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The objective for human gene therapy is to express exogenous DNA at a site in vivo for long enough, 
and at sufficient levels to produce a therapeutic response. The obstacles to this objective are 
numerous and include the formulation or packaging of the DNA, in vivo delivery, penetration of 
biological barriers, DNA elimination within the cell and from the tissue compartments of the whole 
body, control of product expression and overt toxicity. The current challenge is to resolve each of 
these obstacles to produce a practical and efficient gene therapy. In doing so, it is vital to understand 
the disposition of DNA vectors in vivo, and to know how conventional medicines may be used to 
modulate this disposition and to enhance the therapeutic effect of these vectors. Many of the general 
concepts of human gene therapy have been reviewed extensively in the literature. This review 
discusses some of the pharmacological aspects of gene delivery and the fate of vectors in vivo, and 
then highlights how drugs are being used to modulate gene therapy. 
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The potential for using genetic technology to treat human diseases has stimulated the imagination of 
numerous researchers from a diverse range of disciplines. Gene therapy has been a prolific area of 
research over the past decade and continues to receive considerable attention. However, the use of 
genetic material as therapeutic agents has produced many novel and challenging obstacles that 
remain to be overcome. The current challenge is to resolve each of these obstacles to produce a 
practical and efficient means of treating human disease. Many of the limitations to using genetic 
material as therapeutic agents, such as poor bioavailability, stability in vivo, formulation and delivery 
to the site of action, apply to conventional medicines. In addition, understanding the disposition of 
DNA vectors in vivo, and how conventional medicines may be used to modulate this disposition may 
be essential in developing practical and clinically useful gene therapies. For these reasons, the 
pharmacologist has an important role in the development of clinically feasible gene therapies. This 
review addresses many of the aspects of the pharmacology of gene therapy. For more general 
reviews of gene therapy and current approaches to delivering genetic material to cells and tissues, 
the reader is referred to recent literature (1-6). 
Broadly speaking, gene therapies can be divided into 3 categories based on the mode of delivery to 
the target tissue (7). The first category, ex vivo delivery, involves removing the target cells from the 
patient, transfecting the cells with a transgene and then returning them to the patient. This approach 
is limited to those cells that can be readily obtained and cultured, and bypasses many of the 
pharmacological problems associated with the other categories. The second category involves direct 
application of the transgene to the target tissue. Examples include attempts to delivery transgenes to 
the lungs of cystic fibrosis patients by intratracheal application or direct injection of genes into solid 
tumors. Intramuscular injection has also been attempted for the treatment of muscular dystrophy. The 
third category is in vivo delivery via the blood stream. This is the most versatile approach but is limited 
by the complex pharmacological problems associated with circulating DNA. To date, no clinical trails 
have commenced using delivery via the circulation (7). However, for gene therapy to become an 
acceptable and routine clinical procedure, this mode of delivery will need to be refined and developed. 
Gene Therapies and Dose-Response Relationships 
The relationship between the amount of transgene administered to a host and therapeutic response 
often receives little attention in preclinical gene therapy studies. There are several possible reasons 
for this. Firstly, for many diseases under consideration for gene therapy, good animal models are not 
available. Human genetic diseases can be particularly difficult to reproduce in animals, although the 
recent use of transgenic animals has been of assistance (8-14). Animal models may not include 
physiological parameters that can affect transgene expression and therapeutic response. For 
example, many anti-cancer gene therapies have a demonstrated efficacy in tumor transplant animal 



models (15-19). However, these models often do not take into consideration parameters such as 
normal tumor vascularization, cellular and extracellular heterogeneity, lymph drainage and tumor 
growth rates that differ markedly between the animal model and primary or secondary tumors in 
humans. Secondly, a single dose therapeutic response in an animal model may be sufficient to 
warrant human studies. However, factors that can affect response such as differences in size, 
immunological activities (20), and metabolic rates (21,22) need to be considered (22-25). For 
example, differences in the immunological response between experimental animals and humans to 
vectors used for gene therapy have emerged as a major concern and have particularly affected the 
design of adenovirus-based gene therapies in humans. This is the result of most humans having been 
exposed to adenoviral infections and having developed neutralizing antibodies to the virus (26,27). 
Animal models used to assess gene therapies do not have this limitation. Thirdly, dose escalation 
studies aimed at determining the maximum response and toxicity of a transgene require amounts of 
material that are often difficult to produce. The choice of animal models and their predictive power for 
subsequent human studies remains an important area in gene therapy research. 
A number of preclinical studies have revealed interesting insights into the relationship between gene 
dose and activity. In a murine tumor model designed to evaluate the effects of an adenoviral vector 
encoding tumor necrosis factor-a (TNF-a), Mauceri et al (28) showed a dose-dependent decrease in 
tumor size over the dose range of 1x107 to 5x108 plaque forming units (PFU) administered directly 
into the tumor (Fig. 1). Half-maximum response was seen at approximately 1.6x108 PFU. This is 
equivalent to a dose of 8x109 PFU/kg. In a similar study using an adenoviral based HSV-thymidine 
kinase (HSVtk) vector as a suicide gene, Goebel and associates (29) reported a dose-dependent 
reduction in tumor growth rate but only observed a reduction in the size of an established tumor at a 
dose of 1010 PFU (5x1011 PFU/kg). These doses suggest that very large amounts of viral vector will 
be required to treat human cancers where solid tumors can be as large as 1010 cells at the time of 
diagnosis. 
A common approach to cancer gene therapy is to use suicide transgenes. These genes express an 
enzyme such as herpes simplex thymidine kinase that activates a pro-drug to kill the cell. A range of 
suicide transgenes are available but differ considerably with respect to their bystander activity (ability 
of transfected cells to kill adjacent non-transfected cells) (30). Suicide gene therapy introduces a 
further complication in that response will be dependent on selecting both the appropriate gene dose 
and the appropriate pro-drug dose. Sewell et al (31) studied these two parameters in a murine model 
and showed that both the viral titres and the pro-drug dose (ganciclovir) necessary for a therapeutic 
response may be considerably less than that routinely predicted from in vitro studies. Minimizing the 
dose of ganciclovir is clinically important since the drug exhibits considerable side-effects within its 
therapeutic range (32). 

Figure 1. Dose-response relationship for adenovirus encoding TNF-a and tumor growth in a murine 
model. Mice were inoculated with the human cell line SQ-20B and then treated intratumourally with an 
adenovirus-based vector that expresses TNF-a. Adapted from Mauceri et al (28).  

Figure 2. Compartmental model describing the intracellular disposition of transgenes and their 
products. The 6 compartment model shows a sequential series of events from uptake of vector from 
the extracellular space to secretion of the protein product. Each compartment has an elimination 
process representative of the degradation pathway for each component. Adapted from (38).  

Some clinical assessment of gene dose-response has been reported, although mostly with respect to 
toxicity (33-36). Intratumor injection of adenoviral vectors encoding wild-type p53 with doses up to 
1010 PFU to patients with non-small cell lung cancer is well tolerated (35) although intra- pleural 
doses of 1012 PFU to patients with mesothelioma induced minor side effects including temporary 
systemic inflammation (36). In cystic fibrosis patients, a dose escalation study over 3 orders of 
magnitude failed to demonstrate a therapeutic response to an adenovirus encoding the cyctic fibrosis 
transmembrane conductance regulator despite evidence for transgene expression in 5 of 6 patients 
(37). 
Pharmacokinetics of DNA in Vivo 
Kinetics of Cellular Uptake and Intracellular Trafficking 
Two aspects of the kinetics of exogenous DNA in vivo can be considered from: (a) how DNA is taken 
up and processed at its target site; and (b) how it is handled by the body as a whole. The first serious 
attempt to understand the kinetics of gene therapy at a cellular level was reported by Ledley and 
Ledley in 1994 (38). They outlined the likely events that might affect transgene expression and 
proposed a 6 compartment linear model to describe the uptake, intracellular trafficking and expression 



of exogenous genes (Fig. 2). Their classical pharmacological compartmental approach, although 
theoretical in nature, provided a basis for developing strategies to enhance or modulate transgene 
expression at a cellular level. Interestingly, their analysis suggested that promoter strength might be 
of limited assistance in optimizing gene expression if DNA, RNA, and protein stability are ignored. 
At a cellular level, intracellular trafficking appears to be a critical rate-limiting function, especially for 
non-viral vectors (Fig. 2). Uptake via the endosomal system can be enhanced pharmacologically with 
drugs that inhibit endosomal acidification or by agents that enhance the rate of DNA release from the 
endosomes. This was elegantly demonstrated in vitro using the transferrin-based non-viral delivery 
system pioneered by Birnstiel and associates (39). Chloroquine (40,41), HA-2 derived peptides (42), 
and adenoviral particles (43-45) all increase the release of intact transgene from the endosomes and 
increase gene expression. Whether such agents will be effective in vivo in humans is yet to be 
established. 
Another example of the use of more conventional therapies to modify the uptake and expression of 
transgenes was demonstrated by Patijn et al (46). They used hepatocyte growth factor (HGF) to 
enhance expression of a retroviral vector in the liver where expression of most vectors is small 
because of the non-proliferative nature of the hepatocytes. HGF induces a mitogenic response in the 
liver resulting in cell proliferation and a degree of hypertrophy in vivo (46-48). In this manner, it mimics 
the proliferation following partial hepatectomy that has been shown to enhance hepatic transgene 
expression (49). When administered by constant infusion over 5 days, up to 30% of hepatocytes were 
stably transduced following retroviral administration. By contrast, Kosai and associates (50) found that 
less than 1% of hepatocytes were transduced if HGF was administered intravenously as a bolus 
dose. Nevertheless, this may be sufficient to elicit a pharmacological response. Given the importance 
of transgene expression in the liver for a number of gene therapy protocols (49,51-53), these findings 
are significant and clinically relevant. Other mitogens such as tri-iodothryonine also have been shown 
to enhance liver expression (54), although at much lower levels than that reported by Patijn et al (46). 
Fate of Exogenous DNA in Vivo 
DNA used in gene therapy can be administered in vivo by use of viral particles, complexes with 
cationic macromolecules or liposomes, or simply as naked DNA (7). A number of systems have been 
described where expression of transgenes in peripheral tissues occurs following intravenous injection 
of vectors formulated as cationic complexes, as liposomes or as adenoviral particles (49,55-59). 
Intravenous administration is attractive pharmacologically as it is simple and because it may provide 
access to tissues where direct injection of genetic material is not practical. Targeting of exogenous 
DNA and its persistent expression at therapeutically useful levels in peripheral tissues following 
intravenous injection is still under development (7). 
Delivery of foreign DNA to specific tissues in vivo is influenced by many factors including the structure 
and size of the DNA, stability against nuclease degradation, and the pharmacokinetics of the delivery 
system (38,60). After administration, plasmid DNA that enters the circulation is rapidly removed 
mainly by the non-specific scavenger receptors located in the liver (61,62). These receptors are 
involved in removing anionic macromolecules from the circulation (63). DNA complexed to cationic 
liposomes also can be rapidly cleared from the circulation via a mechanism involving Kupffer cell 
phagocytosis (64,65). Similarly, virions administered intravenously have been shown to distribute 
primarily to the reticuloendothelial system (66). 
Plasmid DNA is extensively degraded in vivo although exactly where this degradation takes place 
remains unknown (62). The very rapid clearance of transgenes from the plasma compartment may be 
advantageous when DNA is delivered locally using direct injection, since it will limit the likelihood of 
expression of the exogenous DNA that inadvertently escapes the site of delivery. However, for 
systems dependent on delivery via the circulation, rapid removal by the liver will limit the extent of 
gene transfer to peripheral tissues, especially those with relatively small blood flows. 

Figure 3. Disappearance of plasmid DNA in rats. Animals were administered 35S-DNA intra-arterially 
either alone (circles) or with the non-specific scavenger receptor antagonist polyinosinic acid 
(triangles). Blood samples were collected over 20 min and intact DNA was quantified after agarose 
gel electrophoresis. The clearance of plasmid from the plasma was 30 mL/min/kg which exceeded 
total liver blood flow. In the presence of polyinosinic acid, clearance decreased to 11 mL/min/kg.  

Understanding the pharmacokinetics of exogenous DNA in vivo can assist in designing strategies that 
maximize gene transfer by enhancing uptake, distribution or clearance. For example, Fig. 3 shows the 
plasma-time profile for plasmid DNA following intravenous administration to rats (unpublished data). 
The half-life of the intact DNA was significantly increased if polyinosinic acid, a potent inhibitor of the 
hepatic scavenger receptors, was co-administered with the DNA. Other agents such as dextran 



sulfate also may be used in this manner to enhance plasmid DNA half-life (62). However, 
disappearance of DNA from the circulation is still relatively rapid due, in part, to degradation by 
DNase (62). There are at least two approaches that could be used to inhibit DNA metabolism and 
further increase the circulation time of transgenes. Firstly, nuclease inhibitors may be developed for 
use in vivo although, to date, no such agents are available. Secondly, the DNA can be packaged to 
render it resistant to degradation. DNA condensed with polycations is not readily metabolized by 
nucleases due to limited access of the enzyme to the DNA. However, the degree of protection is 
dependent on the length of the polycation (67). Polylysines with an average length of 256 amino acids 
were significantly better at protecting condensed DNA from degradation compared to polylysine of 
only 96 amino acids (67). 
Route of Administration 
The route of vector administration has been shown to influence the extent of transgene expression 
(68-70). For DNA given by non-intravenous methods, bioavailability of the construct and the gene 
product may vary considerably according to how and where the vector was administered to the 
patient. Moreover, immunological responses in vivo to transgenes appear to be quite different 
depending on the route of administration (69). 

Figure 4. Disposition of transgenes in vivo. Administration of vectors into the central compartment 
results in distribution to the target tissue where access to parenchyma tissue will require crossing the 
endothelial cell and basement membrane barriers. DNA also may be taken up by non-target tissues 
where it can be eliminated. Metabolism of DNA in the central compartment can occur by nucleases in 
the plasma or associated with cells lining the blood vessels.  

Transgenes administered intravenously must cross the endothelial cell barrier and basement 
membrane before reaching target cells in the parenchyma (Fig. 4). This can be a very slow process 
compared to general tissue distribution, metabolism, and excretion, hindering efficient gene delivery. 
Alternative routes of administration may be ideal for some tissues by avoiding both rapid clearance 
from the central compartment and the endothelial cell/basement membrane barrier. This was recently 
illustrated for gene delivery to the pancreas (71), an organ that receives less than 5% of cardiac 
output (72). Uptake of cholecyctokinin-DNA complexes by the pancreas following intravenous 
administration was minimal even when hepatic clearance was blocked. However, intraperitoneal 
administration of the complex resulted in about 25% of the dose accumulating in the pancreas over 24 
hr. Whether this was due to lymphatic drainage of the peritoneum or some other delivery mode is 
currently unknown. Targeting of tumors in the pancreas by intraperitoneal administration of 
transgenes has been recently reported by Yang et al (73). In a murine pancreatic tumor model, these 
investigators showed that intraperitoneal administration of HSV-thymidine kinase encoded by a 
retroviral vector resulted in the integration of the virus into the genome of the tumor cells. Moreover, 
on the addition of ganciclovir, a significant reduction in tumor growth was seen demonstrating the 
practical feasibility of intraperitoneal transgene administration. 
Pharmacological Modulation of Therapeutic Genes 
Conventional medicines are increasingly being used to overcome some of the obstacles faced with 
gene therapy. Drugs have been used to reduce unwanted immune responses to transgenes, regulate 
their expression and enhance their therapeutic effects (Table 1). However, multi-agent therapy 
introduces further pharmacological considerations such as potential interactions between the drug(s) 
and the transgene product, dosing regimes and toxicity of the combined treatment. When 
conventional drugs are used to supplement the effects of gene therapies, additive or synergistic 
responses also may need to be considered. 
Immunosuppression and Gene Therapy 
Immunological responses to foreign DNA vectors have presented a major problem for gene therapies 
that are not designed to immunize the patient against the antigen expressed from the transgene. 
Immunomodulation can be directed towards the vector itself (74-76) or towards the gene product (77-
79). The induction of an immune response to vectors used for gene therapy can lead to a decrease in 
transfection efficiency by neutralizing antibodies, destruction of target cells and inflammation (80). 
Importantly, immune responses have been shown to limit multiple dosing with the same vector (75). 
However, in several animal models, transgene expression following single and multiple doses has 
been prolonged or enhanced by simultaneously immunosuppressing the animal (Table 1). Three 
classes of immunosuppressant agents have been investigated: anti-T cell antibodies, immunophilin 
ligands, and cytotoxic drugs. All target the T-cell response to antigen either by down-regulating 
essential surface receptors (antibodies), inhibiting calcineurin- dependent intracellular signaling 
(immunophilin ligands), or by non-specific toxicity (cytotoxic agents). The action of some of these 



drugs may not be limited to their immunomodulatory activities. Russell and co-workers (56,81) 
showed that etoposide, a topoiso- merase inhibitor, increased transduction of cultured cells by adeno-
associated virus at least 2 orders of magnitude. However, they were unable to show an effect of 
etoposide in vivo. To date, the combination of immunosuppressive agents and gene therapies in 
humans has not been critically evaluated. Sullivan et al (78) reported that immunosuppression of 
rhesus monkeys with cyclophosphamide and prednisone helped sustain expression of a reporter 
gene in the liver suggesting that this approach may be beneficial in humans. 
Zhang et al (82) recently demonstrated that soluble tumor necrosis factor binding protein inhibited the 
inflammatory response to adenoviruses and prolonged transgene expression following intravenous or 
intranasal administration to mice. Their results suggest that TNF-a has a central role in early 
inflammation and may be an important therapeutic target for future drug development. 

Table 1. Immunosuppressant agents used to enhance gene therapy  

Table 2. Drug-regulatable gene expression systems used for gene therapies  

Regulation of Transgene Expression 
The ability to regulate transgene expression over a long period will be critical for gene therapies that 
require intermittent production of the gene product. In addition, regulatable expression may be 
necessary for gene products that have small differences between effective and toxic doses (small 
therapeutic window). A number of laboratories have started to develop drug-sensitive promoter 
systems that allow for control of transgene expression and some of these systems have been tested 
in vivo. Gene regulation by a secondary drug may provide a quantal response (on/off switch) or a 
graded response (concentration-dependent effect) depending on the system. Most notable is the 
tetracycline-dependent vectors originally developed by Gossen and Bujard in 1992 (83). This system 
is based on two regulatory elements from the tet operon of the E. coli Tn10 transposon and gives a 
graded response to treatment with tetracycline or its analogs (84-86). A number of investigators have 
constructed vectors suitable for gene therapy incorporating a tetracycline-dependent promoter and 
have demonstrated regulated gene expression in cultured cells (87-91) and in vivo (92-96). Harding et 
al (97) recently showed tertracycline-dependent transgene expression in vivo. They transfected 
neuronal cells of rats with an adenovirus encoding the green fluorescent protein under the control of a 
tetracycline-regulatable promoter. By adding and removing doxycycline from the drinking water of the 
animals, expression of the reporter gene could be switched on and off, respectively. Saitoh and 
associates (86) also showed doxycycline-dependent gene expression in vivo by implanting polymer-
encapsulated neuroblastoma cells carrying a tetracycline-regulatable proopio- melanocortin gene into 
the subarachnoid space of the central nervous system. Upon intraperitoneal administration of 
doxycycline, a dose-dependent release of ACTH has observed. Together, these studies indicate the 
potential of tetracycine-regulatable gene expression in whole animals. 
There are several other drug-dependent expression systems that have been described (Table 2). 
Direct engineering of the cAMP response element upstream of a transgene can provide cAMP-
dependent expression (98,99). In cell culture, these vectors can be activated by agents, such as 
forskolin, that increase intracellular cAMP levels. Suzuki et al (100) showed enhanced expression of a 
cAMP-regulatable b-Gal gene in the pulmonary epithelium of mice following treatment with the cAMP 
analog 8-bromo-cAMP and the phosphodiesterase inhibitor theophyline. Other drug-dependent 
expression systems are less well studied but show the potential for different promoter sequences as 
switches in gene therapy. 
Drug Enhancement of Gene Delivery 
Drug combinations can be used to treat a range of diseases where single drug therapies have little or 
no effect. Often the success of multi-drug treatments is due to additive or synergistic responses and is 
best when the individual drugs act via different mechanisms to produce similar responses. This can 
lead to much lower, and therefore safer, drug doses required to achieve the same effect. The 
possibility that conventional drug treatments may complement gene-based treatments is important for 
optimizing clinically relevant gene therapies. Already, several interesting drug-gene combinations 
have been reported, mostly for cancer-directed gene therapies (55-62) . 
Insertion of the p53 gene into rapidly proliferating tumor cells lacking functional p53 can induce 
apoptosis and tumor suppression in vivo. The effects of p53 gene transfer has been shown to be 
enhanced with cisplatin, a conventional anti-cancer drug (101-103). The mechanism of enhancement 
may be multifactorial. Nguyen et al (103) showed that pretreatment of H1299 cells, which lack 
functional p53, with cisplatin before transfection with wild-type p53 was critical for optimum effect of 
the drug-gene combination in vivo. By contrast, Ogawa et al (101) reported that wild-type p53 already 



expressed in human colon cancer cells sensitized them to subsequent treatment with cisplatin. 
Clearly, the in vivo pharmacokinetic-pharmacodynamic relationship of these two therapies needs to 
be more thoroughly investigated. 
Cisplatin also has been combined with interferon-g gene therapy in a murine ovarian carcinoma 
model (104). This study suggested that cisplatin increased the transfection efficiency of the transgene 
which was delivered as a cationic lipid complex. The combination was effective in vivo in part due to 
induction of inducible nitric oxide synthase. Finally, the anti-tumor activity of the HSV-tk/ganciclovir 
system against human or rat osteosarcomas (in a murine model) is significantly enhanced when 
methotrexate is co-administered (105). 
Other drug-gene combinations have been reported. Bradykinin, and its analogue RMP-7, have been 
used to enhance the intracarotid delivery of transgene vectors leading to a significantly greater 
therapeutic effect (106,107). These drugs appear to act as permeabilisers of the blood-brain barrier 
allowing greater access of the pro-drug ganciclovir. Suicide gene therapy often relies on intracellular 
communication involving gap junctions for the bystander effect which permits killing of adjacent cells 
that are not transduced. Without this effect, suicide gene therapy would have limited anti-tumor 
activity. Park and associates (108) have shown that retinoic acid increases gap junction 
communication by inducing connexin expression. Combining retinoic acid treatment with HSVtk gene 
therapy augmented the bystander effect in vivo resulting in a greater efficacy of the suicide transgene 
(HSVtk/ganciclovir). Finally, Mhashilkiar et al (109) showed that protein kinase C inhibitors and anti-
Tat intracellular antibodies cooperatively inhibit HIV replication. 
In summary, the increasing use of conventional drugs to modulate the efficacy of gene therapies may 
be essential for the long-term clinical development of gene-based treatments. In this review, the role 
of drugs in optimizing the delivery and pharmacokinetics of transgenes has been demonstrated. In 
addition, it has been shown how conventional medicines may be useful in enhancing responses to 
transgenes as well as regulating their level of expression in target tissues. 
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