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Quasispin graded-fermion formalism
and gl „m zn …↓osp „m zn … branching rules

Mark D. Gould and Yao-Zhong Zhanga)

Department of Mathematics, University of Queensland, Brisbane, Queensland Qld 4072,
Australia

~Received 11 May 1999; accepted for publication 13 July 1999!

The graded-fermion algebra and quasispin formalism are introduced and applied to
obtain thegl(mun)↓osp(mun) branching rules for the ‘‘two-column’’ tensor irre-
ducible representations ofgl(mun), for the casem<n(n.2). In the casem,n,
all such irreducible representations ofgl(mun) are shown to be completely reduc-
ible as representations ofosp(mun). This is also shown to be true for the casem
5n, except for the ‘‘spin-singlet’’ representations, which contain an indecompos-
able representation ofosp(mun) with composition length 3. These branching rules
are given in fully explicit form. ©1999 American Institute of Physics.
@S0022-2488~99!04410-2#

I. INTRODUCTION

It is well known that branching rules are of great importance in the study of representation
theory. They also play an essential role in the determination of the parities for the components
appearing in the twisted tensor product graphs and the construction of correspondingR matrices.1,2

There appear to be virtually no results in the literature on the branching rules for Lie super-
algebras. The only exception is Ref. 3, in which the branching rules are determined for all typical
and atypical irreducible representations ofosp(2u2n) with respect to its subalgebraosp(1u2n). It
is very interesting~and important! to investigate the branching rules for other Lie superalgebras.

In this paper we investigate the antisymmetric tensor irreducible representations ofgl(mun).
This class of representations is of interest since they are also irreducible under the fixed point
subalgebraosp(mun). Moreover, their quantized versions can be shown to be affinizable to
provide irreducible representations of the twisted quantum affine superalgebraUq@gl(mun)(2)#
from which trigonometricR matrices withUq@osp(mun)# invariance may be constructed.4

TheseR matrices determine new integrable models that have generated remarkable interest in
physics recently,5–7 particularly in condensed matter physics, where they give rise to new inte-
grable models of strongly correlated electrons.

To explicitly construct suchR matrices it is necessary to determine the reduction of the tensor
product of two antisymmetric tensor irreducible representations into ‘‘two column’’ irreducible
representations ofgl(mun) which are then decomposed into irreducible representations of its fixed
point subalgebraosp(mun).

We determine thegl(mun)↓osp(mun) branching rules for these two column irreducible ten-
sor representations ofgl(mun), for the casem<n, n.2. A natural framework for solving this
problem is provided by the graded-fermion algebra and the quasispin formalism, which we intro-
duce and develop in this paper. The Fock space for this graded-fermion algebra affords a conve-
nient realization of the class of irreducible representations ofgl(mun) concerned. The reduction to
osp(mun), and thus thegl(mun)↓osp(mun) branching rules, can be achieved using the quasispin
formalism.

a!Electronic mail: yzz@maths.uq.edu.au
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II. osp „m zn 52k … AS A SUBALGEBRA OF gl „m zn …

Throughout this paper, we assumen52k is even and seth5@m/2# so thatm52h for evenm
and m52h11 for odd m. For homogeneous operatorsA, B we use the notation@A,B#5AB
2(21)@A#@B#BA to denote the usual graded commutator. LetEb

a be the standard generators of
gl(mun) obeying the graded commutation relations,

@Eb
a ,Ed

c#5db
cEd

a2~21!~@a#1@b# !~@c#1@d# !dd
aEb

c . ~II.1!

In order to introduce the subalgebraosp(mun), we first need a graded symmetric metric tensor
gab5(21)@a#@b#gba , which is assumed to be even. We shall make the convenient choice

gab5jadab̄ , ~II.2!

where

ā5 H m112 i ,
n112m,

a5 i ,
a5m, ja5 H1, a51

~21!m, a5m. ~II.3!

In the above equations,i 51,2,...,m andm51,2,...,n. Note that

ja
251, jaj ā5~21!@a#, gab5jbdab̄ . ~II.4!

As generators of the subalgebraosp(mun52k), we take

sab5gacEb
c2~21!@a#@b#gacEa

c52~21!@a#@b#sba , ~II.5!

which satisfy the graded commutation relations,

@sab ,scd#5gcbsad2~21!~@a#1@b# !~@c#1@d# !gadscb2~21!@c#@d#~gbdsac

2~21!~@a#1@b# !~@c#1@d# !gacsdb!. ~II.6!

We have anosp(mun)-module decomposition,

gl~mun!5osp~mun!1T, @T,T#,osp~mun!, ~II.7!

whereT is spanned by operators

Tab5gacEb
c1~21!@a#@b#gbcEa

c5~21!@a#@b#Tba . ~II.8!

It is convenient to introduce the Cartan–Weyl generators,

sb
a5gacscb52~21!@a#~@a#1@b# !jajbs ā

b̄ . ~II.9!

As a Cartan subalgebra we take the diagonal operators,

sa
a5Ea

a2Eā
ā52s ā

ā . ~II.10!

Note that for oddm52h11 we haveh115h11, and thussh11
h115Eh11

h112Eh11
h1150.

The positive roots ofosp(mun) are given by the even positive roots@usual positive roots for
o(m) % sp(n)# together with the odd positive rootsdm1e i , 1< i<m, 1<m<k5n/2, where we
have adopted the useful conventione i52e i , i<h5@m/2# so thateh1150 for oddm52h11.
This is consistent with theZ gradation,

osp~mun!5L22% L21% L0% L1% L2 . ~II.11!
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HereL05o(m) % gl(k); the gl(k) generators are given by

sn
m5En

m2~21!m1nEm̄
n̄ , 1<m,n<k, ~II.12!

andL22% L0% L25o(m) % sp(n), whereL2 gives rise to an irreducible representation ofL0 with
highest weight (0˙ u2,0̇) spanned by the generators

sn̄
m5En̄

m2jmjn̄Em̄
n 5En̄

m1~21!m1nEm̄
n , 1<m,n<k. ~II.13!

Finally, L1 is spanned by odd root space generators,

s i
m5Ei

m1jmEm̄
ī 5Ei

m1~21!mEm̄
ī , 1<m<k, 1< i<m, ~II.14!

and gives rise to an irreducible representation ofL0 with highest weight (1,0˙ u1,0̇). L21 , L22 give
rise to irreducible representations ofL0 dual toL1 , L2 , respectively.

The simple roots ofosp(mun52k) are thus given by the usual~even! simple roots ofL0

together with the odd simple rootas5dk2e1 , which is the lowest weight ofL0-moduleL1 . Note
that the simple roots ofo(m) depend on whetherm is odd or even, and are given here for
convenience: Form52h, a i5e i2e i 11 , 1< i ,h, ah5eh211eh . For m52h11, a i5e i

2e i 11 , 1< i ,h, ah5eh . The simple roots ofgl(k) are given by

ah1m5dgm2dm11 , 1<m,k. ~II.15!

The graded half-sum of the positive roots ofosp(mun52k) is given by

r5
1

2 (
i 51

h

~m22i !e i1
1

2 (
m51

k

~n2m1222m!dm . ~II.16!

III. GRADED-FERMION REALIZATIONS

We introduce the graded anticommutator:

$A,B%[AB1~21!@A#@B#BA. ~III.1!

Note that $A,B%Þ$B,A%. To realize the antisymmetric tensor irreducible representations of
gl(mun), we introduce graded fermionsca and their adjointsca

† obeying the graded anticommu-
tation relations,

$ca ,cb%5$ca
† ,cb

†%50, $ca ,cb
†%5dab . ~III.2!

Thus, whena5 i is evenci are fermions while fora5m odd,cm are bosons that anticommute with
the fermions.

To get a graded fermion realization ofgl(mun), we set

Eb
a5ca

†cb , ~III.3!

and note the graded commutation relations:

@Eb
a ,cd

†#5dbdca
† , @Eb

a ,cd#5~21!~@a#1@b# !@d#dd
acb . ~III.4!

Using these relations, it is easy to verify that the operatorsEb
a given above indeed satisfy the

gl(mun) graded commutation relations.
Thus, we obtain representations ofgl(mun) on the graded fermion Fock space, which include

the antisymmetric tensor representations. The Fock space can be shown to be completely reducible
into type I unitary irreducible representations ofgl(mun) according to
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F5 %
a50

m

V̂~ 1̇a ,0̇u0̇! %
b51

`

V̂~ 1̇ub,0̇!. ~III.5!

Thus, forN<m, the space ofN-particle states comprises the antisymmetric tensor representation
of gl(mun) with highest weightLN5(1̇N ,0̇u0̇). For N.m the space ofN-particle states com-
prises the irreducible representations ofgl(mun) with highest weightsLN5(1̇uN2m,0̇).

We introduce an extra ‘‘spin’’ indexa and consider the family of graded fermionscaa and
their adjointscaa

† obeying the graded anticommutation relations,

$caa ,cbb%5$caa
† ,cbb

† %50, $caa ,cbb
† %5dabdab . ~III.6!

Here all spin indices are understood to be even~so that the grading only depends on the orbital
labelsa, b, c, etc.!.

We take, for ourgl(mun) generators,

Eb
a5(

a
caa

† cba , ~III.7!

which can be shown, as before, to satisfy the graded commutation relations

@Eb
a ,cda

† #5dbdcaa
† , @Eb

a ,cda#5~21!~@a#1@b# !@d#dd
acba , ~III.8!

from which we deduce that theEb
a indeed obey thegl(mun) graded commutation relations. Thus,

we may now construct more general irreducible representations ofgl(mun) in the graded-fermion
Fock space. In particular, for ‘‘two-column’’ irreducible representations, only two spin labelsa
56 are required.

IV. QUASISPIN „TWO SPIN LABELS …

We employ the above graded-fermion algebra with two spin labelsa56. We set

Q15gdd8cd,1
† cd8,2

†
5(

d
jdcd,1

† c
d̄,2

†
,

~IV.1!

Q25gdd8cd,2
† cd8,1

†
5(

d
jdcd,2cd̄,1 .

Let Q05 1
2(N̂2m1n), whereN̂5Sa51

m1nEa
a is the first-order invariant ofgl(mun) ~i.e., the number

operator!. By straightforward computation, the following can be shown.
Proposition 1: Q6 , Q0 generate an sl(2) Lie algebra, called the quasispin Lie algebra,

@Q1 ,Q2#52Q0 , @Q0 ,Q6#56Q6 . ~IV.2!

Moreover, Q6 , Q0 commute with the generators of osp(mun52k).

To see the significance of the graded fermion algebra for the construction of irreducible
representations, we set

Ebb
aa5caa

† cbb , ~IV.3!

and note the graded commutation relations,

@Ebb
aa ,ccg

† #5dbcdbgcaa
† , @Ebb

aa ,ccg#52~21!@c#~@a#1@b# !dc
adg

acbb , ~IV.4!

from which we deduce
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@Ebb
aa ,Edd

cg#5db
cdb

gEdd
aa2~21!~@a#1@b# !~@c#1@d# !dd

add
aEbb

cg , ~IV.5!

which are the defining relations ofgl(2mu2n). That is,Ebb
aa are the generators ofgl(2mu2n).

As we have seen, the spin-averaged operators,

Eb
a5 (

a56
Eba

aa , ~IV.6!

form the generators ofgl(mun). Similarly, the orbital averaged operators,

Eb
a5(

a
Eab

aa , a,b56, ~IV.7!

form the generators of the spin Lie algebragl(2), which commute with thegl(mun) generators.
It is worth noting that the spinsl(2) algebra with generators,

S15E2
1 , S25E1

2 , S05 1
2~E1

12E2
2!, ~IV.8!

also commute with the quasispin Lie algebra. Throughout, we denote the spin Lie algebra~IV.8!
by slS(2) and the quasispin Lie algebra byslQ(2).

Then, the space ofN-particle states gives rise to an irreducible representation ofgl(2mu2n)
@andosp(2mu2n)# with highest weight,

H ~ 1̇N ,0̄u0̇!, N<2m

~ 1̇uN22m,0̇!, N.2m.
~IV.9!

This N-particle space decomposes into a multiplicity-free direct sum of irreduciblegl(mun)
% slS(2) modules,

V̂~a,b! ^ Vs , ~IV.10!

whereVs denotes the (2s11)-dimensional irreducible representation ofslS(2), b52s, N52a

1b and V̂(a,b) denotes the irreducible representation ofgl(mun) with highest weight,

La,b5H ~ 2̇a ,1̇b ,0̇u0̇!, a1b<m,

~ 2̇a ,1̇ua1b2m,0̇!, a<m,a1b.m,

~ 2̇ua1b2m,a2m,0̇!, a.m.

~IV.11!

In this way we may realize all required ‘‘two-column’’ irreducible representations ofgl(mun),
inside a given antisymmetric tensor irreducible representation ofgl(2mu2n) utilizing the graded-
fermion calculus.

V. CASIMIR INVARIANTS AND CONNECTION WITH QUASISPIN

From now on we shall use the notation

L̂[gl~mun!, L[osp~mun!, L̂0[gl~m! % gl~n!, Lō[o~m! % sp~n!. ~V.1!

Let CL̂ , CL denote the universal Casimir invariants ofL̂, L, respectively. Then for the
two-column irreducible representations ofL̂ we are considering, a straightforward but tedious
calculation shows that

CL̂2CL5~m2n122 1
2N̂!N̂2 1

2~n2m!~n2m22!12Q2, ~V.2!
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where

Q25Q–Q5Q0~Q011!1Q2Q15Q0~Q021!1Q1Q2 ~V.3!

is the square of the quasispin. Equation~V2! shows thatQ2 is expressible in terms ofCL̂ , CL , and
N̂. It follows thatQ2, Q2Q1 , Q1Q2 must leave invariant~in fact, reduce to a scalar multiple of
the identity on! a given irreducible representation ofL inside a given~two-column! representation
of L̂. Given the highest weight of such anL module we may determine its quasispinQ̄ @the lowest
weight of the relevantslQ(2) module# using ~V2! andQ25Q̄(Q̄21).

It is worth noting that we may write, for our quasispin generators,

Q5Q~0!1Q~1!, ~V.4!

where

Q2
~0!5(

i 51

m

ci ,2cī ,1 , Q2
~1!5 (

m51

n

~21!mcm,2cm̄,1 , ~V.5!

and, similarly, forQ1 , while

Q0
~0!5 1

2~N̂02m!, Q0
~1!5 1

2~N̂11n!, ~V.6!

with N̂05S i 51
m Ei

i and N̂15Sm51
n Em

m being the number operators for even fermions and odd
bosons, respectively. Then it can be shown thatQ(0), Q(1) both determinesl(2) algebra that
commute, so that the quasispinQ may be interpreted as the total quasispin obtained by coupling
the quasispins of the even and odd components, respectively.

Similar remarks apply to the total spin algebra. The total spin vector is a sum of even and odd
components,

S5S~0!1S~1!, ~V.7!

whose correspondingsl(2) algebras@cf. ~IV.8!# are generated by

E~0!
b
a5(

i 51

m

Eib
ia , E~1!

b
a5 (

m51

n

Emb
ma , ~V.8!

respectively. We note that the quasispin and spin algebrasslQ
(0)(2), slQ

(1)(2), slS
(0)(2), slS

(1)(2) all
commute with each other.

We remark that the quasispin algebrasslQ
(0)(2), slQ

(1)(2) play an important role in decompos-
ing irreducible representations ofL̂0 into irreducible representations ofL 0̄ . They commute with
the even subalgebraL 0̄ of L, but not withL itself.

VI. QUASISPIN EIGENVALUES

Throughout,V̂(a,b) denotes the irreducible representation ofL̂ with highest weightLa,b

given by ~IV.11!. Let V̂0̄(a,b)5V̂0(0̇ua1b,a,0̇) be its minimalZ-graded component. Note that
V̂0̄(a,b) is an irreduciblegl(n) module and thus an irreducibleL̂0 module. We have the follow-
ing.

Proposition 2: V̂0̄(a,b) cyclically generates Vˆ (a,b) as an L module: viz.,

V̂~a,b!5U~L !V̂0̄~a,b!. ~VI.1!

Proof: Set
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W5U~L !V̂0̄~a,b!,V̂~a,b!, ~VI.2!

i.e., W is an L submodule. We show that equality holds. Obviously,V̂0̄(a,b) is an L 0̄ module

~since L 0̄5L22% L0% L2,L̂0!. Now, since V̂0̄(a,b) is the minimal Z-graded component of
V̂(a,b), we have, by the PBW theorem,

V̂~a,b!5U~ L̂1!V̂0̄~a,b!. ~VI.3!

Using

sm
i 5Em

i 2~21!mE
ī

m̄
PL 1̄[L1% L21 , ~VI.4!

we have

Em
i V̂0̄~a,b!5sm

i V̂0̄~a,b!1~21!mE
ī

m̄
V̂0̄~a,b!5sm

i V̂0̄~a,b!,W, ~VI.5!

sinceE
ī

m̄
V̂0̄(a,b),L̂2V̂0̄(a,b)5(0). It follows that

L̂1V̂0̄~a,b!,W. ~VI.6!

Proceeding recursively, let us assume that

~ L̂1! i V̂0̄~a,b!,W, ; i<r . ~VI.7!

Then

Em
i L̂1

r V̂0̄~a,b!5sm
i L̂1

r V̂0̄~a,b!1~21!mE
ī

m̄
V̂0̄~a,b!

,LL̂1
r V̂0̄~a,b!1L̂2L̂1

r V̂0̄~a,b!

,LL̂1
r V̂0̄~a,b!1L̂1

r 21V̂0̄~a,b!,W, ~VI.8!

sinceL̂2V̂0̄(a,b)5(0) andL̂1
r V̂0̄(a,b),W, L̂1

r 21V̂0̄(a,b),W by the recursion hypothesis. Thus
L̂1

r 11V̂0̄(a,b),W so that, by induction,L̂1
r V̂0̄(a,b),W, ;r . It follows that

V̂~a,b!5U~ L̂1!V̂0~a,b!,W. ~VI.9!

Thus, we must haveW5V̂(a,b).
From the traditional quasispin formalism forgl(n).sp(n), we have a decomposition ofL 0̄

modules,

V̂0̄~a,b!5V0~a,b! % Q1
~1!V̂0̄~a21,b!, ~VI.10!

where V0(a,b) is an irreducibleL 0̄ module with highest weight (0˙ ua1b,a,0̇) and comprises
quasispin minimal states with respect to quasispin algebraQ(1) ~and thus alsoQ!, so

Q2
~1!V0~a,b!5Q2V0~a,b!50. ~VI.11!

Note that forn52, V̂0̄(a,b)5V0(a,b) is an irreducibleL 0̄ module, but not quasispin mini-
mal. Thus, the casen52 requires a separate treatment. However, for this case,V̂0̄(a,b)
5V0(a,b) still has well-defined quasispinQ̄ ~the minimal weight of the quasispin algebra!: in
fact, Q̄5 1

2(b2m1n) for this case.
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Proceeding recursively, we arrive at the irreduciblesp(n) ~and henceL 0̄! module decompo-
sition,

V̂0̄~a,b!5 %
c50

a

Q~1!
1
a2cV0~c,b!, ~VI.12!

where

Q~1!
1
a2cV0~c,b!>V0~c,b!,V̂0̄~c,b! ~VI.13!

is the irreducibleL 0̄ module with highest weight (0˙ uc1b,c,0̇). From the above remarksV0(c,b)
in the decomposition~VI.13! is quasispin minimal with respect toQ(1) ~and Q! so
Q2

a2c11Q(1)
1
a2cV0(c,b)5(0). It follows that Q2

a11V̂0̄(a,b)5(0). Thus, if qN5 1
2(N2m1n) is

the eigenvalue ofQ0 on V̂(a,b), N52a1b, then we have the following.
Theorem 1: The quasispin eigenvalues (i.e., quasispin minimal weights) occurring in Vˆ (a,b)

lie in the range

Q̄5qN , qN21,..., qN2a, ~VI.14!

or qN>Q̄>qN2a (in integer steps).
In view of ~V.2! and ~V.3!, the operatorQ2Q1 must leave invariant anL submodule of

V̂(a,b). In view of the above theorem, the~generalized! eigenvalues ofQ2Q1 on V̂(a,b) must
be of the form

Q2Q1[Q̄~Q̄21!2qN~qN11!5~Q̄1qN!~Q̄2qN21!. ~VI.15!

This eigenvalue can only vanish ifQ̄1qN50, which would imply, from the above theorem,qN

2k52qN for some 0<k<a. Thus, k52qN5N2m1n or, equivalently,a>N2m1n⇔a
>2a1b2m1n⇔m2n>a1b.

Thus, if m<n, the ~generalized! eigenvalues ofQ2Q1 are all nonzero, except for the trivial
module (a5b50), which we ignore below. Thus, we have proved the following lemma.

Lemma 1: For m<n, Q2Q1 determines a nonsingular operator on Vˆ (a,b), except possibly
for the trivial module corresponding to m5n, a5b50.

Remarks:The above result is crucial in what follows and will not generally hold form.n.
Hence, throughout the remainder we assumem<n, n.2. Note thatQ2Q1 is nonsingular even on
the trivial module, except whenm5n.

VII. INDUCED FORMS AND AN ORTHOGONAL DECOMPOSITION

We recall that the graded fermion calculus admits a grade-* operation, defined by

~ca,a
† !* 5~21!@a#ca,a , ca,a* 5ca,a

† , ~VII.1!

which we extend in the usual way with (AB)* 5(21)@A#@B#B* A* . This induces a grade-* opera-
tion on L̂ andL. Explicitly,

~Eb
a!* 5~21!@a#~@a#1@b# !Ea

b , ~sb
a!* 5~21!@a#~@a#1@b# !sa

b . ~VII.2!

Moreover, the quasispin generators satisfyQ1* 5Q2 , Q2* 5Q1 , andQ0* 5Q0 .
With this convention, the graded fermion Fock space admits a nondegenerate graded sesqui-

linear form^, &. In particular,V̂(a,b) is equipped with such a form and is nondegenerate. Note that

^v,Eb
aw&5~21!@v#~@a#1@b# !^~Eb

a!* v,w&, ~VII.3!
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which is the invariance condition of the form. It is the unique~up to scalar multiples! invariant
graded form onV̂(a,b).

We now note thatQ1V̂(a21,b) is anL submodule ofV̂(a,b). In view of Lemma 1 and Eqs.
~V.2! and ~V.3!, we have the following.

Lemma 2: The form̂, & restricted to Q1V̂(a21,b),V̂(a,b) is nondegenerate, except for the
case a51, b5m2n50.

Proof: Under the above conditions,Q2Q1 is nonsingular onV̂(a21,b), so Q2Q1V̂(a
21,b)5V̂(a21,b). Hence, for vPV̂(a21,b), we have 05^Q1V̂(a21,b),Q1v&⇒0
5^Q2Q1V̂(a21,b),v&5^V̂(a21,b),v&⇒v50 since^ , & on V̂(a21,b) is nondegenerate. This
shows that the form̂ , & restricted toQ1V̂(a21,b) is nondegenerate, as required.

In view of Proposition 2, we have the following.
Proposition 3: Q2V̂(a,b)5V̂(a21,b).
Proof: From Proposition 2, we have

Q2V̂~a,b!5Q2U~L !V̂0̄~a,b!5U~L !Q2V̂0̄~a,b!5U~L !Q2
~1!V̂0̄~a,b!5U~L !V̂0̄~a21,b!,

~VII.4!

where the last step follows from a classical Lie algebra result. Again, utilizing Proposition 2, we
haveU(L)V̂0̄(a21,b)5V̂(a21,b), from which the result follows.

We are now in a position to prove the following.
Proposition 4: We have an L-module orthogonal decomposition;

V̂~a,b!5K% Q1V̂~a21,b!, ~VII.5!

whereK5KerQ2ùV̂(a,b), except for the case a51, b5m2n50.
Proof: For vPV̂(a,b), ^v,Q1V̂(a21,b)&50⇔^Q2v,V̂(a21,b)&50⇔Q2v50 ~by Propo-

sition 3! ⇔vPK. Since^ , & restricted toQ1V̂(a21,b) is nondegenerate, the result follows.
Finally, in view of Theorem 1 we have Proposition 5.
Proposition 5: V̂(a50,b) is an irreducible L module.
Proof: In such a case,V̂0̄(0,b)5V0(0,b) is an irreducibleL 0̄ module cyclically generated by

anL maximal state. Thus,V̂(0,b)5U(L)V0(0,b) must be an indecomposableL module. Since the
form ^ , & on V̂(0,b) is nondegenerate, this forcesV̂(0,b) to be an irreducibleL module.

The result above shows that the minimalL̂ irreducible representations are indeed irreducible
underL.

VIII. PRELIMINARIES TO BRANCHING RULES

It is our aim below to prove, barring the exceptional case of Lemma 2, thatK is an irreducible
L module. Note that the maximal state of theL 0̄ moduleV0(a,b) occurring in the decomposition
~VI.10!, in fact, coincides with theL̂0 maximal vectorv1

L of V̂0̄(a,b): For n.2 it can be seen
directly that

Q2v1
L 5Q2

~1!v1
L 50, ~VIII.1 !

for this maximal vector. Moreover, forn.2 we have

Em̄
i v1

L 50, 1< i<m, 1<m<k; ~VIII.2 !

otherwise, this vector would have weight (0˙ ua1b,a,0̇)1e i2dm̄ (m̄.k5n/2), which is impos-
sible since allL̂ weight components are positive. Also, sincev1

L belongs to theL̂ minimal
Z-graded component, we must have
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Ei
mv1

L 50, ; i ,m. ~VIII.3 !

Thus, fors i
mPL1 , we have

s i
mv1

L 5„Ei
m1~21!mEm̄

ī
…v1

L 50, ; i ,1<m<k⇒L1v1
L 5~0!. ~VIII.4 !

It follows that theL 0̄ moduleV0(a,b) must cyclically generate an indecomposable module
over L:

V~a,b!5U~L !V0~a,b!, ~VIII.5 !

with highest weight

la,b[~ 0̇ua1b,a,0̇!. ~VIII.6 !

Since

Q2V0~a,b!5Q2
~1!V0~a,b!5~0!, ~VIII.7 !

we have

Q2V~a,b!5Q2U~L !V0~a,b!5U~L !Q2V0~a,b!5~0!. ~VIII.8 !

It follows that V(a,b),K.
We now show thatV(a,b)5K is irreducible. First, in view of Proposition 3, we have the

following lemma.
Lemma 3:vPK⇔Q1Q2v50.
Proof: ObviouslyvPK⇒Q2v50⇒Q1Q2v50. Conversely,Q1Q2v50⇒

05^Q1Q2v,V̂~a,b!&5^Q2v,Q2V̂~a,b!&5^Q2v,V̂~a21,b!& ~VIII.9 !

⇒Q2v50⇒vPK.
It follows that K consists of eigenstates ofQ1Q2 with a zero eigenvalue. Also, sinceQ2K

5(0) andK,V̂(a,b), it follows that all states inK are eigenvectors ofQ0 with eigenvalueqN

5 1
2(N2m1n) and are, moreover, quasispin minimal states, and so have quasispinQ̄5qN . Thus,

Q2 reduces to a scalar multipleQ̄(Q̄21)5qN(qN21) on K. It then follows from~V.2! that the
universal Casimir elementCL of L must reduce to a scalar multiple of the identity onK. Since
V(a,b),K has highest weightla,b , this eigenvalue can be shown to be given by

xla,b
~CL!5~la,b ,la,b12r!52~a1b!~a1b1n2m!2a~a1n2m22!. ~VIII.10!

Hence we have proved the following.
Lemma 4: CL reduces to a scalar multiple of the identity onK with an eigenvalue given by

(VIII.10).
Now K is a completely reducibleL 0̄ module. Hence we have the following.
Lemma 5: Suppose for any irreducible L0̄ module V0(l) contained in an irreducible Lˆ

0

module V̂0(L),V̂(a,b) that xl(CL)5xla,b
(CL)⇔L5La,b and l5la,b . ThenK5V(a,b) is

irreducible.
Proof: Indeed, in such a case it follows from Lemma 4 that the highest weight vector of

V(a,b) must be the unique primitive vector inK. This is enough to prove thatK is irreducible.
Finally, we recall thatV̂(a,b) comprises states with total spins5b/2 and with particle

numberN52a1b. Then the possible irreducible representations ofL̂0 occurring inV̂(a,b) must
have highest weights of the form
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L5~ 2̇a8 ,1̇b8 ,0̇uc8,d8,0̇!. ~VIII.11!

Then we must have

2a81b81c81d85N52a1b. ~VIII.12!

Moreover, the total spins for the even and odd components of this irreducible representation are
s05b8/2 ands15(c82d8)/2, respectively. So, using the triangular rule for angular momenta, we
have

s<s01s1 , s0<s1s1 , s1<s1s0 , ~VIII.13!

or

b<b81c82d8, b8<b1c82d8, c82d8<b1b8. ~VIII.14!

These inequalities turn out to be important below.

IX. L̂↓L BRANCHING RULES

We start this section with some facts concerningL̂0↓L 0̄ . The possibleL̂0 highest weightsL
occurring inV̂(a,b) are of the form of~VIII.11!. The possibleL 0̄ highest weightsl in V̂(a,b) are
obtained from suchL by a classical contraction procedure and have the form

l5~ 2̇c ,1̇d ,0̇ue, f ,0̇!, c1d<h, ~IX.1!

whered5b8∧(m22c2b8), e2 f 5c82d8 @here and belowx∧y[min(x,y)# and

c<a8, e1 f <c81d852a1b22a822b8. ~IX.2!

Note that forn.4, there are additional restrictions on the allowedL 0̄ dominant weights in order
that they give rise to highest weights ofL.8 In the interests of a unified treatment of all cases,
including n54, we do not impose these supplementary conditions here.

Sincee2 f 5c82d8, the inequalities~VIII.14! lead to

b8<b1e2 f , b<b81e2 f , e2 f <b1b8. ~IX.3!

Hence, we have the following inequalities.
Lemma 6: e<a1b2c, f <a2c.
Proof: We have

e1 f <2a1b22a82b8, e2 f <b1b8.

Adding these two inequalities givese<a1b2a8. Thus,e<a2c sincec<a8. Similarly, adding

e1 f <2a1b22a82b8, f 2e<b82b

leads tof <a2a8<a2c.
We are now in a position to compute the eigenvaluexl(CL) compared with that of~VIII.10!.

By direct computation we have

xl~CL!5~l,l12r!5m~2c1d!2c~c11!2~c1d!~c1d11!

2~n2m!~e1 f !14c1d12 f 2e22 f 2, ~IX.4!

where we have used
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l5(
i 51

c

2e i1 (
i 5c11

d1c

e i1ed11 f d2 , ~IX.5!

together with the expression forr of L. By a straightforward but tedious calculation, using
~VIII.10! and ~IX.4!, we obtain

xl~CL!2xla,b
~CL!52cn1d~m2d!12c~2a1b22c2d!1~a1b2c2e!

3~a1b2c1e1n2m!1~a2c2 f !~a2c1 f 1n2m22! ~IX.6!

5@2c~n11!12 f 22a#1d~m2d!12c~2a1b22c2d!

1~a1b2c2e!~a1b2c1e1n2m!1~a2c2 f !~a2c1 f 1n2m!.

~IX.7!

All terms on the rhs of~IX.6! are positive, in view of the inequalities given above, except possibly
the last due to the term (a2c1 f 1n2m22). Similarly, in ~IX.7! all terms on the rhs are
positive, except possibly the first.

We proceed stepwise.
~i! c>1: Then the first term on the rhs of~IX.7! gives

2c~n11!12 f 22a>2~n111 f 2a!.

This leads to two subclasses.
~i.1! a<n11: The rhs terms are all non-negative, so~IX.7! can only vanish ifa5n11, f

505d, 2a1b52c1d. But then, sinced50 this would imply 2c52a1b⇒c.a5n11, which
is impossible sincec<h<m<n. Thus we conclude that the rhs must be strictly positive in this
case.

~i.2! a>n12: In this case all terms on the rhs of~IX.6! are non-negative, including the last
term, since, for the case at hand,

a2c1 f 1n2m22>n122c1 f 1n2m22>n2c1 f 1n2m>0,

sincen>m>h>c. Sincec>1, the rhs of~IX.6! must be strictly positive in this case.
We thus conclude, forc>1, thatxl(CL)2xla,b

(CL).0. It remains then to consider the case
c50, in which case we have

xl~CL!2xla,b
~CL!5d~m2d!1~a1b2e!~a1b1e1n2m!1~a2 f !~a1 f 1n2m22!.

~IX.8!

Note that for the casec50, the inequalities of Lemma 6 reduce toe<a1b, f <a and for the case
at hand we have

e2 f 5c82d8, d5b8∧~m2b8!.

It is convenient to treat the casesm5n andm,n separately.
~ii ! c50, n.m: Here we assumea>1, since whena50, V̂(a50,b) is already known to be

an irreducibleL module, so the branching rule is trivial.
Under these assumptions all terms on the rhs of~IX.8! are non-negative, including the last,

since

a1 f 1n2m22> f 1n2m21>0.

Note that this factor can only vanish whena51, f 50, n5m11. There are thus two possibilities
to consider for vanishing of the rhs of~IX.8!:
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~ii.1! d50, e5a1b, f 5a: Sincec81d852a1b22a82b8>e1 f 52a1b andc82d85e

2 f 5b, this implies thata85b850, c85a1b, d85a, and l5la,b . So in this caseL5(0̇ua
1b,a,0̇)5La,b andl5la,b .

~ii.2! d50, e5a1b, f 50, a51, n5m11: Thenc81d8>e1 f 5a1b. Sincea51, we thus
have

21b5N52a81b81c81d8>2a81b81a1b52a81b8111b

⇒1>2a81b8⇒a850 andb8<1. In such a case we must haved5b8∧(m2b8) and sinced

50⇒b850, or m5b851⇒n52, which we ignore. ThenL5(0̇uc8,b8,0̇) with c82b85e2 f
5a1b511b, which corresponds to states with spin (11b)/2, which is impossible since all
states inV̂(a,b) have spinb/2. Thus, this latter case cannot occur.

Thus we have shown, for all cases, that whenn.m, K5V(a,b) must be an irreducible
module with highest weightla,b , using Lemma 4.

In view of Proposition 3 we thus have theL module decomposition,

V̂~a,b!5V~a,b! % Q1V̂~a21,b!. ~IX.9!

SinceQ2Q1 is nonsingular,Q1V̂(a21,b)>V̂(a21,b). By repeated application of~IX.9!, we
arrive at the irreducibleL module decomposition,

V̂~a,b!5 %
c50

a

Q1
a2cV~c,b!. ~IX.10!

Hence we have proved the following theorem.
Theorem 2: (n.m,n.2): We have the irreducible L-module decomposition,

V̂~a,b!5 %
c50

a

V~c,b!. ~IX.11!

We emphasize that throughoutV(a,b) denotes theL module with highest weightla,b

5(0̇ua1b,a,0̇). It remains now to consider the casem5n, which is somewhat more interesting.
~iii ! c50, m5n.2: Again, we assumea>1 sinceV̂(a50,b) is an irreducibleL module, as

we have seen. We recall for the case at hande<a1b, f <a, a>1, m5n.2, e2 f 5c82d8, d
5b8∧(m2b8) and

xl~CL!2xla,b
~CL!5d~m2d!1~a1b2e!~a1b1e!1~a2 f !~a1 f 22!. ~IX.12!

There are now several cases to consider for the vanishing of~IX.12!.
~iii.1! a5 f : Then ~IX.12! vanishes whend50, e5a1b. Thus

c81d8>e1 f 52a1b52a81b81c81d8

⇒a85b850, c81d852a1b, and c82d85e2 f 5b. This corresponds toL5La,b and l
5la,b .

~iii.2! f 522a: Then~IX.12! vanishes whend50, e5a1b. Sincea>1 there are two cases.
~iii.2.1! f 50, a52: This is only possible whenc81d8>e1 f 5a1b⇒

2a1b>2a81b81c81d8>2a81b81a1b

⇒a>2a81b8 or 2>2a81b8. This leads to two further cases.
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~iii.2.1a! f 50, a52, a850, b8<2: In view of the contraction procedure, this is only consis-
tent with d50 if b850 ~so c85a1b, d85a! or if b52 andm5n52. The latter case is being
ignored and the former case cannot occur since thenc82d85e2 f 5a1b.b in contradiction to
the fact that all states inV̂(a,b) have spinb/2.

~iii.2.1b! f 50, a52, a851, b85d50: Thenc82d85e2 f 5a1b.b, which again is im-
possible since all states have spinb/2.

~iii.2.2! f 5a51: Then c82d85a1b2a5b, c81b8>e1 f 52a1b⇒a85b850, c85a
1b, d85a⇒L5La,b , l5la,b .

~iii.3! a1 f 22,0, a. f : This can only occur whena51, f 50, in which case the rhs of
~IX.12! becomes

d~m2d!1~a1b1e!~a1b2e!21.

There are two cases for the vanishing of this.
~iii.3.1! e5a1b, d51, m52, which can occur, but we are ignoring sincen5m.2.
~iii.3.2! d5 f 5e5b50: Thenc82d85e2 f 50 and

N5252a1b52a81b81c81d852~a81c8!1b8,

which can occur in the following cases:

a85b850, c85d851⇒l5~ 0̇u0̇!, L5~ 0̇u1,1,0̇!;

b85c85d850, a851⇒l5~ 0̇u0̇!, L5~2,0̇u0̇!.

This exhausts all possibilities. It follows from the above that forn5m.2 the rhs of~IX.12!
is always strictly positive and can only vanish in the last case, corresponding toa51 andb50.
This is the irreducible representationV̂(2,0̇u0̇) of gl(nun), which is known to give rise to an
indecomposableosp(nun) module with a composition series of length 3 whose factors are iso-
morphic to theosp(nun) modulesV(1,0) andV(0,0) ~see Appendix!.

Thus we have proved the decomposition

V̂~a,b!5V~a,b! % Q1V̂~a21,b! ~IX.13!

with V(a,b) an irreducibleL-module of highest weightla,b , provided (a,b)Þ(1,0). Proceeding
recursively we have the following theorem.

Theorem 3 „n5m>2…: For b.0 we have the irreducibleL-module decomposition,

V̂~a,b!5 %

c50

a

V~c,b!. ~IX.14!

For b50 we have the L-module decomposition,

V̂~a,0!5 %

c51

a

V~c,0!, ~IX.15!

where V(c,0) is irreducible for c.1 but V(1,0) is indecomposable with a composition series of
length 3 with composition factors isomorphic to irreducible L modules V(1,0) and V(0,0), the
latter occurring twice.

Theorems 2 and 3 are our main results in this section concerning theL̂↓L branching rules for
the two-column tensor representations ofL̂. We remark that for the special casen2m505b,
a51, V̂(a21,b)5V̂(0,0) coincides with the identity module, which is the exceptional case of
Lemma 2. For this case the form̂, & on V̂(a,b)5V̂(1,0) is degenerate onQ1V̂(a21,b)
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5Q1V̂(0,0). Thus, Proposition 4 fails in this case~and only this case!. This, of course, agrees
with the result thatV̂(a,b)5V̂(1,0)[V̂(2,0̇u0̇) is indecomposable form5n.
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APPENDIX: STRUCTURE OF V̂„z,0̇z0̇… AS A osp „n zn …-MODULE

Here for completeness we determine the structure of the irreducibleL̂5gl(nun52k) module
V̂(2,0̇u0̇) as a module overL5osp(nun), in fully explicit form.

First V̂(2,0̇u0̇) admits the followingZ-graded decomposition into irreducibleL̂0 modules with
highest weights shown:

V̂~2,0̇u0̇!5V̂0~2,0̇u0̂! % V̂1~1,0̇u1,0̇! % V̂2~ 0̇u1,1,0̇!.

In the notation of the paper, the last space corresponds to the irreducibleL̂0 moduleV̂0̄(a51,b
50). In terms of the graded fermion formalism, we have the following basis states:

V̂0~2,0̇u0̇!: ~ci ,1
† cj ,2

† 1cj ,1
† ci ,2

† !u0&, 1< i , j <n,

V̂1~1,0̇u1,0̇!: ~ci ,1
† cm,2

† 1cm,1
† ci ,2

† !u0&, 1< i ,m<n, ~A1!

V̂2~ 0̇u1,10̇!: ~cm,1
† cn,2

† 2cn,1
† cm,2

† !u0&, 1<m,n<n,

whereu0& is the vacuum state. The latter space decomposes intoL 0̄ modules according to

V̂2~ 0̇u1,1,0̇!5V0~ 0̇u1,10̇! % V0~ 0̇u0̇!,

whereV0(0̇u0̇) is spanned byQ1
(1)u0& ~the trivial L 0̄ module! andV0(0̇u1,1,0̇) is an irreducibleL 0̄

module with the highest weight indicated and the following basis vectors:

~cm,1
† cn,2

† 2cn,1
† cm,2

† !u0&, 1<nÞm̄<n, ~A2!

~Vm
† 2Vm11

† !u0&, 1<m,k, ~A3!

where

Vm
† [cm,1

† cm̄,2
† 2cm̄,1

† cm,2
† .

Note that this irreducibleL 0̄ module cyclically generates an indecomposableL module Ṽ(d1

1d2) with highest weightd11d2 and highest weight vector given by~A2! with m51, n52.
Now V̂1(1,0̇u1,0̇) is also irreducible as anL 0̄ module that is contained inṼ(d11d2). Then by

applying the odd lowering generatorssm
i 5Em

i 2(21)mE
ī

m̄
(1<m<k,1< i<n) of L to the states

~A1!, the following states inV̂0(2,0̇u0̇) are easily seen to be inṼ(d11d2):

~ci ,1
† cj ,2

† 1cj ,1
† ci ,2

† !u0&, 1< j Þ ī <n, ~A4!

~V i
†2V i 11

† !u0&, 1< i ,k, ~A5!
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where

V i
†[ci ,1

† c,2
†

1c
ī ,1

†
ci ,2

† .

Further, the following states are also seen to be inṼ(d11d2):

„V i
†1~21!mVm

†
…u0&, 1< i ,m,k, ~A6!

which follows by applyings i
m̄ to the states~A1! with 1<m<k. Summing~A6! on m5 i from 1

to k, we thus obtain

S (
i 51

k

V i
†1 (

m51

k

~21!mVm
† D u0&5Q1u0&PṼ~d11d2!. ~A7!

It is worth noting that the states~A6! are expressible in terms of the states~A3!, ~A5!, and~A7!.
The states~A1!–~A7! form a basis for the standard cyclicL moduleṼ(d11d2). We note that

dim Ṽ(d11d2)5dim V̂(2,0̇u0̇)21 and Ṽ(d11d2) is the unique maximalL submodule of
V̂(2,0̇u0̇). In view of ~A7!, this module is not irreducible since it contains the trivial one-
dimensionalL moduleV(0̇u0̇) as a unique submodule.

The remaining state inV̂(2,0̇u0̇), not in Ṽ(d11d2), is Q1
(1)u0& ~or Q1

(0)u0&!, which thus
generates the basis vector for theL factor moduleV̂(2,0̇u0̇)/Ṽ(d11d2), which is obviously
isomorphic to the trivialL moduleV(0̇u0̇). We thus arrive at theL-module composition series
V̂(2,0̇u0̇).Ṽ(d11d2).V(0̇u0̇).(0) with corresponding factors isomorphic to the irreducibleL

modules with highest weights (0˙ u0̇), d11d2 , and (0̇u0̇), respectively.
This result is of importance to the explicit construction of newR matrices.4 In particular, it

gives rise to anL-invariant nilpotent contribution to theR matrices, a new effect not seen in the
untwisted or nonsuper cases.
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