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Quasispin graded-fermion formalism
and g/(m|n)|osp (m|n) branching rules

Mark D. Gould and Yao-Zhong Zhang®
Department of Mathematics, University of Queensland, Brisbane, Queensland Qld 4072,
Australia

(Received 11 May 1999; accepted for publication 13 July 1999

The graded-fermion algebra and quasispin formalism are introduced and applied to
obtain thegl(m|n) | osp(m|n) branching rules for the “two-column” tensor irre-
ducible representations gfi(m|n), for the casem=n(n>2). In the casen<n,

all such irreducible representationsgifm|n) are shown to be completely reduc-
ible as representations ofsp(m|n). This is also shown to be true for the case

=n, except for the “spin-singlet” representations, which contain an indecompos-
able representation afsp(m|n) with composition length 3. These branching rules
are given in fully explicit form. ©1999 American Institute of Physics.
[S0022-24889)04410-2

I. INTRODUCTION

It is well known that branching rules are of great importance in the study of representation
theory. They also play an essential role in the determination of the parities for the components
appearing in the twisted tensor product graphs and the construction of correspRmdatgces:

There appear to be virtually no results in the literature on the branching rules for Lie super-
algebras. The only exception is Ref. 3, in which the branching rules are determined for all typical
and atypical irreducible representationsosfp(2|2n) with respect to its subalgebosp(1|2n). It
is very interestingand importantto investigate the branching rules for other Lie superalgebras.

In this paper we investigate the antisymmetric tensor irreducible representatighgrin).

This class of representations is of interest since they are also irreducible under the fixed point
subalgebraosp(m|n). Moreover, their quantized versions can be shown to be affinizable to
provide irreducible representations of the twisted quantum affine superal%b@(mm)(z)]

from which trigonometridR matrices withU q[osp(m|n)] invariance may be constructéd.

TheseR matrices determine new integrable models that have generated remarkable interest in
physics recently;’ particularly in condensed matter physics, where they give rise to new inte-
grable models of strongly correlated electrons.

To explicitly construct suclR matrices it is necessary to determine the reduction of the tensor
product of two antisymmetric tensor irreducible representations into “two column” irreducible
representations afl(m|n) which are then decomposed into irreducible representations of its fixed
point subalgebrasp(m|n).

We determine thgl(m|n) | osp(m|n) branching rules for these two column irreducible ten-
sor representations @fl(m|n), for the casem=n, n>2. A natural framework for solving this
problem is provided by the graded-fermion algebra and the quasispin formalism, which we intro-
duce and develop in this paper. The Fock space for this graded-fermion algebra affords a conve-
nient realization of the class of irreducible representatiorgd @h|n) concerned. The reduction to
osp(m|n), and thus thgl(m|n) | osp(m|n) branching rules, can be achieved using the quasispin
formalism.
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Il. osp (m|n=2k) AS A SUBALGEBRA OF gl/(m|n)

Throughout this paper, we assume 2k is even and set=[m/2] so thatm=2h for evenm
and m=2h+1 for odd m. For homogeneous operatofs B we use the notatiofA,B]=AB
—(—1)MIBIBA to denote the usual graded commutator. E@tbe the standard generators of
gl(m|n) obeying the graded commutation relations,

[E2,ES]= SEa—(—1)(al+[bhilel+[d) gage (1.1)

In order to introduce the subalgeboap(m|n), we first need a graded symmetric metric tensor
gap=(—1)[3Plg, - which is assumed to be even. We shall make the convenient choice

Jab= £a%abs (11.2)
where
m+1-i, a=i, 1, a=1
8= ln+1-u, a=m, S |(-1* a=u (11.3)
In the above equations=1,2,...m and x=1,2,...n. Note that
=1 ét=(-DP, g**=&55. (11.4)
As generators of the subalgelwap(m|n=2k), we take
Tap=YacEp— (— DA, ES= — (— 1)lelPlgy (1.5)
which satisfy the graded commutation relations,
[0abTcdl = GepTag— (— 1) IH DI g jg o — (= 1)l (g gorae
— (= 1)[@I+IbDIeI+IdDg oy, (1.6)
We have arosp(m|n)-module decomposition,
gl(mn)=osp(mn)+T, [T,T]Cospm|n), (1.7)
whereT is spanned by operators
Tab=gacEp+ (= 1)1PIgy EL = (— IIPIT,,. (11.8)
It is convenient to introduce the Cartan—Weyl generators,
08= g0 o= — (— DD g g0, (11.9)
As a Cartan subalgebra we take the diagonal operators,
o2=E2-E2= — ¢, (11.10)

Note that for oddn=2h+1 we haveh+1=h+1, and thussfl i 1=EP*1-EN*1=0.

The positive roots obsp(m|n) are given by the even positive rodtssual positive roots for
o(m)@sp(n)] together with the odd positive roos, + €;, 1<i<m, 1<u<k=n/2, where we
have adopted the useful conventiers —¢;, i<h=[m/2] so thate,, ;=0 for oddm=2h+1.
This is consistent with th& gradation,

OS[Xm|n)=L_Z@L_1®LO®L1€BL2. (”11)
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HereLy=o0(m)®gl(k); thegl(k) generators are given by
oh=EL—(-DFEL, 1sp,v=<k (1.12)

andL _,®Ly®L,=0o(m)®sp(n), whereL, gives rise to an irreducible representatiorLgfwith
highest weight ({2,0) spanned by the generators

ot=ES— £, EE=EL+ (- D)*TEL, 1spvsk. (1.13)

Finally, L, is spanned by odd root space generators,

ol =Ef+§,EL=El+(-1PEL, 1sp<k, 1<i=m, (1.14)

and gives rise to an irreducible representatioh gfvith highest weight (i,L)l,O). L_,,L_,give
rise to irreducible representations lof dual toL,, L,, respectively.

The simple roots obsp(m|n=2k) are thus given by the usué&ven simple roots oflL,
together with the odd simple roat,= 6, — €1, which is the lowest weight df ;-moduleL ;. Note
that the simple roots 0ob(m) depend on whethem is odd or even, and are given here for
convenience: Form=2h, ai=€¢—¢€,1, 1<i<h, a,=e€,_1+€,. For m=2h+1, a;=g¢;
—€i+1, 1=<i<h, a,=e¢€,. The simple roots ofl(k) are given by

Wy =Ogm— 8,41, 1=p<k. (11.15)

The graded half-sum of the positive rootsasp(m|n=2Kk) is given by

k

10 1
p:zz‘,l(m—zi)ei+§l;(n—m+2—2ﬂ)aﬂ. (1.16)

Ill. GRADED-FERMION REALIZATIONS
We introduce the graded anticommutator:
{A,B}=AB+(—1)INIEBIBA, (11.1)

Note that{A,B}#{B,A}. To realize the antisymmetric tensor irreducible representations of
gl(m|n), we introduce graded fermiors, and their adjoin'[&j1 obeying the graded anticommu-
tation relations,

{ca,Col={cl,cl}=0, {ca.cl}=64p. (11.2)

Thus, whera=i is evenc; are fermions while foa= u odd,c,, are bosons that anticommute with
the fermions.
To get a graded fermion realization gf(m|n), we set

E2=clcy, (1.3)
and note the graded commutation relations:
[Ef.cil=6bach, [Ef.cal=(— 1) PNl s, . (1.4)

Using these relations, it is easy to verify that the operakfgyiven above indeed satisfy the
gl(m|n) graded commutation relations.

Thus, we obtain representationsgd{m|n) on the graded fermion Fock space, which include
the antisymmetric tensor representations. The Fock space can be shown to be completely reducible
into type | unitary irreducible representationsgd{m|n) according to
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m ~ . . . * ~ . .
= D V(1,.,0[0) P V(i|b,0). (I11.5)
a=0 b=1

Thus, forN=m, the space oN-particle states comprises the antisymmetric tensor representation
of gl(m|n) with highest weightA y=(1y,0|0). For N>m the space oN-particle states com-
prises the irreducible representationsgdfm|n) with highest weights’\N=(1|N—m,O).

We introduce an extra “spin” indexx and consider the family of graded fermioag, and
their adjointsc;a obeying the graded anticommutation relations,

{Can Copt ={Cla Chat =0, {Can.Cha}= Sandap. (111.6)

Here all spin indices are understood to be et@mthat the grading only depends on the orbital
labelsa, b, ¢ etc).
We take, for ourgl(m|n) generators,

=2 ChaCha. (11.7)

which can be shown, as before, to satisfy the graded commutation relations
[Ef.Clal=6baCha. [ER.Caal=(—1) N5, (11.8)

from which we deduce that tHef indeed obey thgl(m|n) graded commutation relations. Thus,
we may now construct more general irreducible representatiog ofin) in the graded-fermion
Fock space. In particular, for “two-column” irreducible representations, only two spin labels
==+ are required.

IV. QUASISPIN (TWO SPIN LABELS)

We employ the above graded-fermion algebra with two spin labelst. We set

:
Q. gdd’cd +Cdr _ E édcd +Cq—>

(IV.1)
Q_=g%c) _ Cd,+ ngcd ~Cd,+ -
Let Qo= 3(N—m-+n), whereN=3"""E2 is the first-order invariant af|(m|n) (i.e., the number

operatoy. By straightforward computation, the following can be shown.
Proposition 1 Q.. , Qg generate an gR) Lie algebra, called the quasispin Lie algebra

[Q+,Q-1=2Qp, [Qp,Q+]==Q.. (IV.2)
Moreover Q.. , Qo commute with the generators of ogpn=2k).

To see the significance of the graded fermion algebra for the construction of irreducible
representations, we set

Ep5=ClaChp (IV.3)
and note the graded commutation relations,
[ bﬁch«/] 5bc5m der bﬂ’ccy]_ _(_1)[0]([a]+[b])5ﬁgicbﬂy (IV.4)

from which we deduce
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[Egg ,Egg] — 5‘65%'533_ (— 1)<[a]+[b])([°]+[d]>535‘§Eg% , (IV.5)

which are the defining relations gfl(2m|2n). That is,Epj are the generators @fl(2m|2n).
As we have seen, the spin-averaged operators,

Ea= Z Epe (IV.6)

!

form the generators afl(m|n). Similarly, the orbital averaged operators,

Eg=> E3, =1, (IV.7)

23

form the generators of the spin Lie algelyy2), which commute with theyl(m|n) generators.
It is worth noting that the spisl(2) algebra with generators,

also commute with the quasispin Lie algebra. Throughout, we denote the spin Lie aljéBya
by slg(2) and the quasispin Lie algebra by,(2).

Then, the space dfl-particle states gives rise to an irreducible representatiayl (&m|2n)
[andosp(2m|2n)] with highest weight,

(15,0[0), N=2m

(1IN-2m,0), N>2m. (IV.9)

This N-particle space decomposes into a multiplicity-free direct sum of irredugb{e|n)
@slg(2) modules,

V(a,b)® Vs, (IV.10)

where Vg denotes the (2+1)-dimensional irreducible representationgd§(2), b=2s, N=2a
+b andV(a,b) denotes the irreducible representationgdfm|n) with highest weight,

(2a,ib,0|0), a+b=m,
Aap=1 (24,1Ja+b—m,0), a=m,a+b>m, (IV.11)
(2la+b-m,a—m,0), a>m.

In this way we may realize all required “two-column” irreducible representationglém|n),
inside a given antisymmetric tensor irreducible representatiayi (@&m|2n) utilizing the graded-
fermion calculus.

V. CASIMIR INVARIANTS AND CONNECTION WITH QUASISPIN

From now on we shall use the notation
L=gl(m/n), L=ospm|n), Lo=gl(m)@gl(n), Lz=o(m)@sp(n). (V.1)

Let C;, C, denote the universal Casimir invariants bf L, respectively. Then for the

two-column irreducible representations bfwe are considering, a straightforward but tedious
calculation shows that

Ci—C.=(m—-n+2-IN)N-%(n—m)(n—m-2)+2Q? (V.2)
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where

Q?=Q-Q=Qo(Qo+1)+Q-Q:+=Q(Qo—1)+Q., Q- (V.3)

is the square of the quasispin. Equati®2) shows tha? is expressible in terms & , C, , and

N. It follows thatQ?, Q_Q. , Q. Q_ must leave invariantin fact, reduce to a scalar multiple of
the identity on a given irreducible representation lofnside a giventwo-column representation

of L. Given the highest weight of such &rmodule we may_delermine its quasispjr[the lowest
weight of the relevanslo(2) modulg using(V2) and Q’=Q(Q—1).

It is worth noting that we may write, for our quasispin generators,

Q=Q@+QW, (V.4)
where
m
Q®=3 ¢ ci.. QY= 2 (1), -Cjv (v.5)
and, similarly, forQ_ , while
QY'=3(No—m), P=3(N;+n), (V.6)

with No=3" E! and NI—E“ 1E%, being the number operators for even fermions and odd
bosons, respectively. Then it can be shown @4, Q) both determines|(2) algebra that
commute, so that the quasisginmay be interpreted as the total quasispin obtained by coupling
the quasispins of the even and odd components, respectively.

Similar remarks apply to the total spin algebra. The total spin vector is a sum of even and odd
components,

S=50+g8Y), V.7)

whose correspondingl(2) algebragcf. (IV.8)] are generated by

E@2— 2 Ej4, EWe= E Exe, (V.8)

respectively. We note that the quasispin and spin aIgeb@l%Z), slg)(Z), sl(so)(Z), sl(sl)(Z) all
commute with each other.
We remark that the quasispin algebsd§’(2), sI5’(2) play an important role in decompos-

ing irreducible representations bf, into irreducible representations bf;. They commute with
the even subalgebiay of L, but not withL itself.

VI. QUASISPIN EIGENVALUES

Throughout,V(a,b) denotes the irreducible representationlofwith highest weightA ,
given by (IV.11). Let Vy(a,b)=V,(0|a+b,a,0) be its minimalZ-graded component. Note that
Va(a,b) is an irreduciblegl(n) module and thus an irreducib[eb module. We have the follow-
ing.

Proposition 2: \t(a,b) cyclically generates ¥&,b) as an L module: viz.

V(a,b)=U(L)Vq(a,b). (VI.1)

Proof: Set
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W=U(L)Vq(a,b)CV(a,b), (VI.2)

i.e., Wis anL submodule. We show that equality holds. Obviouéﬁ(a,b) is anLgy module
(since L5=L_2@L0®L2CI:0). Now, sinceVg(a,b) is the minimal Z-graded component of
V(a,b), we have, by the PBW theorem,

V(a,b)=U(L,)Vo(a,b). (VI.3)
Using
o =B, (~1rEfeli=L oL ,, (V1.4)
we have
E!Vo(a,b) =o', Vgla,b) + (— 1)“E-V4(a,b) = o/, Vgla,b) CW, (VI.5)

sinceE“Vq(a,b)CL_Vg(a,b)=(0). It follows that
L. Vqo(a,b)CW. (V1.6)
Proceeding recursively, let us assume that
(L.)'Voa,b)CcW, Visr. (VL.7)
Then
ELL, Ugla,b) =o', [, V(a,b) + (~ 1)*EXVq(a,b)
CLL" Vola,b)+L_L" Vg(a,b)
CLL" Vola,b)+L" Wga,b)Cw, (V1.8)

sincell _Vg(a,b)=(0) andL', Vo(a,b)CW, L V(a,b) CW by the recursion hypothesis. Thus
L' Wo(a,b) CW so that, by inductionl.", Vg(a,b) CW, Vr. It follows that

V(a,b)=U(L,)Vy(a,b)cW. (V1.9)
Thus, we must haviV=V(a,b).

From the traditional quasispin formalism fgi(n) Dsp(n), we have a decomposition &fy
modules,

Vola,b)=V(a,b)®QMVoa—1h), (V1.10)

where Vy(a,b) is an irreducibleL; module with highest weight (@+b,a,0) and comprises
quasispin minimal states with respect to quasispin algéhta(and thus als®), so

QMVy(a,b)=Q_Vy(a,b)=0. (VI.11)

Note that forn=2, Va(a,b)=vo(a,b) is an irreducibleLy module, but not quasispin mini-
mal. Thus, the case=2 requires a separate treatment. However, for this Cfi@a,b)
=Vy(a,b) still has well-defined quasispi® (the minimal weight of the quasispin algehrin
fact, Q= 4(b—m+n) for this case.
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Proceeding recursively, we arrive at the irreducibfgn) (and hence.;) module decompo-
sition,

Vata,b) = B Qe vy(c,b), (VI.12)
c=0
where
QWMa~cy (c,b)=Vy(c,b)CVqic,b) (VI.13)

is the irreducibleLy module with highest weight (@+b,c,0). From the above remarkéy(c,b)
in the decomposition(VI.13) is quasispin minimal with respect t®™) (and Q) so

a-ctlnma=cy (c,b)=(0). It follows thatQ**Vg(a,b)=(0). Thus, if qy=3(N—m+n) is
the eigenvalue 06, on V(a,b), N=2a+b, then we have the following.

Theorem 1: The quasispin eigenvalues (i.e., quasispin minimal weights) occurringanby
lie in the range

Q=0n, On—1..., y—a, (VI.14)

or gy=Q=qy—a (in integer steps)
In view of (V.2) and (V.3), the operatoiQ_Q_, must leave invariant ah submodule of

V(a,b). In view of the above theorem, tHigeneralized eigenvalues of)_Q_ on V(a,b) must
be of the form

Q_Q.=Q(Q-1)—an(gn+1)=(Q+an)(Q—agn—1). (VI.15)

This eigenvalue can only vanish @+ gy=0, which would imply, from the above theorera,
—k=—qy for some Gsk=a. Thus, k=2qy=N—m+n or, equivalently,a=N—-m+nsa
=2a+b—m+nem—n=a+b.

Thus, ifm=n, the(generalizefleigenvalues of) _Q, are all nonzero, except for the trivial
module @=b=0), which we ignore below. Thus, we have proved the following lemma.

Lemma 1: For nen, Q_Q. determines a nonsingular operator or{&/b), except possibly
for the trivial module corresponding to #n, a=b=0.

Remarks:The above result is crucial in what follows and will not generally holdrfor n.
Hence, throughout the remainder we assunsen, n>2. Note thatlQ _Q, is nonsingular even on
the trivial module, except whem=n.

VII. INDUCED FORMS AND AN ORTHOGONAL DECOMPOSITION
We recall that the graded fermion calculus admits a gradeeration, defined by
(cl)*=(-Dley,, ci,=cl (VIL.1)

which we extend in the usual way witlhhg)* = (— 1)IAIBIB* A* | This induces a grade-opera-
tion onL andL. Explicitly,

(Ef,‘)* =(— 1)[6]([a]+[b])Eg, (Ug)* =(- l)[a]([a]+[b])0_g_ (VI1.2)

Moreover, the quasispin generators sat®ffy=Q_, Q* =Q, , andQj =Qo.
With this convention, the graded fermion Fock space admits a nondegenerate graded sesqui-
linear form¢, ). In particular,\V(a,b) is equipped with such a form and is nondegenerate. Note that

(v,Ejwy=(— 1)[VIMaI+IPD((ERY* v, wy), (VI1.3)
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which is the invariance condition of the form. It is the unigue to scalar multiplesinvariant
graded form orV(a,b).

We now note thaQ_ V(a— 1)) is anL submodule o¥/(a,b). In view of Lemma 1 and Egs.
(V.2) and(V.3), we have the following.

Lemma 2: The forn, ) restricted to Q.V(a—1,0) CV(a,b) is nondegenerate, except for the
case &1, b=m—n=0.

Proof: Under the above condition®) Q. is nonsingular on\7(a—l,b), o) Q,Q+f/(a
—1b)=V(a—1b). Hence, for veV(a—1b), we have G=(Q.,V(a—1b),Q,v)=0
=(Q_Q.V(a—1b),v)=(V(a—1b),v)=v=0 since(,) on V(a—1b) is nondegenerate. This
shows that the forng, ) restricted toQ, V(a— 1b) is nondegenerate, as required.

In view of Proposition 2, we have the following.

Proposition 3: Q V(a,b)=V(a—1)).

Proof: From Proposition 2, we have

Q_V(a,b)=Q_U(L)Vgia,b)=U(L)Q_Vy(a,b)=U(L)QMVga,b)=U(L)Vya—1h),
(VIL.4)

where the last step follows from a classical Lie algebra result. Again, utilizing Proposition 2, we

haveU(L)Vy(a—1b)=V(a—1b), from which the result follows.
We are now in a position to prove the following.
Proposition 4: We have an L-module orthogonal decomposition;

V(a,b)=K&Q,V(a—1b), (VIL5)

whereX=KerQ_NV(a,b), except for the caseal, b=m—n=0.

Proof: Forv e V(a,b), (v,Q,V(a—1b))=0=(Q_v,V(a—1h))=0=Q_v=0 (by Propo-
sition 3 e v e K. Since(,) restricted toQ, V(a—1b) is nondegenerate, the result follows.

Finally, in view of Theorem 1 we have Proposition 5.

Proposition 5: (a=0,b) is an irreducible L module

Proof: In such a caseyq(0,0)=V(0,b) is an irreducibleLy module cyclically generated by
anL maximal state. Thus/(0,b)= U(L)V,(0,b) must be an indecomposalilenodule. Since the
form (,) on V(0,b) is nondegenerate, this forc¥#§0,b) to be an irreduciblé. module.

The result above shows that the minintalrreducible representations are indeed irreducible
underL.

VIIl. PRELIMINARIES TO BRANCHING RULES

It is our aim below to prove, barring the exceptional case of Lemma 2Ktlis&n irreducible
L module. Note that the maximal state of thg moduleVy(a,b) occurring in the decomposition

(VI.10), in fact, coincides with thé., maximal vectorv? of Vg(a,b): Forn>2 it can be seen
directly that

Q_vi=QWvi =0, (VII.1)
for this maximal vector. Moreover, far>2 we have
E-vd=0, 1<ism, 1sus<k; (VII1.2)

otherwise, this vector would have weight|é0-b,a,0) + €;— 8, (z>k=n/2), which is impos-
sible since allL weight components are positive. Also, singé belongs to thel minimal
Z-graded component, we must have
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EAvi=0, Vi,u. (VIIL.3)
Thus, forof'eL,, we have
ofvi=Ef+(-1PEDVE=0, Vil<u<k=L,;v}=(0). (VIIL.4)

It follows that theL; moduleVy(a,b) must cyclically generate an indecomposable module
overL:

V(a,b)=U(L)Vy(a,b), (VIIL5)
with highest weight
Nap=(0la+b,a,0). (VIIL.6)
Since
Q_Vo(a,b)=QWVy(a,b)=(0), (VIIL.7)
we have
Q_V(a,b)=Q_U(L)Vo(a,b)=U(L)Q_V,(a,b)=(0). (VII1.8)

It follows thatV(a,b) C K.

We now show thaw/(a,b)=K is irreducible. First, in view of Proposition 3, we have the
following lemma.

Lemma 3ve KL=Q,Q_v=0.

Proof: Obviouslyve K=Q_v=0=0Q,Q_v=0. ConverselyQ.,Q _v=0=

0=(Q.,Q-v,V(a,h))=(Q_v,Q_V(a,b))=(Q_v,V(a—1)b)) (VIIL9)

=Q_v=0=vek.

It follows that K consists of eigenstates @f, Q_ with a zero eigenvalue. Also, sin€g_/C
=(0) andKCV(a,b), it follows that all states irC are eigenvectors db, with eigenvalueqy
=2(N—m-+n) and are, moreover, quasispin minimal states, and so have qua@spm. Thus,
Q? reduces to a scalar multip@(Q—1)=qy(gy— 1) on K. It then follows from(V.2) that the
universal Casimir elemer@, of L must reduce to a scalar multiple of the identity Kin Since
V(a,b)CK has highest weighk, ,, this eigenvalue can be shown to be given by

X)\a’b(CL):()\a,b Napt2p)=—(a+b)(a+b+n—m)—a(a+n—-m—2). (VII.10)

Hence we have proved the following.

Lemma 4: G reduces to a scalar multiple of the identity &hwith an eigenvalue given by
VII1.10).

( Nov)v KC is a completely reducible; module. Hence we have the following.

Lemma 5: Suppose for any irreduciblgy Imodule \4(\) contained in an irreducibIeAJ,.
module \4(A)CV(a,b) that x,(C.)= Xn, o (COEA=Agp and N =)\, p. ThenK=V(a,b) is
irreducible

Proof: Indeed, in such a case it follows from Lemma 4 that the highest weight vector of
V(a,b) must be the unique primitive vector iG. This is enough to prove thé is irreducible.

Finally, we recall thatV(a,b) comprises states with total spe=b/2 and with particle
numberN=2a+b. Then the possible irreducible representationﬁ(pbccurring in\7(a,b) must
have highest weights of the form
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A=(2,4,15,0[c’,d",0). (VIIL.11)
Then we must have
2a’+b’'+c'+d'=N=2a+bh. (VI1.12)

Moreover, the total spins for the even and odd components of this irreducible representation are
so=b’/2 ands; = (¢’ —d")/2, respectively. So, using the triangular rule for angular momenta, we
have

S<Sy+S;, Sg=S+S;, S;=S+5Sp, (VI1.13)
or
b<b’+c’'—d’, b’'sb+c’'—d’, c'—d'sb+b’. (VIIL.14)

These inequalities turn out to be important below.

IX. L | L BRANCHING RULES

We start this section with some facts concerning Ly. The possibld_, highest weights\

occurring inV(a,b) are of the form ofVII.11). The possibld_g highest weights. in V(a,b) are
obtained from such\ by a classical contraction procedure and have the form

A=(2¢,14,0|e,f,0), c+d=<h, (1X.1)
whered=b’'0(m—2c—b’), e—f=c'—d’ [here and belowy=min(x,y)] and
c=sa'’, e+f=sc'+d'=2a+b—-2a’'-2b’. (IX.2)

Note that forn>4, there are additional restrictions on the allowggddominant weights in order
that they give rise to highest weights bf In the interests of a unified treatment of all cases,
includingn=4, we do not impose these supplementary conditions here.

Sincee—f=c’'—d’, the inequalitiegVIIl.14) lead to

b'<sb+e—f, b<b'+e—f, e—f<sb+b’. (IX.3)

Hence, we have the following inequalities.
Lemma 6: esa+b—c, f<a—c.
Proof: We have

et+f<2a+b-2a’'-b’, e-f<b+b’.
Adding these two inequalities gives<a+b—a’'. Thus,e<a—c sincec=a’. Similarly, adding
etf<2a+b-2a’'-b’, f—e<b’'-b

leads tof<sa—a’'<a—c.
We are now in a position to compute the eigenvaly€C,) compared with that ofVIII.10).
By direct computation we have

Y (C =\ A +2p)=m(2c+d)—c(c+1)— (c+d)(c+d+1)
—(n—m)(e+f)+4c+d+2f—e?—f? (1X.4)

where we have used
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c d+c
A= 26+ 2, €+ed,+15,, (IX.5)
i=1 i=c+1

together with the expression fgr of L. By a straightforward but tedious calculation, using
(VIII.L10) and (IX.4), we obtain

X)\(CL)_X)\a b(CL)=20n+ d(m—d)+2c(2a+b—2c—d)+(at+b—c—e)
X(a+b—-c+e+n—-m)+(a—c—f)(a—c+f+n—m-2) (IX.6)

=[2c(n+1)+2f—-2a]+d(m—d)+2c(2a+b—2c—d)

+(a+b—c—e)(a+b—c+e+n—m)+(a—c—f)(a—c+f+n—m).
(IX.7)

All terms on the rhs ofIX.6) are positive, in view of the inequalities given above, except possibly
the last due to the termat-c+f+n—m—2). Similarly, in (1X.7) all terms on the rhs are
positive, except possibly the first.

We proceed stepwise.

(i) c=1: Then the first term on the rhs @iX.7) gives

2c(n+1)+2f-2a=2(n+1+f—-a).

This leads to two subclasses.

(i.1) a=n+1: The rhs terms are all non-negative, ($4.7) can only vanish ifa=n+1, f
=0=d, 2a+b=2c+d. But then, since&l=0 this would imply Z=2a+b=c>a=n+1, which
is impossible sinces<sh=m=n. Thus we conclude that the rhs must be strictly positive in this
case.

(.2) a=n+2: In this case all terms on the rhs @K.6) are non-negative, including the last
term, since, for the case at hand,

a—c+f+n—m-2=n+2—-c+f+n—m-2=n—-c+f+n—m=0,

sincen=m=h=c. Sincec=1, the rhs of(IX.6) must be strictly positive in this case.
We thus conclude, foc=1, thaty, (C,) —Xx, b(C,_)>0. It remains then to consider the case
c=0, in which case we have

)(A(CL)—X}\a b(C|_)=d(m—d)+(a+ b-e)(at+tb+e+n—-m)+(a—f)(a+f+n—m—2).
' (1X.8)

Note that for the case=0, the inequalities of Lemma 6 reducedea+b, f<a and for the case
at hand we have

e—f=c’'—d’, d=b’'O(m—-b’).

It is convenient to treat the casas=n andm<n separately.
(i) c=0,n>m: Here we assuma=1, since whera=0, \7(a=0,b) is already known to be
an irreducibleL module, so the branching rule is trivial.

Under these assumptions all terms on the rhélX18) are non-negative, including the last,
since

at+tf+n—m—-2=f+n—m—-1=0.

Note that this factor can only vanish whas-1, f=0, n=m+ 1. There are thus two possibilities
to consider for vanishing of the rhs @#X.8):
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(i.k1) d=0,e=a+b, f=a: Sincec’'+d'=2a+b—2a’'—b’'=e+f=2a+b andc’'—d'=e
—f=b, this implies thata’=b’=0, ¢c’=a+b, d'=a, andA=\, . So in this case\ =(0|a
+b,a,0)=A,p, and\ =X\, .

(i.L2)d=0,e=a+b, f=0,a=1,n=m+1: Thenc’'+d’'=e+f=a+b. Sincea=1, we thus
have

2+b=N=2a’'+b’'+c'+d'=2a’"+b’+a+b=2a’"+b’'+1+b

=1=2a’+b’'=a’=0 andb’<1. In such a case we must hade=b’'0(m—b’) and sinced
=0=b'=0, or m=b’=1=n=2, which we ignore. Them = (0|c’,b’,0) with c’'—b’'=e—f
=a+b=1+b, which corresponds to states with spin+«{f)/2, which is impossible since all

states inV(a,b) have spinb/2. Thus, this latter case cannot occur.

Thus we have shown, for all cases, that wheam, K=V(a,b) must be an irreducible
module with highest weighk, ,,, using Lemma 4.

In view of Proposition 3 we thus have tthemodule decomposition,

V(a,b)=V(a,b)®Q, V(a—1b). (1X.9)

SinceQ_Q. is nonsingular,Q+V(a— 1,b)z\7(a—1,b). By repeated application dfX.9), we
arrive at the irreduciblé module decomposition,

V(a,b)= eaB Q% °V(c,b). (1X.10)
c=0

Hence we have proved the following theorem.
Theorem 2: (n>m,n>2): We have the irreducible L-module decomposition

V(a,b)= é V(c,b). (1X.11)

c=0

We emphasize that throughoWt(a,b) denotes theL module with highest weighi,
=(0la+b,a,0). It remains now to consider the case=n, which is somewhat more interesting.

(i) c=0, m=n>2: Again, we assuma=1 since\?(a=0,b) is an irreduciblel module, as
we have seen. We recall for the case at hasth+b, f<a, a=1, m=n>2,e—f=c’'-d’, d
=b’'0O(m—-b") and

X (CO=xa, (CL=d(m—d)+(at+b—e)(atb+e)+(a—f)(atf-2). (X.12)

There are now several cases to consider for the vanishibXdf2).
(iii.1) a=f: Then(1X.12) vanishes whenl=0, e=a+b. Thus

c'+d'=e+f=2a+b=2a"+b’'+c'+d’
=a’'=b'=0, ¢’+d'=2a+b, and c’'—d'=e—f=b. This corresponds to\=A,, and A
:)\a,b-
(ii.2) f=2—a: Then(IX.12) vanishes whend=0, e=a+b. Sincea=1 there are two cases.
(iii.2.1) f=0,a=2: This is only possible when' +d'=e+f=a+b=

2a+b=2a’'+b’'+c’'+d'=2a’+b'+a+b

=a=2a’'+b’ or 2=2a’+b’. This leads to two further cases.
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(ii.2.1a) f=0,a=2,a’'=0,b’'<2: In view of the contraction procedure, this is only consis-
tent withd=0 if b’=0 (soc’=a+b, d'=a) or if b=2 andm=n=2. The latter case is being
ignored and the former case cannot occur since tend’ =e—f=a+b>b in contradiction to
the fact that all states iK/(a,b) have spinb/2.

(iii.2.1b) f=0,a=2,a'=1, b’=d=0: Thenc’'—d’'=e—f=a+b>b, which again is im-
possible since all states have spif2.

(ii.2.2) f=a=1: Thenc'—d'=a+b—a=b, ¢c'+b'=e+f=2a+b=a’'=b’'=0, c'=a
+b, d,:aiA:Aa’b, )\:)\a,b-

(ii.3) a+f—2<0, a>f: This can only occur whema=1, f=0, in which case the rhs of
(IX.12) becomes

dim—d)+(a+b+e)(a+b—e)—1.

There are two cases for the vanishing of this.
(ii.3.1) e=a+b, d=1, m=2, which can occur, but we are ignoring sinte m>2.
(iii.3.2) d=f=e=b=0: Thenc'—d’'=e—f=0 and

N=2=2a+b=2a'+b'+c’'+d'=2(a’"+c’)+b’,
which can occur in the following cases:
a’=b’'=0, c¢’=d'=1=\=(0[0), A=(0[1,1,0);

b'=c'=d'=0, a'=1=r=(0[0), A=(2,0)0).

This exhausts all possibilities. It follows from the above thatrierm>2 the rhs of(I1X.12)
is always strictly positive and can only vanish in the last case, correspondarg 1oandb=0.

This is the irreducible representatidf(2,0/0) of gl(n|n), which is known to give rise to an
indecomposabl®sp(n|n) module with a composition series of length 3 whose factors are iso-
morphic to theosp(n|n) modulesV(1,0) andV(0,0) (see Appendix

Thus we have proved the decomposition

V(a,b)=V(a,b)®Q V(a—1b) (IX.13)

with V(a,b) an irreducibleL.-module of highest weight, ,, provided @,b)+# (1,0). Proceeding
recursively we have the following theorem.
Theorem 3 (n=m>2): For b>0 we have the irreducible-module decomposition,

V(a,b)= ; V(c,b). (1X.14)
c=0

For b=0 we have the L-module decomposition

V(a,0)= ; V(c,0), (IX.15)
c=1

where \{c,0) is irreducible for c>1 but V(1,0) is indecomposable with a composition series of
length 3 with composition factors isomorphic to irreducible L modulé&,® and \V(0,0), the
latter occurring twice

Theorems 2 and 3 are our main results in this section concerninbiﬂhdoranching rules for
the two-column tensor representationsLof We remark that for the special case- m=0=b,
a=1, V(a—1b)=V(0,0) coincides with the identity module, which is the exceptional case of
Lemma 2. For this case the form,) on V(a,b)=V(1,0) is degenerate o@,V(a—1)b)
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=Q.V(0,0). Thus, Proposition 4 fails in this caéend only this case This, of course, agrees
with the result thav/(a,b)=V(1,0)=V(2,0/0) is indecomposable fan=n.
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APPENDIX: STRUCTURE OF V(z,0|0) AS A osp (n|n)-MODULE

Here for completeness we determine the structure of the irreduciblgl (n|n=2k) module
V(2,0[0) as a module ovet =osp(n|n), in fully explicit form.

FirstV(2,0|0) admits the followingZ-graded decomposition into irreducitilg modules with
highest weights shown:

V(2,0[0)=V(2,0/0)®V4(1,0/1,00®V,(0]1,1,0).

In the notation of the paper, the last space corresponds to the irredigilbdule Vo(a=1,b
=0). In terms of the graded fermion formalism, we have the following basis states:

Vo(2,000): (¢ cf _+cf ¢l )0y, 1<i,j=<n,
Vi(1,011,00: (¢l ¢l _+c! ¢l )]0y, 1<i,u<n, (A1)
V5(0]1,20): (cl, ¢l _—cl .cl )]0y, 1<p,v<n,
where|0) is the vacuum state. The latter space decomposed.intonodules according to
V,(0|1,1,00=V,(0]1,10)@ V(0] 0),

whereV,(0|0) is spanned b'M|0) (the trivial Ly module andV,(0|1,1,0) is an irreducible.g
module with the highest weight indicated and the following basis vectors:

(c].ch _—cl.cl )0), 1<v#u=n, (A2)
Q-0 )[0), 1spu<k, (A3)
where

foot of _ob of
Q,=C, Cp_—Cy.Cp_.

Note that this irreducible_y module cyclically generates an indecomposablenodule V(5;
+8,) with highest weights; + 8, and highest weight vector given BA2) with =1, v=2.
Now V,(1,01,0) is also irreducible as aloy module that is contained ¥(8,+ &,). Then by
applying the odd lowering generatomi=EL—(—1)“E%(1$Ms k,1=i=<n) of L to the states
(A1), the following states in/y(2,0/0) are easily seen to be M(5;+ &,):
(¢l cf _+cf ¢l )0y, 1<j=i<n, (A4)

Qf-al, o), 1=i<k, (A5)
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where

+

to, ot
Of=cl c-+c . cf .

Further, the following states are also seen to b¥({é;+ 5,):
@l +(=nrahloy, 1<i,u<k, (AB)

which follows by applyingcriﬁ to the stategAl) with 1< u<k. Summing(A6) on u=i from 1
to k, we thus obtain

k k
izl Q;‘+#§=:1 (=D*Q [|0)=Q.10)e V(81+5,). (A7)

It is worth noting that the statg#\6) are expressible in terms of the sta{és), (A5), and(A7).

The state$A1)—(A7) form a basis for the standard cyclicmoduleV(5;+ 8,). We note that
dimV(8;+ 8,)=dimV(2,0/0)—1 and V(8,+6,) is the unique maximalL submodule of
V(2,0/0). In view of (A7), this module is not irreducible since it contains the trivial one-
dimensionalL moduleV(0|0) as a unique submodule.

The remaining state iV(2,0[0), not in V(&;+8,), is Qo) (or Q|0)), which thus
generates the basis vector for thefactor moduleV(2,0[0)/V(8,+ 8,), which is obviously
isomorphic to the trivialL. moduleV(0|0). We thus arrive at thé-module composition series
V(2,0/0)DV(8,+ 8,) DV(0/0)D(0) with corresponding factors isomorphic to the irreducible
modules with highest weights [0), &,+ ,, and (40), respectively.

This result is of importance to the explicit construction of nBwnatrices® In particular, it
gives rise to arL-invariant nilpotent contribution to thR matrices, a new effect not seen in the
untwisted or nonsuper cases.
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