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Effect of disorder on quantum phase transitions in anisotropicXY spin chains
in a transverse field

J. E. Bunder and Ross H. McKenZzie
School of Physics, University of New South Wales, Sydney 2052, Australia
(Received 31 December 1998

We present some exact results for the effect of disorder on the critical properties of an aniSo¥Em
chain in a transverse field. The continuum limit of the corresponding fermion model is taken and in various
cases results in a Dirac equation with a random mass. Exact analytic techniques can then be used to evaluate
the density of states and the localization length. In the presence of disorder the ferromagnetic-paramagnetic or
Ising transition of the model is in the same universality class as the random transverse field Ising model solved
by Fisher using a real-space renormalization-group decimation tech(®@RGDT). If there is only random-
ness in the anisotropy of the magnetic exchange then the anisotropy trafiiona ferromagnet in the
direction to a ferromagnet in thedirection is also in this universality class. However, if there is randomness
in the isotropic part of the exchange or in the transverse field then in a nonzero transverse field the anisotropy
transition is destroyed by the disorder. We show that in the Griffiths’ phase near the Ising transition that the
ground-state energy has an essential singularity. The results obtained for the dynamical critical exponent,
typical correlation length, and for the temperature dependence of the specific heat near the Ising transition
agree with the results of the RSRGDT and numerical wisk163-182809)07125-§

I. INTRODUCTION dergo a quantum phase transition: the transverse field Ising
spin chaint® He used a real-space renormalization-group
An important feature of many low-dimensional models of decimation techniquéRSRGDT), originally developed by
strongly interacting electrons is that they exhibit quantumDasgupta and M& which he claimed is exact near the criti-
phase transitions, i.e., they undergo a phase transition at ze¢@! point. Fisher found the phase diagranhich included a
temperature as some parameter is Vajriaxperimental re- GrlfflthS phase near the Cl’itica| pO}n'a” Of the Cl’itica| ex-

alization of this occurs in heavy fermion materials such ag’onents(some of which are irrational, as shown in Table |
CeCy_,Au, which undergo an antiferromagnetic- and scaling functions for the magnetization and correlation

functions in an external field. It is striking that the latter have
p- never been derived for the disorder-free case but can be de-
rived in the presence of disorder because distributions be-
gome extremely broad near the critical point. Many of Fish-
er's results have been confirmed by numerical WGSrk!
The RSRGDT has now also been used to study the effect of
disorder on dimerizéd and anisotropic spig-chains, spin-1

paramagnetic phase transition induced by presstitéear
the critical point unconventional metallic behavior is o
served and is enhanced by the presence of diséftiétas
also been proposed that a quantum critical point plays al
important role in cuprate superconductdr®uantum phase
transitions in the presence of impurities or disorder also oc
cur in “He and *He absorbed in porous _mediia, chains'®=?! chains with random spin siz8$quantum Potts
superconductor-insulator transitions in dirty thin fillge and clock chain& and diffusion in a random
delocalization transition in the quantum Hall effect, and thegpnvironment*2® Possible experimental realizations of ran-

metal-insulator transition in doped semiconductors. dom spin chains are given in Table I. There is a direct con-
Compared to thermal phase transitions in disorder-fregection between the critical behavior of the random trans-
systems, these transitions are poorly understood becauggrse field Ising chain and random walks in a disordered
many of the theoretical methode.g., exact solutions, the
renormalization group ane expansionsthat have pr(_)v_en SO TABLE |. Experimental realizations of random spin chains.
useful for pure systems at nonzero temperaftmes difficult . These chains all involve antiferromagnetic exchange except for
to implement for disordered systerfsThese phase transi- Sr,CuPy _,Ir,Og which involves both ferromagnetic and antiferro-
tions are associated with particularly rich physics such agagnetic exchange.
large differences between average and typi¢a., most
probable behavior, new universality classes, logarithmic Material Spin per site Reference
scaling, and “Griffiths phases® in which susceptibilities

diverge even though there are only short-range correlation&UineliniumTCNQ), 2 63
Low-energy properties of the system are dominated by exSBCUP_IrOg 3 72
tremely rare configurations of the system. It has recentiyMnTPP-TCNEsolven) Alternating 3 and 2 73
been proposed that Griffiths phases can lead to unconveMgTiOBO; (warwickite) 1 74
tional metallic behaviof:'? MgVOBO; (warwickite) 1 75

Fisher recently made an exhaustive study of the effect oEu(3-methylpyriding,Cl, 1 76

randomness on what is arguably the simplest model to un
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environment?=28 Fisher’s results have also been related to peogr[ e
the Kondo lattice in one dimensidn. T N

An important question is whether some of the same inter-
esting physics occurs in higher dimensional models. Senthil FM,
and Sachdev did find this to be the case in a dilute quantum

Ising system near a percolation transitidrt is particularly N
interesting that some of the most striking features that Fisher !

found in the one-dimensional modé variable dynamical 5 o 1 R
critical exponent which diverges at the critical point and the Ty
average and typical correlations are associated with different
critical exponents have recently been found in the two- FM,
dimensional random transverse field Ising motel.

The outline of the paper is as follows. In Sec. Il we intro-

duce the model, an anisotropfcy spin chain in a transverse -7
field, where all the exchange integrals and transverse field
are random. A similar model was also recently studied nu- FIG. 1. Phase diagram for the anisotropi&y spin chain in a
merically using the density-matrix renormalization gréép. transverse field at zero temperature and in the absence of disorder.
A Jordan-Wigner transformation is then used to map thel'he heavy lines represent second-order phase transitions. The hori-
model onto a noninteracting fermion model. Section IlI con-zontal line will be referred to as the anisotropic transition and the
tains a brief summary of the known properties of theVvertical line as the Ising transition. PM denotes a paramagnetic
disorder-free model that are needed to understand the rest Bff@se and Fiidenotes an Ising ferromagnet with magnetization in
the paper. In Sec. IV we take the continuum limit of thethe?(di_rection. To the right of the dashed Iine_the energy gap in the
fermion model for various cases. The Ising transition and th&*citation spectrum always occurs at the Brillouin-zone boundary
anisotropy transition with only randomness in the anisotropylComPare Fig. 2 To the left of the dashed line gap occurs at a wave
that results in a Dirac equation with a random mass. The/ector that is incommensurate with the lattice.
isotropic XX chain in a transverse field with randomness in a - . .

'gbe on, (@=X,y,2), are Pauli spin matrices. This is a quan-

the exchange and/or transverse field reduces to a Dirac equ, del b the Pauli matri d i te with
tion with a random complex mass. Mapping the spin chain tgum model because the Paull matrices do not commute wi

these Dirac equations has the advantage that a number 8f€¢ @nother. The interactiond;, J;, and transverse fields, -
different exact analytic techniques can then be used to evallla» @ré independent random variables with Gaussian distri-
ate the density of states and the localization length. Th@utlons._ All the results given in this paper are for thls_ferro-
properties of the solutions corresponding to the universalityN@gnetic case but also hold for the antiferromagnetic case.
class of the random transverse field Ising model are theRY Mmeans of a spin rotatiodf; andh, can always be chosen
discussed in Sec. V. By examining the energy dependence & be non-negative. We shall assume thtis also non-

the density of states we evaluate the dynamical critical exnegative so that there is no frustration in the system. The
ponent, show the existence of a Griffiths’ phase near th@verage values will be denoted

transition, and show that the ground-state energy has an es-

sential singularity at the trans?ition. We also prggent results G=r. (u=Y, (hy=h 2)

for thermodynamic properties and the typical correlationThe deviation of the random variables from their average
length. The results obtained for the dynamical critical expoajues is assumed to be small, relative to the average value.

nent, typical correlation length, and for the temperature deyye can write our three parameters in terms of a random part
pendence of the specific heat near the Ising transition agregnd an averaged part,

with the results of the RSRGDT and numerical work. Since

our approach is explicitly exact our results are consistent J8=324+632 (a=x,y), h,=h+sh,. 3

with Fisher's claim that the RSRGDT gives exact results forThe random variables are uncorrelated between sites and
critical properties. In Sec. VI, we point out that the properties .

of the incommensurate solution are such that it implies tha ave variances
the anisotropy transition is destroyed in a non-zero trans- a_ 1a\2\—/ $13\2( 5 2\ = sh2

verse field if there is randomness in the isotropic exchange or (= I97=(87)%@=xy), ((h=M%=5n" (4

in the transverse field. A brief report of some of the results For JY=0 the model is the random transverse field Ising

presented here appeared previouly. spin chain which is the quantum analog of the two-
dimensional Ising model with random coupling in one direc-
tion, introduced by McCoy and Wif,and studied by Shan-
Il. THE MODEL kar and Murthy?®
The Hamiltonian to be considered is that of an anisotropic AL zero temperature ‘f’m.d in the absence of dlsorQer the
. L - . model undergoes two distinct quantum phase transifibns.
XY spin chain in a transverse field: e : .
Both transitions are second order. The phase diagram is
shown in Fig. 1. The transition a*+J¥=h from a para-
L magnetic to a ferromagnetic phase will be referred to as the
He— S (oo, + Palal, - +hyod). 1 Ising transition®’ The transition at*=1J for h<(J*+J")
n=1 from a ferromagnet with magnetization in tikelirection to
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one with magnetization in the direction will be referred to
as theanisotropic transitior’®>° This paper considers the
effect of disorder on these transitions.

Mapping to a fermion model
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L

=—> [

t T
‘]§+J¥)(Cncn+l_ Cncn+l)

+(IE=I)(clel, 1 —cnenr1) Fha(clen—cnch].
(13

We perform a Jordan-Wigner transformation which maps

the Pauli spin matrices in E¢l) onto spinless fermions:*
The Pauli spin matrices

0 —i

i 0

o
o= oY=

10
satisfy the algebra

[03,0°]=2i€yp0C, (07)2=1. (6)
Define the following new operators on each site as
t 1 X iy X__: .y
an=§(0'n+|0'n), an=§(0n—lan). (7)
The inverse transformation is
o=al+a,, ol=i(a,—al), o*=1-2a,a . (8)
n n n» n n n/1 n n~n

Using these definitions the following relations can be ob-J¥=

tained:

2_ .1
n= &y

{al,a,}=1, a =0,

9

which show that the,,'s anda’s are neither fermion opera-
tors nor boson operators. The Hamiltonidh, in terms of
these new operators is

[al.a,]=[a}.al1=[an,a,]=0, m#n,

L
—nzl [(F+I(alansi+aal, )

t1
+(I =) (ajan 1t andni1)

+hy(1—2apal)]. (10)
Now consider a second transformation,
n—-1
c,=exp mi > afaj) a;,
=1
cl=al exp( i 2 al a,) (12)

The c,’s and c;’s are fermion operators satisfying the fol-
lowing anticommutation relations:
(12

{Cm ,C;}: Smn» 1Cm acn}:{C:n 10;}: 0.

The boundary terms have been neglected since they do not
contribute to the thermodynamic limit.

[ll. SOLUTION OF THE DISORDER-FREE CASE

The model in the absence of disorder has been solved
previously**?38 \We now highlight certain aspects of the
solution that will turn out to be particularly relevant to the
effect of disorder. In the disorder free cagp=J%, J¥=JY,
andh,=h so that

L

-2 [

(P+I)(clenri—caclyy)

+(I*=I)(c] Cn+1 CnCnt1)

+ h(cncn— cncn)]. (14
The caseh=0 corresponds to the anisotropfcy spin chain
and was first solved by Lieb, Schultz, and Matfi§ he case
0 is the transverse field Ising chain and was first solved
by Pfeuty®’

We introduce the Fourier transform of the fermion opera-
tors

1

_ \/E Ek: Ckeink7

(19

Periodic boundary conditionc{=c,, ) require the wave
vector, k, to take the following discrete values:

1
,01...,zL-1, (16
2
assumingL to be even. Substituting Eq15) in the Hamil-

tonian (14) gives

H

- ; {2[(3*+ J¥)cosk+h]c)cy

+i(I*=I)sink(cict  +ce_) —hl.

17

This Hamiltonian may be diagonalized by the Bogoliubov
transformation,

ci=cos¢(k)b]+ising(k)b_y,

c=cosp(k)b—i sing(k)bT (18

These fermions can be viewed as kinks or domain walls inwhere theb,’s andb]’s are operators with fermion statistics,

the local magnetizatioff. The Hamiltonian is now

and
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tan(2e(K)) = — K 19 @
" (F+JY)cosk+h’
This gives B()
H=—2> E(k)[bjb,—1/2], (20)
- -k ko
“I‘IT' LENLEEL N I T T T T T 7 l?‘l'k
where L Tz

E(k)=2[h?+ (J*—JY)2+ 2h(I*+ J¥)cosk
+43*)Ycos k]2, (21)

and we have used;, cosk=0.
The energy gap will occur at a wave vectgy such that

dE(k=kg)
Tk 22

(b
We shall always takd, to be the positive solution of the
above equation. Because the energy is symmetricthrere
will be two energy gaps at k. To describe the solutions of E(k)

this equation it is convenient to define

N

h(J*+JY) -k ko
a=- 4353y ! (23) ~m —1r|/2 11}2 L
which is always negative for non-negati¥g J¥, andh. The
energy gap wave vectd is given by
coskg=a, a>-—1,
ko=m, a<-1. (29
Typical dispersion curves for these two cases are shown in FIG. 2. Typical dispersion relations for the excitation spectrum
Fig. 2. If we define of the Hamiltonian(1) in the absence of disorder. The two cases
shown correspond to when the quantitydefined in Eq(23), is (a)
J*—-JY larger than negative one arth) less than negative one. Note that
= , (25) for (b) the energy gap always occurs at the Brillouin-zone boundary
J*+JY
whereas for(a) it occurs at a wave vector that is incommensurate
and express as with the reciprocal-lattice vectors. The cades and (b) occur in
regions of the phase diagram to the left and right of the dashed line
h in Fig. 1. (The commensurate case also occurs on the vertical line
a=——— (26) h=0: thenky= 7/2).

P+ (1-9")
then, the boundary between the two cases may be defined Ishall refer to this transition as ttamisotropic transition The
lines along which the gap vanishes are shown as solid lines
h , in Fig. 1.
Py =1-v~ (27) The critical behavior is determined by those low-energy
states near the energy gap whkrek,. If k—Kkg is small the
This boundary is shown as a dashed line in Fig. 1. The twenergy can be written as a Taylor series
cases correspond to a commensurate<(-1) and an in-
commensurate ¢>—1) phase?® It will turn out that the

2 A20 2 e N2
effect of disorder on these two phases is very different. E(k)"=AFv5(k—ko) ™+ -+, (29)
The energy gap dt=k, is 2A where
where
A=E(kp). (289
The system is at criticality when the gap vanishas; 0. vo=2[ 43— h(J*+ JY)cosky— 873 cof k,]2,

When a<—1 (kg=) the gap vanishes along the life

=J*+JY. We shall refer to the corresponding phase transi-

tion as thelsing transition When a>—1 the energy gap A=2[h%+(J*—JY)%+2h(J*+J¥)cosky+ 4J*JY cos ko] Y2
vanishes along the lind*=JY, providing h<J*+JY. We (30
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A. The ground-state energy TABLE II. Critical exponents for the transition in the transverse
field Ising chain, without and with disordeA is a measure of the
deviation from the critical point. The exponents for the random case
were calculated by FishéRef. 13. Some exponents are expressed

= dk in terms of the golden meam= 3 (1+,5). H is an external field

e(A)=— J s—E(k), (31)  inthexdirection, i.e., the same direction as the magnetization. The
—m 2 exponentsy and y are not definedn.d) in the random model due

to the presence of the Griffiths phase. With disorer~ because

(o) ~[In(H])] .

The ground-state energy, of the Hamiltonian(14) is the
energy of the filled Fermi sea

whereE(k) is given by Eq.(21). To discover the nature of

the singularity atA=0 we differentiate the above integral
. 2 . . . .

with respect taA“. For smallA the differentiated integral is Exponent Definition No disorder With disorder

dominated by those low energys states close to the energy

gap. Hence, we need only consider those states determined e~A2"@ 0*(In) n.d.
by the low-energy dispersion relatigR9) B (gfy~AP 1/8 2—¢
y Xxx~ A7 714 n.d.

:ﬁi_ﬂf%+%gh 1 32 s (op)~HY (A=0) 15

A2 Jioko AT A2+ 03 (k—ko)? v S~ A 1 2
7 (ofag)~rt=7 (A=0) 5/4 -1

1 A z T~& 1 o0

B 27Tvoln 2uoke]’ (33

\ W+ I —[(W P+ 3Y)2— (1 7)1

wherek; is a cutoff wave vector. Integrating with respect to )

(38

A2 gives 1-y
A2 A This quantity is realcomplex outside(inside the circle,
E(A)_G(O)ZFUO(].—Z'“ TOKJ) (34) h 2
. . . _ +y?=1. (39
The singularity of the ground-state energy is thus logarith- J+ Y
mic. The critical exponent, defined bye(A)~A%"¢, is « s a result
=0%. This critical exponent corresponds to the specific-heato‘
gir(i;c;?ails;xponent of the corresponding two-dimensional clas- )\52, outside circle
g model. -1
X ) 17y inside circle 40
B. The magnetization and correlation length 1+y’ '

Barouch and McCd¥} calculated the magnetization and The Ising transition is outside the circle and the anisotropic
correlation functions for the disorder-free model. #isal.  transition is inside the circle. This implies that the critical
considered the casé=0.3 Further analysis was done by exponentv=1 for both the Ising and anisotropy transitions.

Damle and Sachdé¥. The magnetizationM*=(0%), and On the Ising critical line
the correlation lengtl§ are defined by the asymptotic behav-
ior (r—) of the correlation function X x 1
N (41
A r
(Thoner)—=(M)2+ —2exXp(— /), (39 and the critical exponeny=>5/4. On the anisotropic critical
line ath=0,
whereA is a constant. [h>J*+JY the system is a paramag-
net and the magnetization is zero.hfJ*+J¥ and J*>JY < x 1
the system is a ferromagnet in tReadirection, and the mag- (onohsr)~ rT/z (42
netization is
and the critical exponeny=3/2. The anisotropic transition
M2 (1 2912 2]/ s nas the same critical behavior as a pair of decoupled lsing
(MH)?=(-1) 1+y|7 (P4 (360 models. The critical exponents for the Ising transition are
summarized in Table II.
This implies that the critical exponeg is 1/8 for the Ising
transition(app.roachiqg the t.rgnsition as a ferromagreatd IV. THE CONTINUUM LIMIT
1/4 for the anisotropic transition.
The correlation lengtlg is given by We shall now look at the effect of disorder on the critical
behavior. To do this we take the continuum limit of the dis-
-1 _, ordered Hamiltonian written in terms of Fermi operators, Eq.
ex E ~[N\o| 7%, 37 (13), when the system is near criticality. We will assume

that, for weak disorder, the phase transitions of the disor-
where dered system are close to the phase transitions of the
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disorder- free system. Those fermion states most effected by 1
the addition of disorder will be those low-energy states near H= EJ dx W (X) [ —ivood+V(x)a?]¥(x), (51)
the energy gap, that is, those with wave vectors nelag.
The Hamiltonian may be broken into slowly and rapidly
varying parts. This is done by replacing the Fermi operatowvhere
¢, with two slowly varying functions,yr(n) and ¢ (n),

which describe right and left movers, respectively, V(X)=2|3* — h|+ 2 63" (x)— h(x)] (52)

— _ ra—ikgn ikgh
Cn= \/E[e "Yr(n) + €T (n)]. (43 and 8J*(x) and sh(x) are the random parts ard andh
] ] . are the average parts 6f (x) andh(x), respectively. The
The exponential terms represent the rapidly varying part ofynction V(x) is real and its average value As the energy
C,. From the anticommutation relations of the Fermi operaqap of the pure system. For the case of no disof&rwas
tors, ¢, andc}, it is possible to derive anticommutation re- derived by Shankat The case of the transverse field Ising

lations for the slowly varying functions, chain with randomness only id* or h was derived by
t ot B Balents and FishéP The fact that the Ising transition is

{YR(N), gr(M)}={g (N), Y. (M)} = S, (44 described by the same equation for any anisotropy shows

and all other combinations are zero. that it will be in the same universality class as the random

transverse field Ising chain studied by Fisher.
A. Ising transition

Whenky= =7, EqQ. (43) may be simplified to B. Anisotropic transition
—(_1\n Near the anisotropic transition we must use the more gen-
Ch=(=1)"¥(n) (45 o . _
_ eral decomposition of the Fermi operators shown in(&8).
with As was done near the Ising transition we replace the discrete
+ _ variablen, with a continuous variablg, and replace discrete
{g'(n),p(m)} =6 (46) differences with derivatives. Next, we remove those disor-

After substituting this into Hamiltoniari13), we take the dered terms which are negligible. We shall make one ap-
continuum limit. To do this we transform the discrete vari- Proximation which was not necessary near the Ising transi-
able,n, into a continuous variable, and we write tion. We will neglect all rapidly varying terms. A rapidly
varying term may be neglected because its integral will van-
p(n)=(x=n), Y(n+1)=(X)+,p(x). (47) ish. Terms involving the product of two rapid terms may not
be neglected since the two rapid variations may produce a
small. Where appropriate we can neglect these derivativgIOWIy varying part. The exponential terms are rapidly vary-
terms. The disorder is assumed to be small, hence term99 and the rand_om terms may have S!OW|¥ and r'ap|dly vary-
combining both derivative terms and disordered terms may'9 .parts. Cpmb!mrTg all these approximations gives the fol-
be neglected. Substituting these approximations into th pwing Hamiltonian:
Hamiltonian and replacing the sum owvemwith an integral

The functiony is slowly varying and so its derivative is very

overx gives 1
L " H= _f dx §[J+(X)005ko+ h(x)](¥ktrt ¥y
H=nzl (wT.w){iJ_Uy&er[T(X)—h(X)]GZ}(W). hoo o J*
48) +137()sinkoyl h— —— + - YRdyr
where * _ _
+J_eik0(//Ta o +‘]_e—ik0¢’r& o+ 'J_eikod/‘ra ot
()=, =, h(x)=hn_y. (49) 2 LOXFLT 2 ROXPLT 2 LOXPR
By performing the following rotation into a new set of Pauli ik . " +
spin matrices, withk,=*+ 7 +e [ 837 (x)e™ 0+ sh(x) ]y | +H.cC. (53

AJ*sinkg .. vo(h+J7cosky)

ay= o o,
2J7(J* +hcoskg) 237 (3" +hcoskg)

When ko=—m/2, J*(x)=3(x)=t,/2 and h(x)=0, this
Hamiltonian is equivalent to that obtained by Balents and
_ Fisher?® The Hamiltonian in Eq(53) can be simplified in

, A coskg 1, Vosin ko 3 two particular cases.

= - (o o
2(J" +h coskg) 2(J" +h coskg)

1. Case I(63}=- 483, 6h,=0)

If the only randomness is in the anisotropy, which must
where A and v, are defined in Eq(30), the Hamiltonian be equal but oppositesJ* (x) = sh(x)=0), the Hamiltonian
becomes reduces to

=02, (50
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H=—f dx( ¢, )[ (3t cosky+h)a?— I~ (x)sinkea”

+i(3*sin koch+J‘coskoay)(9x]( Zf) . (54)
L

On performing the rotation in Eq50), the Hamiltonian can
be simplified to

1 . v
HZEJ dX(l//TR,'J/L)[—Ivoﬁa&x‘FV(X)O’l]( zﬂ?)' (55

We have used the definition &, on the anisotropic critical
line, cosk,=—h/J*, and defined

V(x)=2|J"|sinky= 283~ (x)sinkg. (56)
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In summary, all three Hamiltonian®1), (55), and (59),
can be written in the forff§

1 .
H= zf dX W (x) [ —iveo®dx+V(X) o +V(X)* o~ J¥(x).
(62)

Note that the structure of the spindt, is quite different in
all three cases. The functio(x) satisfies

(V(x))=A,

(V(X)V(X")*) =A%+ yS(x—X"). (62)

The anisotropic case I1J( =0) hasA=0. The fact that
V(x) is complex for the anisotropic case Il will lead to quali-
tatively different behavior. In fact, in that case the disorder

Note that, like the Ising transitiorV is real and its average removes the phase transition. We refer to the case where
value isA. Hence, in this case the anisotropy transition is inV(X) is real as the commensurate caseat is, the Ising
the same universality class as the random transverse fiefensition and the anisotropic cageThe case wher€(x) is

Ising chain.

2. Case I1(J3}=3%)

Another special case of the Hamiltonian in E§3) is
when there is no anisotropgyd ~(x) =0]. Note that, in the

complex is the incommensurate case. The case of\ed|
also describes dimerizeXX spin chain®~* and spin
ladders*®*°The case of compleX(x) also describes aKX
spin chain in a transverse field with a modulation of the
exchange with wave vectorkg.

absence of disorder, this restricts the model to the anisotropic

critical line. It shall also be assumed that any disorder is

rapidly varying. The new Hamiltonian is

H=— % f (P, yD)[ — 2137 sinkoo oy + E()* o

(57)

*

[ Ur
+&(X)o ](%).

where &(x)=2e 2k 53*(x)e 0+ sh(x)] and

=1(o**ioY). Sincek, is incommensurate with the lattice
&(x) is complex. We have neglected a term involving the
sum over the magnetic field since it is a constant. Consider

the following rotation:

0_3_ _ O.z’
ol=0%,
o’=—gV. (58)

With this rotation,

1
H=§f V() —iveodyt+ £(X) o +E(X)* o W (x),
(59
where o*=3(o'+io?). The complex function, £(x)
=2e" 2% 5J(x) "e~ko+ sh(x)], has the following proper-
ties:
(&(x))=0,
(§(x)€(x"))=0,
() E(X")*)=yS(x=x"),
wherey=4[(8J7)2+ (sh)?].

(60)

V. EXACT SOLUTIONS

It is useful to define an energ® and a dimensionless
parametes which are measures of the disorder strength and
the deviation from criticality, respectively,

(63

Note that for the Ising transition with’ =0, to leading order
in A/J%, for a Gaussian distribution this parameteagrees
with the & defined by Fishéf and Young and Riegé?,

(Inh)—(In J*)
5= . (64
{((Inh)2)—{Inh)2+{(In J¥)2) — (In J*)?

The advantage of casting the problem in the form of the
Hamiltonian (61) is that the latter has been studied exten-
sively previously, andexactanalytic expressions given for
the energy dependence of the disorder-averaged density of
states(p(E)) and the localization lengti(E). The exact
results have been found by Fokker-Planck equafions,
supersymmetry>®+4> the replica trickc®>" Smatrix
summatior?® and the Dyson-Schmidt methdd.

Due to the one-dimensionality all the states are localized
by the disorder. The localization length can be found because
in one dimension it is related to the real part of the one-
fermion Green’s functioi>>3

The density of states and the localization length are re-
lated to the one-electron Green’s functiGiix,x,E) and can
be written in terms off (u), the derivative of a dimension-
less functionf s(u)

d 1
TI’G(E,X,X):E m‘l‘iﬁp(E)zﬂpof’&(E/D),
(65)
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where po=1/(mv) is the value of the density of states at 9z ) )
high energies |E|>A,D). The functionf  is different for voo =~ (E-A)=Z(E+A)—é(z°~-1). (74
the commensurate and incommensurate cases,
This equation allows us to write down a Fokker-Planck equa-
P . :
—uﬁln[H%Z)(u)] commensurate tion for the random variable

fs(u)= P (66) oP(zx) 1 9

d=In1iu()] incommensurate, X vo 92

(E—A)+Z%(E+A)

where H(?) is a Hankel function of orde® and liy is a +2(22—1);(22—1) P(z,x). (75
z

modified Bessel function with imaginary index.

The functionP(z,x) is the probability density distribution
Solution using a Fokker-Planck equation function of the random variable at the pointx. It is the
To demonstrate how an exact solution may be found wélerivative(with respect tax) of the probability thaz is less
will derive the density of states for the commensurate casé'anx. Since the probability of being less than infinity is
[V(x) real] by using Fokker-Planck equations. Many authorsunity we expect
have studied mathematically equivalent systét&:5:Con-

sider a general Dirac-type equation, f‘” P(z,x)dx=1 (76)
Vo x Y2=Eyy, This is an important concept when dealing with probability
densities.
kY We create a stationary Fokker-Planck equation by taking
ivo_z +V(X) 1 =E,. (67)  the limit asx goes to infinity. The limit of the probability
X density is
The functionV is a real and random function of the form )
lim P(z,x)=p(z). (77)
V(X)=A+&(x), (68 X

whereA is a constant and is a random field which obeys The stationary Fokker-Planck equation is
the following statistical averages:

19
0=——((E—A)+22(E+A)

(€(x))=0, (&(X)&(y))=ra(x—y). (69) vg 92
We reduce the Dirac equation into a system of equations for 5 J
two real functions by the following transformatiors: +5 (@ -1 (22-1) |p(2). (78
v it @ =5 This equation can be integrated and Ovchinnikov and
ol Al VR i R bl R E (70 Erikhmarr* showed that the constant of integratiorNgE),
! ! the number of states below the eneigy
then we let
1
f,=ReV¥, f,=Im¥, ¢;=—Imd, ¢,=Red. N(E)=— U—((E—A)+ZZ(E+A)
(7D °
It can be shown thatfg,f,) and (¢1,¢,) satisfy the same + E(ZZ_ 1)i(22_1)) p(2). (79
equations: 2 0z
P To simplify the solution of the above differential equation
V(X) Vo— we perform two transformations.
X fa —E f1 (72) The first transformation is defined by the following func-
f, fs tion:
_U()& _V(X)
ax)  f, 50
Define the following function: R (80
f, Because of the nature of the cotangent, we can obtain all
Z=- f_1 (73 possible values of the ratie; f,/f4, by restrictinga to some

interval of length 2r. We will restrict « to the interval
By differentiating the dynamic variable with respect tox [ —7/2,37/2]. We are only interested in the case where
and using Eq(72) a dynamic equation foz may be con- —«. As in Eq.(76), the integral of all probability densities
structed, of a at largex, p(a), must equal unity,
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37/2 where the+ subscript orp refers to the different signs in Eq.
f B /Zp(a)da=1. (81)  (83). After performing the two transformations E(7.9) be-
comes

The relationship betweep(z) andp(«) is

J
o PR =
p(z)=—2p(a)sin2§. 82) 2E cosh¢p=2A +2D 7% p(¢)=voN(E). (85
The second transformation is This first-order differential equation can be solved with the

boundary condition thap(¢) vanishes agh— o,
cosa= * sechg,
voN(E) (= B A
20 J, X ex 5(sm ¢—sin x)_B(qﬁ—x) .
The upper sign refers te e [ — 7/2,7/2] and the lower sign, (86)

a e[ m/2,3m7/2]. It can be shown thad(«)=p(¢)coshe so
that Eq.(81) becomes

sina= * tanhe. (83 p(p)=

To find the number of states we recall that the probability
density must be normalized so that the integral over all pos-

* do—+ ” (p)dd=1, 84 sible values of the random variablk is unity. After some
f_wp+<¢> ¢ f_wp (¢)do B anging

e [ [ E _ A
2Dvy "N(E) —f_md(bL)dxex 5(5|nh¢—smhx)+5(¢>—x)

(87

w - E | A
+jxd¢f¢ dxexr{a(smmﬁ—smhx)—5(¢—X) _

If these two integrals are combined and we lgt=X%— ¢, §=A/D, andu=E/D, we obtain, after changing the order of
integration

2DvglN(E)’1=4J:dycosh zsyf d¢ exu sinhg—sinh(2y+ ¢)]. (88)

Now we letz= ¢+,
2Du51N(E)*1=4J dycosf(Zéy)f dzexd —2u sinhy coshz]z8] dycosr(Zby)j dzexd —2u sinhy coshz]
0 —® 0 0

= 8fmdycosr(26y)K0(2u sinhy) = m2[J5(u)2+Y 5(u)?], (89)
0

whereJs(u) is a Bessel function of inde§ andYs(u) isa  VI. PROPERTIES OF THE COMMENSURATE SOLUTION
Bessel function of the second kind of ord&rThe number of

- - A. The density of states
states with energy less thanis y

Figure 3 shows the energy dependence of the density of
2D states from Eq(91) for a range of values of with pg
) (90) =1/(mvy). In the low-energy limi{smallu) we can take the
m2vo[J5(E/D)?+Y 5 E/D)?] following approximation of Eq(91),

To find the density of states(E), we differentiateN(E)

N(E)=

p(E) 4 Yiu)

L4 3w+ YWY ) Po T YHu)
Ny v Y

(92

since the Bessel functions of the first kind remain finite for
This is the density of states from which we obtain our re-smallu whereas those of the second kind become infinite, as
sults. shown in the following small approximations:
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the Fermi energyE=0) and diverges atf=0) When5<% . This

gap except at the critical point.

2 u
i 5=0
7T|n2

Y s(u)~ (93

1 -0
——F(é)(—u) 6+0.
T 2

These low-energy limits are substituted into £§2) and
then the dominant terms are retained, that is, the smallest

powers ofu

—aD
p(E) | E[In(E/2D)]?

Po 276

E 6—1 (94)
r(é)z(ﬁ) 540,

The divergence in the density of stated€sat 0 is sometimes

referred to as the Dyson singularity.

The functionY 4(u) is continuous as1 and § approach

zero. This property is not apparent from E§4). To avoid
this problem we take the smafl(close to criticality limit of

Eq. (92) before we take the smalidimit. Before we take any
limits we write the Bessel function of the second kind in

terms of the Bessel function of the first kind,

Js(u)cog o) —J_s(u)

Yolw)= sin(om)

(99

We can find a smalb approximation tal ;(u) from its series
expansion,

” 1/4)u? 1 \?
3 ( )E;T+]1) (5“) Jo(u).
(96
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A = h—J*x-J

FIG. 4. Phase diagram of the Ising transition in a random trans-

verse field. The horizontal axis is a measure of the deviation from
FIG. 3. Energy dependence of the disorder-averaged density ajriticality in the nonrandom model. The vertical axis is the amount

states for the commensurate case for various values of the dimenf disorder. The four phases are ferromagiftl), weakly ordered
sionless parameted [see Eq.(64)], which is a measure of the ferromagnetWO-FM), weakly ordered paramagn@vO-PM), and
deviation from criticality. The density of states is symmetrical aboutparamagnetPM). The weakly ordered phases are Griffiths phases
in which the linear susceptibility diverges but there is only short-
parameter range corresponds to a Griffiths phase. Note that only faange order. Note that the dashed line does not represent a true

from criticality (6> 1) is there effectively a gap in the system. This phase transition and that higher-order susceptibilities will diverge in
contrasts with the disorder-free case, for which there is always #arger regions of the phase diagram.

So now we have a smadl approximation for a Bessel func-
tion of the second kind

Y s(u)=Jo(u

p(E)

=275°

E
2D

)[(1/2)U]‘S—[(1/2)U]7‘5

om ' (97)

Whenu is small we setly(u)=1 and Eq.(92) becomes

20-1 11+ (E/2D)??]
[1—-(E/2D)?%]?"

(99)

This agrees with the scaling form obtained by Balents and
Fisher? By taking appropriate limits it can be shown that
this formula agrees with Eq94). For §=0 we use

6—0
1_

N

o
lim ?275 |

P)
M 1-[1+25In(E/2D)]

1

= 2In(E/2D)’ (99

and for § becoming small we use, in EQ2), I'(5)~1/6.

The low-energy [E|<D) dependence of the density of
states contains some important physics. The density of states
diverges aE=0 for §<1/2 and is zero aE=0 for 6>1/2.
These two cases lead to qualitatively very different behavior.
In the former case some susceptibilities will diverge as the
temperature approaches zero. This corresponds to a Griffiths
or weakly ordered phasé.Hence, for the Ising transition
there will be four phases: ferromagnet, weakly ordered fer-
romagnet, weakly ordered paramagnet, and paramsgnet

(see Fig. 4.
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B. Ground-state energy where we have made the substitutiBr-e~¢?° and setE,
The dependence of the ground-state energy of the disor= ZD, because.th_ls does not affect the gnalytlc properties of
dered commensurate system ércan be shown to be infi- the integral. This integral can be solved in terms of Eulér's
: 2
nitely differentiable, but not analytic. To show this we follow functior?
a procedure similar to that used by McCoy and ¥vand

Shankar and Murth§ who considered the analogous two-
dimensional classical system. To find the ground-state en-

ergy in the presence of disorder we use

e(ﬁ)Z-pr(E)E dE. (100

0

We make use of expressi@@8), for the density of states at

+f(5)

1
€(8)— e(0)=mpyD?IN25+ WpoDzzﬂ(Zs

o0

= —mpoD25— WPODZnZl B,n(26)2"(2n) ~*

+f(9), (105

low energies, which we assume is accurate up to an energy

E., which is less than 2D,

EJ/2DE29(1+E?°)
€(8)=— D286° _—
—J p(E)EdE (101
EC
By integrating by parts
5 JEC/ZDE”(H E2?)
o (1-E*)®
4 52E1+25 E¢/2D 25E E¢/2D
(1_E25)2 0 (1_E25) 0
J'Ec/zo dE
+26 _— . 10
o 1-E%* (102

As for the disorder free cagsee Sec. Il A we subtract off
the ground-state energy at=0. To calculate thes=0
ground-state energy we require the limit in E§9) with
which we obtain

6(0) _ Ec n EC
mpoD? 2D[In(E./2D)]?> 2DIn(E./2D)

JECIZD dE 1 o
- ——+ lim J (E)E dE.
0 InE 5_>o7TpoD2 Ecp

(103

By subtracting the zer@ case from the smalb case and
combining those terms analytic ifiin a functionf(5), we
obtain

26 1
1% InE

nE +1(5)

E/2D
e(8)—e(0)=— WpOsz dE
0

—— mpoD? [ “dge (10 g

+f(6), (104

using the smalld approximation for they function® The
Bernoulli numbersB,,, are proportional to &!/(27)?" for
large n. Because of this, the ground-state energy has zero
radius of convergence about the poiAt=0. Thus the
ground-state energy is infinitely differentiable but is not an
analytic function ofés. The critical exponentg, defined in
Table Il cannot be defined in this case.

C. Thermodynamic properties
1. Free energy

For any particular configuration of the disorder the free
energy per site of the system is

(106

2 B
CcOos m ,

where{E,} denotes the eigenvalues of the Hamilton{&).

This simple formula holds because the eigenstates of the
Hamiltonian are noninteracting fermions. It then follows that
the disorder-averaged free energy is

F=-ksT>, In
k

faar
2 cos m . (107

The low-temperature behavior of the specific heat and the
transverse susceptibilitffor the anisotropic transitiongol-

lows from the energy dependence of the disorder-averaged
density of state8>54We now show this in detail.

<F>=—kBTf:dE<p(E)>|n

2. Specific heat
The disorder-averaged specific heat is

2 T dE EXp(E))~=

of
0 JE’
(108

wheref(T) is the Fermi distribution function. For the com-
mensurate case with#0 the mean specific heat is
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2775[)() E. E25+ 1e— E/kgT 1 (e of 27T5P0k235+ 1T25 Ec/kgT y25+ 1e—y
(C(M)= 2 2 25—1j E —ElkgT 2+T dEp(E)_EZ 2 25—1f y —y\2
kgT2T(5)2(2D) 0 (1+e FlkeT) E, JE  T(5)2(2D) 0 (1+e7)

+ 1fxdE E ot 109

e, p(E)-E- (109

As the temperature becomes very small the limit of the integralkgT, becomes very large. The first integral will dominate
the specific heat and will be evaluated from zero to infinity. By using integral f%ttesan be shown that

% yxe*y B * (_ 1)k+1
fo dym—F(X-Fl)ng, xXx>—-1
=T (x+1)(1-21"%¢(x). (110

where{ is the Riemann zeta function. The mean specific heat is then

A7 SpoksDI(28+2)(1—272%)(25+1) kBT)25
C(T))= - . 111
(C(T) s 55 (111
For small 8, (C(T))~ 6°T??, in agreement with Fish&tand the numerical work of Yound.
The specific heat in the commensurate case Wit0 is
(C(T))= WDPOJECdE Ee the! + 1FdE B
ksT2Jo  [IN(E/2D)3(1+e TkeTy2  Tlg, ' 6E
Dpok fEdkBTd ve + 1deE B3 (112
=17 = .
Pote I Y inkgTyi2D) P(1+e %2 Tle P GE
|
To 7sin;pllify this eguation we note that the teryre‘ﬂ(l 2m8pol(28)(1— 22729 £(25—1) (kT 291
+e7Y)¢ is appreciable only for values of of order unity.  (x,AT))= 5 2D
Since we are taking a low-temperature linfitcD, we may INE)
approximate the ternf,In(yksT/D) T3, to simply[In(ksT/D)]® (115

wheny~1. As in the previous case, the second integral is L o o o
negligible as the temperature approaches zero and the limits 6<z andT—0 the susceptibility becomes infinite. This is

of the first integral are zero and infinity. The specific heat forthe Griffiths phase region. We cannot take the limitages
5=0is to zero of the susceptibility since the condition on the inte-

gral in Eq. (110 is x>—1 which means, in this case,
>0. If we try to take this limit we see that it does not exist.
mkgDpg The critical exponenty is not defined.
(C(T))=- Wln 2, (113 Similarly to the specific-heat calculation with=0 it can
[InCks )] be shown that wherd=0 the mean susceptibility at low
temperatures is
which has the same temperature dependence as found by
Fisher

Th=— 'rrponmd ey
AT = "1 |, Yy (nlykeT/2D])3(1+e )2

3. Transverse susceptibility 116

The mean transverse field susceptibility is, for the aniso-

tropic transitiort; The integrand is large at=1 andy=0 so we can approxi-

mate the integral to an integral from zero to some cut/off

o of of order unity. We also notice that, for<1,
<Xzz(T)>:J' dE(p(E)) ¢ (114
0
e’ 1
For the commensurate case wifl¥ 0 and the temperature y(In[ykgT/2D])3(1+ e Y)? y(In[kaT/ZD])3'
approaching zero the calculation of the susceptibility is simi- (117

lar to the calculation of the specific heat wi##0. The
mean transverse susceptibility is Using these approximations the susceptibility is
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wpoD (A 1 éav (yp<&al), having a different critical exponent. The lo-
(XzAT))=— KT f 3 calization length is useful because it is proportional to the
B! Jo "y(In[ykgT/2D]) typical correlation length for quantities that are diagonal in
A the fermion representatidii.

_™Dpo L mDpo The localization length is obtained from integrating equa-

T keT [I (kaT”2 T KeT[IN(AKgT/2D)2  tion (65),
n
20 )] |,

1 D
118 Gh U—ORe(f s(u))+const. (120

This susceptibility is finite whe@=0 unlessT=0. A com-
parison with thes# 0 result shows that the susceptibility is
not continuous at the phase transition which i$at0.

In the commensurate case the following approximation holds
for small u:

uYy(u)
D. Dynamic critical exponent z Re(f 5(u))=— ZOE (121

This relates the scaling of energypr time) scales to . .
length scales. We can make the following crude scaling arI_Equatlons(93) and(97) give, for small energy,

gument to extracz from the low-energy behavior of the o
density of states. The total number of staesr unit length D&’ 6+0,
with energy less thak, N(E) scales with the inverse of any ME)= (122
length scalel. By definition E~I1"% This implies that vg E
(p(E))~EY*"1, Thus for the commensurate case, to leading —phsg: =0
order in é,
The localization length is infinite only wheA=0 and E
1 =0.
Z=55 (119 For both the pure system and the random systég,

~\(0)"*~A"!, indicating thatr,,= 1 and that this critical
in agreement with the renormalization group results ofexponent is not modified by the presence of disorder. This
Fishet® and the numerical results of Young and Riebeer. result also agrees with the RSRGDT. Balents and Fisher
Igloi and Rieger also found the exact form of the dynamicalstudied the same Dirac equation and examined the decay of
exponent in the random transverse-field Ising spin chain byhe average Green function. Hence, they found the critical
using a mapping to the Sinai-walk probléfhExpression  exponent associated with the average correlation lerigih,
(119 is a particularly striking result because it shows tfipt ~A 2,
zis not universal andii) z diverges at the critical point. The
latter implies logarithmic scaling and activated dynanfits. VIl. PROPERTIES

OF THE INCOMMENSURATE SOLUTION

E. Finite-size scaling
It was shown in Sec. IV B 2 that the incommensurate so-

Monthus et al® studied an equation equivalent t0 EQ. |ytion with 5= A/D =0 describes th&X chain which has no
(61) with V(x) real andA=0.>> They have shown that on a apisotropy. We can use E(65) to find the density of states.
line of lengthL, for a ty|g|cal potentiaV(x) the lowest ei-  ajiernatively, using Fokker-Planck equations, or a number of
genvalueE, scales likeEg~exp(—cL'?), wherecis a con-  other methods38%8%%t can be shown that the number of
stant. This is consistent with the scaling oEjwith LY? at  states belovE is
the critical point found numericall}f The average(E3)
~exp(—dL3) whered is a constant® showing the discrep- Dpq sinh(ru)
ancy betweenaverage and typical values. Fisher and (B)= 0 a2
Young’* recently derived the distribution function for the ()]
energy gap from the RSRGDT and compared it to numericajyhere u=E/D. The density of statep may be found by

results. The distribution function they derived gives averagqaking the derivative oN(E). The density of states for small
and typical values in agreement with the above results. s

(123

F. Correlation lengths p(E) 1 (124
Fisher stressed the distinction between average and typi- Po I0(5)2'
cal correlations. IfC;j=(A;A;) denotes a correlation func- _
tion of a variableA; then the average correlation function YWhené=0, for anyu,
= L P i i 1 -
Calr)=(1L)=2.Ci i+, Is what is measured experimen p(E) = po. (125

tally. Away from the critical pointC,/r)~exp(—r/&,)

whereé,, is the average correlation length. Howev@g,(r) Hence, the incommensurate density of states is always finite.
is dominated by rare pairs of spins wi@);~ 1. In contrast, When =0 the density of states is constant. Thus, foxat

with probability oneC; ; , . ~exp(—r/&y,) whereé,,, denotes random chain in a nonzero transverse field there is no Dyson
the typical correlation length. It is distinctly different from singularity. This agrees with the results of Snfith.
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To find the localization length we take the real part of Eq.randomness in the anisotropy then the anisotropy transition
(65) and integrate ovelE. For smallu, the localization length is also in this universality class. However, if there is random-
for the incommensurate case is ness in the isotropic part of the exchange or in the transverse

-1 field then in a nonzero transverse field the anisotropy transi-
+ M (126) tion is destroyed by the disorder. By examining the energy
lo(6) dependence of the density of states we showed that the dy-
The constant of integration must be evaluated by deriving th@amical critical exponent, show the existence of a Griffiths’
localization length from other methodsThe most impor- Phase near the transition, and show that the ground-state en-
tant property of this result is that unlike for the commensu-erdy has an essential singularity at the transition. The results
rate case the localization length is always finite. This meangbtained for the typical correlation length, the dynamical
that the typical correlation length of the corresponding spircritical exponent, the finite-size scaling of the energy gap,
model does not diverge when the pure system is at criticalityand for the temperature dependence of the specific heat near
Hence, in a nonzero transverse field the anisotropy phadée Ising transition agree with the results of the RSRGDT
transition does not occur if there is randomness in the transand numerical work. Since our result is explicitly exact, this

4U0
)\(E)= F

verse field or the isotropic exchange. agreement is consistent with Fisher's claim that the
RSRGDT gives exact results for critical behavior. The real
VIIl. CONCLUSIONS challenge is whether the mapping to the fermion model used

here can be used to obtain results for distribution functions

We presented some exact results for the effect of disordegnd spin-correlation functions. Recently some has been done
on the quantum critical properties one of the simplest modelgn distribution functions associated with the zero energy
to undergo quantum phase transitions: an anisotrdfc  eigenstates of the random Dirac equatfor47*
spin chain in a transverse field. By taking the continuum
limit of the corresponding noninteracting fermion model we
were able to map various cases of the model onto a Dirac
equation with a random mass. This mapping has the distinct
advantage that a number of different techniques can then be This work was supported by the Australian Research
used to obtain exact analytic results for the density of state€ouncil. We thank R. J. Bursill, V. Dobrosavljevic, D. S.
and the localization length. In the presence of disorder thé&isher, D. Huse, R. Hyman, V. Kotov, S. Sachdev, T. Sent-
Ising transition of the model is in the same universality clasdhil, and R. Shankar for helpful discussions. D. Scarratt
as the random transverse field Ising model. If there is onlyhelped produce some of the figures.
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