, so the structure of the organic ligand determines the isomerism of the resulting complexes.

The hexadentate *trans* isomers coordinate such that the metal is coplanar with the four secondary amines, and the pendent amines bind in *trans* coordination sites. By contrast, in the corresponding *cis* isomers, the macrocycle adopts a folded conformation and the pendent amines coordinate in *cis* sites. Molecular-mechanics calculations (Bernhardt & Comba, 1991) predicted that the *cis* isomer L^2 , bound as a hexadentate, would be able to complex both small and large metal ions, whereas the hexadentate-coordinated *trans* isomer could only accommodate metals up to a certain size, until one or both axial M-N bonds were broken as a consequence of strain in the complex. These computational results have been borne

out by subsequent experimental data.

The two complexes $[NiL^2](ClO_4)_2$, (I), and $[ZnL^2](ClO_4)_2$, (II), are isomorphous and the absolute configuration was determined in each case. The Ni^{II} and Zn^{II} crystals studied here, both grown from racemic solutions, were found to be enantiomorphs. Views of the two complex cations are shown in Figs. 1 and 2. The folded conformation of the macrocycle is evident, with the coordinated four secondary amines having the same absolute configuration i.e. RRRR (SSSS). Each complex cation has (non-crystallographic) C_2 symmetry; the principal axis bisects the N5-M-N6 angle, and the M-Nbond lengths separate into three distinct pairs (Tables 1 and 3). Both macrocyclic five-membered chelate rings adopt the same conformation ($\delta\delta$ or $\lambda\lambda$), where the C–C bond in each ring is oblique to the C_2 axis. This conformation was predicted (Bernhardt & Comba, 1991) to be dominant for complexes containing both small and large metal ions, and indeed no other conformation of a hexadentate-coordinated complex of L^2 has been identified. Hydrogen bonding between perchlorate-O atoms and most amine-H atoms is found (Tables 2 and 4). These hydrogen bonds result in chains comprising cations linked by perchlorate anions extending along the b axis.

The M-N bond lengths in both structures are typical of hexaamine complexes of Ni^{II} and Zn^{II}, and are significantly longer than those observed in the respective *trans* isomers: [Ni L^1](ClO₄)₂ 2.07_{sec} and 2.13_{prim} Å (Curtis *et al.*, 1987); [Zn L^1](ClO₄)₂ 2.10_{sec} and 2.21_{prim} Å (Bernhardt *et al.*, 1991), where subscripts sec and prim indicate secondary and primary N atoms, respectively. This is a feature that has now been observed in the *trans* and *cis* isomers of a number of complexes in this series (Co^{III}, Cr^{III}, Ni^{II} and Zn^{II}), where the *trans* isomers invariably exhibit unusually short M-N bond lengths in contrast to the corresponding coordinate bond lengths in the *cis* isomers, which are normal. Molecular-

Figure 1 View of (I) showing 30% probability ellipsoids.

Figure 2

View of (II) showing 30% probability ellipsoids (H atoms omitted).

mechanics calculations predicted this disparity some time ago (Bernhardt & Comba, 1991).

The valence angles involving the metal centres (Tables 1 and 3) indicate that the larger Zn^{II} ion exhibits a greater distortion from octahedral geometry than its Ni^{II} analogue. This again is a general trend across the series of known structures of L^2 complexes ranging from the smallest (Co^{III}; Bernhardt et al., 1997) to the largest (Pb^{II}; Lye et al., 1994). There are a number of structural indicators of this distortion. It may be viewed as a pseudo-trigonal twist of the N1-N2-N5 and N4-N3-N6 octahedral faces, by analogy with tris-bidentate complexes. This definition is somewhat limited in this case as there is no threefold axis in complexes of L^2 . A more reliable indicator of the distortion present in these complexes is the N5-M-N6 valence angle, which increases with the M-N bond length, and this is illustrated in Fig. 3. The Cd^{II} (Bernhardt et al., 1992) and Pb^{II} (Lye et al., 1994) structures exhibit somewhat exaggerated bite angles caused by (or resulting in) coordination of perchlorate anions, and their structures approximate distorted square-antiprismatic geometries (N_6O_2) . It is difficult to say whether the presence of these weakly bound ions (M-O > 3.0 Å) in the Cd^{II}/Pb^{II} structures significantly perturb the valence angles involving the coordinated macrocycle or, conversely, whether these distortions are driven by the macrocycles, which prize open the N5-M-N6 angles thus making room for incoming ligands.

Figure 3

Plot of observed N5-M-N6 angle (°) as a function of average M-N bond length (Å) for hexadentate-coordinated complexes of L^2 .

The observed distortions from octahedral geometry with increasing M-N bond length were predicted by molecularmechanics calculations. However, electronic contributions from transition metal ions will oppose distortions away from octahedral geometry (ligand-field stabilization energy), and neglecting this effect can lead to an overestimation of the observed distortion (Bernhardt & Comba, 1993). That is, the geometries of the d^{10} Zn^{II} and Cd^{II} complexes represent true ligand-dictated distortions, whereas the Co^{III}, Cr^{III} and Ni^{II} structures reflect a balance between ligand-directed steric and metal-based electronic effects.

Experimental

The title complexes were both synthesized readily by mixing equimolar amounts of the metal ion and ligand hydrochloride salt $(L^2 \cdot 6HCl)$ in water adjusted to pH 7 with NaOH solution. Both compounds were precipitated by addition of excess NaClO₄. Crystals of each complex were obtained by slow evaporation of their aqueous solutions.

Compound (I)

Crystal data	
$[Ni(C_{12}H_{30}N_6)](CIO_4)_2$ $M_r = 516.03$ Monoclinic, $P2_1$ a = 9.198 (4) Å b = 12.771 (1) Å c = 9.880 (5) Å $\beta = 113.09$ (2)° V = 1067.6 (7) Å ³ Z = 2	$D_x = 1.605 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation Cell parameters from 25 reflections $\theta = 10-14^{\circ}$ $\mu = 1.210 \text{ mm}^{-1}$ T = 295 (2) K Prism, purple $0.50 \times 0.50 \times 0.50 \text{ mm}$
Data collection Enraf-Nonius CAD-4 diffract- ometer ω -2 θ scans Absorption correction: ψ scan (North <i>et al.</i> , 1968) $T_{min} = 0.404, T_{max} = 0.546$ 2097 measured reflections 1971 independent reflections 1892 reflections with $I > 2\sigma(I)$	$R_{int} = 0.026$ $\theta_{max} = 24.98^{\circ}$ $h = 0 \rightarrow 10$ $k = 0 \rightarrow 15$ $l = -11 \rightarrow 10$ 3 standard reflections frequency: 120 min intensity decay: <5%
Refinement Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.044$ $wR(F^2) = 0.117$ S = 1.084 1971 reflections	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0981P)^{2} + 0.2008P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{\text{max}} < 0.001$ $\Delta\rho_{\text{max}} = 0.57 \text{ e} \text{ Å}_{a}^{-3}$

(-)	
= 1.084	
971 reflections	
78 parameters	
I-atom parameters constrained	

Table 1

2 H

Selected geometric parameters (Å, $^{\circ}$) for (I).

Ni-N1	2.075 (5)	Ni-N6	2.124 (5)
Ni-N3	2.077 (5)	Ni-N4	2.126 (5)
Ni-N5	2.096 (5)	Ni-N2	2.147 (5)
N1 N; N2	171.0 (2)	NIS NI: NI4	161 62 (18)
NI-NI-NS	1/1.0 (2)		101.05 (18)
NI - NI - N5	78.39 (19)	N6 - N1 - N4	79.5 (2)
N3-Ni-N5	107.0 (2)	N1-Ni-N2	91.0 (2)
N1-Ni-N6	106.6 (2)	N3-Ni-N2	82.9 (2)
N3-Ni-N6	79.5 (2)	N5-Ni-N2	81.3 (2)
N5-Ni-N6	102.9 (2)	N6-Ni-N2	162.4 (2)
N1-Ni-N4	83.47 (19)	N4-Ni-N2	101.98 (19)
N3-Ni-N4	91.33 (19)		

 $\Delta \rho_{\rm min} = -0.83 \ {\rm e} \ {\rm \AA}^{-3}$

Absolute structure: Flack (1983)

Flack parameter = 0.03(3)

Table 2

H	ydrogen-bonding ge	eometry (Å, °) for	(I)	
		2 . /	/	· ·	

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$N1 - H1 \cdots O1C^{i}$	0.91	2 41	3 192 (10)	144
$N2 - H2 \cdots O1D$	0.91	2.49	3.283 (10)	146
$N3-H3\cdots O2B^{ii}$	0.91	2.14	3.039 (8)	167
N3-H3···O2 B'^{ii}	0.91	2.08	2.917 (11)	152
$N4-H4\cdots O2A$	0.91	2.38	3.213 (7)	151
$N4-H4\cdots O2D$	0.91	2.57	3.271 (9)	135
$N5-H5A\cdots O2D^{ii}$	0.90	2.56	3.056 (8)	116
N5-H5 A ···O2 D'^{ii}	0.90	2.09	2.819 (10)	137
$N5-H5B\cdotsO1C^{i}$	0.90	2.62	3.389 (13)	144
N6-H6 A ···O2 B ⁱⁱⁱ	0.90	2.31	3.120 (8)	150
N6-H6 A ···O2 B'^{iii}	0.90	2.64	3.53 (3)	168
N6-H6 B ···O2 C^{ii}	0.90	2.50	3.341 (10)	156
N6-H6 B ···O2 C'^{ii}	0.90	2.49	3.382 (13)	170

Symmetry codes: (i) $1 - x, \frac{1}{2} + y, 1 - z$; (ii) 1 + x, y, z; (iii) $-x, \frac{1}{2} + y, -z$.

Compound (II)

Crystal data

[Zn(C12H30N6)](ClO4)2 $D_x = 1.611 \text{ Mg m}^{-3}$ $M_r = 522.69$ Mo $K\alpha$ radiation Monoclinic, P21 Cell parameters from 25 reflections a = 9.075(1) Å b = 12.891(1) Å $\theta = 10 - 14^{\circ}$ $\mu = 1.439 \ {\rm mm^{-1}}$ c = 9.963 (3) Å $\beta = 112.438 \ (9)^{\circ}$ T = 295 (2) KV = 1077.3 (4) Å³ Prism, colourless Z = 2 $0.30 \times 0.13 \times 0.10 \text{ mm}$

Data collection

Enraf-Nonius CAD-4 diffractometer ω -2 θ scans Absorption correction: ψ scan (North *et al.*, 1968) $T_{min} = 0.779$, $T_{max} = 0.866$ 2115 measured reflections 1987 independent reflections 916 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0782P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.060$	where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.175$	$(\Delta/\sigma)_{\rm max} < 0.001$
S = 0.987	$\Delta \rho_{\rm max} = 0.72 \ {\rm e} \ {\rm \AA}^{-3}$
1987 reflections	$\Delta \rho_{\rm min} = -0.66 \text{ e } \text{\AA}^{-3}$
258 parameters	Absolute structure: Flack (1983)
H-atom parameters constrained	Flack parameter = $-0.04(5)$

 $R_{\rm int}=0.073$

 $\theta_{\rm max} = 24.97^\circ$

 $h = 0 \rightarrow 10$

 $k = 0 \rightarrow 15$

 $l = -11 \rightarrow 10$

3 standard reflections

frequency: 120 min

intensity decay: <5%

Table 3

Selected	geometric	parameters ((Å, °`) for ((II)).
----------	-----------	--------------	--------	---------	------	----

Zn1-N6	2.128 (14)	Zn1-N1	2.170 (13)
Zn1-N5	2.134 (12)	Zn1-N4	2.219 (13)
Zn1-N3	2.141 (15)	Zn1-N2	2.255 (12)
N6-Zn1-N5	108.9 (6)	N3-Zn1-N4	89.7 (5)
N6-Zn1-N3	77.4 (5)	N1-Zn1-N4	79.7 (5)
N5-Zn1-N3	113.7 (6)	N6-Zn1-N2	156.5 (5)
N6-Zn1-N1	114.7 (6)	N5-Zn1-N2	80.0 (6)
N5-Zn1-N1	76.9 (5)	N3-Zn1-N2	79.2 (5)
N3-Zn1-N1	161.5 (5)	N1-Zn1-N2	88.3 (5)
N6-Zn1-N4	78.2 (6)	N4-Zn1-N2	102.5 (5)
N5-Zn1-N4	156.4 (5)		()

Table 4			
Hydrogen-bonding geometry	/ (Å,	°) fo	r (II).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1 \cdots O1A^{1}$	0.91	2.54	3.33 (2)	146
$N2-H2\cdots O1C$	0.91	2.57	3.39 (2)	150
$N3-H3\cdots O2B^{ii}$	0.91	2.28	3.14 (2)	158
$N3-H3\cdots O2C'^{ii}$	0.91	1.99	2.88 (2)	166
$N4-H4\cdots O2A$	0.91	2.48	3.300 (16)	151
$N4-H4\cdots O2D$	0.91	2.48	3.165 (18)	133
$N5-H5B\cdots O2D^{ii}$	0.90	2.61	3.12 (2)	116
$N5-H5B\cdots O2D'^{ii}$	0.90	2.18	2.853 (19)	132
N6−H6A···O2C ⁱⁱ	0.90	2.37	3.22 (2)	158
$N6-H6A\cdots O2B'^{ii}$	0.90	2.29	3.18 (2)	169
$N6-H6B\cdots O2B^{iii}$	0.90	2.41	3.201 (19)	147
$N6-H6B\cdots O2C'^{iii}$	0.90	2.42	3.30 (3)	165

Symmetry codes: (i) $1 - x, y - \frac{1}{2}, 1 - z$; (ii) 1 + x, y, z; (iii) $-x, y - \frac{1}{2}, -z$.

In both structures, rotational disorder in one of the perchlorate anions (about the Cl2-O2A bond) was modelled by refining atoms O2B/O2B', O2C/O2C' and O2D/O2D' with complementary occupancies and applying tetrahedral restraints to the O atoms of each contributor.

For both compounds, data collection: *CAD-4 Manual* (Enraf-Nonius, 1988); cell refinement: *SET4* in *CAD-4 Manual*; data reduction: *Xtal3.2* (Hall *et al.*, 1992); program(s) used to solve structure: *SHELXS*86 (Sheldrick, 1990); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *PLATON* (Spek, 1990); software used to prepare material for publication: *SHELXL*97.

Financial support from the University of Queensland is gratefully acknowledged.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FG1588). Services for accessing these data are described at the back of the journal.

References

- Bernhardt, P. V. & Comba, P. (1991). Helv. Chim. Acta, 74, 1834-1840.
- Bernhardt, P. V. & Comba, P. (1993). Inorg. Chem. 30, 2798-2803.
- Bernhardt, P. V., Comba, P., Curtis, N. F., Hambley, T. W., Lawrance, G. A., Maeder, M. & Siriwardena, A. (1990). *Inorg. Chem.* 29, 3208–3213.
- Bernhardt, P. V., Comba, P. & Hambley, T. W. (1993). Inorg. Chem. 30, 2804– 2809.
- Bernhardt, P. V., Comba, P., Hambley, T. W., Lawrance, G. A. & Várnagy, K. (1992). J. Chem. Soc. Dalton Trans. pp. 355–359.
- Bernhardt, P. V., Jones, L. A. & Sharpe, P. C. (1997). Inorg. Chem. 36, 2420– 2425.
- Bernhardt, P. V., Lawrance, G. A. & Hambley, T. W. (1989). J. Chem. Soc. Dalton Trans. pp. 1059–1065.
- Bernhardt, P. V., Lawrance, G. A., Maeder, M., Rossignoli, M. & Hambley, T. W. (1991). J. Chem. Soc. Dalton Trans. pp. 1167–1170.
- Borzel, H., Comba, P., Pritzkow, H. & Sickmuller, A. F. (1998). *Inorg. Chem.* **37**, 3853–3857.
- Curtis, N. F., Gainsford, G. J., Hambley, T. W., Lawrance, G. A., Morgan, K. R. & Siriwardena, A. (1987). J. Chem. Soc. Chem. Commun. pp. 295–297.
- Enraf–Nonius (1988). CAD-4 Manual. Version 5.0. Enraf–Nonius, Delft, The Netherlands.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

- Hall, S. R., Flack, H. D. & Stewart, J. M. (1992). Editors. *Xtal*3.2 *Reference Manual*. Universities of Western Australia, Australia, Geneva, Switzerland, and Maryland, USA.
- Lye, P. G., Lawrance, G. A., Maeder, M., Skelton, B. W., Wen, H. & White, A. H. (1994). J. Chem. Soc. Dalton Trans. pp. 793–798.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351– 359.

Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Spek, A. L. (1990). Acta Cryst. A46, C-34.