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Effect of disorder on quantum phase transitions in anisotropicXY spin chains
in a transverse field
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School of Physics, University of New South Wales, Sydney 2052, Australia
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We present some exact results for the effect of disorder on the critical properties of an anisotropicXY spin
chain in a transverse field. The continuum limit of the corresponding fermion model is taken and in various
cases results in a Dirac equation with a random mass. Exact analytic techniques can then be used to evaluate
the density of states and the localization length. In the presence of disorder the ferromagnetic-paramagnetic or
Ising transition of the model is in the same universality class as the random transverse field Ising model solved
by Fisher using a real-space renormalization-group decimation technique~RSRGDT!. If there is only random-
ness in the anisotropy of the magnetic exchange then the anisotropy transition~from a ferromagnet in thex
direction to a ferromagnet in they direction! is also in this universality class. However, if there is randomness
in the isotropic part of the exchange or in the transverse field then in a nonzero transverse field the anisotropy
transition is destroyed by the disorder. We show that in the Griffiths’ phase near the Ising transition that the
ground-state energy has an essential singularity. The results obtained for the dynamical critical exponent,
typical correlation length, and for the temperature dependence of the specific heat near the Ising transition
agree with the results of the RSRGDT and numerical work.@S0163-1829~99!07125-8#
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I. INTRODUCTION

An important feature of many low-dimensional models
strongly interacting electrons is that they exhibit quant
phase transitions, i.e., they undergo a phase transition at
temperature as some parameter is varied.1 Experimental re-
alization of this occurs in heavy fermion materials such
CeCu62xAux which undergo an antiferromagnetic
paramagnetic phase transition induced by pressure.2,3 Near
the critical point unconventional metallic behavior is o
served and is enhanced by the presence of disorder.2,4 It has
also been proposed that a quantum critical point plays
important role in cuprate superconductors.5 Quantum phase
transitions in the presence of impurities or disorder also
cur in 4He and 3He absorbed in porous media6

superconductor-insulator transitions in dirty thin films,7 the
delocalization transition in the quantum Hall effect, and t
metal-insulator transition in doped semiconductors.8

Compared to thermal phase transitions in disorder-f
systems, these transitions are poorly understood bec
many of the theoretical methods~e.g., exact solutions, th
renormalization group ande expansions! that have proven so
useful for pure systems at nonzero temperatures9 are difficult
to implement for disordered systems.10 These phase trans
tions are associated with particularly rich physics such
large differences between average and typical~i.e., most
probable! behavior, new universality classes, logarithm
scaling, and ‘‘Griffiths phases,’’11 in which susceptibilities
diverge even though there are only short-range correlati
Low-energy properties of the system are dominated by
tremely rare configurations of the system. It has recen
been proposed that Griffiths phases can lead to uncon
tional metallic behavior.4,12

Fisher recently made an exhaustive study of the effec
randomness on what is arguably the simplest model to
PRB 600163-1829/99/60~1!/344~15!/$15.00
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dergo a quantum phase transition: the transverse field I
spin chain.13 He used a real-space renormalization-gro
decimation technique~RSRGDT!, originally developed by
Dasgupta and Ma,14 which he claimed is exact near the crit
cal point. Fisher found the phase diagram~which included a
Griffiths phase near the critical point!, all of the critical ex-
ponents~some of which are irrational, as shown in Table!,
and scaling functions for the magnetization and correlat
functions in an external field. It is striking that the latter ha
never been derived for the disorder-free case but can be
rived in the presence of disorder because distributions
come extremely broad near the critical point. Many of Fis
er’s results have been confirmed by numerical work.15–17

The RSRGDT has now also been used to study the effec
disorder on dimerized18 and anisotropic spin-1

2 chains, spin-1
chains,19–21 chains with random spin sizes,22 quantum Potts
and clock chains,23 and diffusion in a random
environment.24,25 Possible experimental realizations of ra
dom spin chains are given in Table I. There is a direct c
nection between the critical behavior of the random tra
verse field Ising chain and random walks in a disorde

TABLE I. Experimental realizations of random spin chain
These chains all involve antiferromagnetic exchange except
Sr3CuPt12xIrxO6 which involves both ferromagnetic and antiferro
magnetic exchange.

Material Spin per site Reference

Quinolinium~TCNQ!2
1
2 63

Sr3CuPt12xIrxO6
1
2 72

MnTPP-TCNE~solvent! Alternating 1
2 and 2 73

MgTiOBO3 ~warwickite! 1
2 74

MgVOBO3 ~warwickite! 1 75
Cu~3-methylpyridine!2Cl2

1
2 76
344 ©1999 The American Physical Society
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environment.24–28 Fisher’s results have also been related
the Kondo lattice in one dimension.29

An important question is whether some of the same in
esting physics occurs in higher dimensional models. Sen
and Sachdev did find this to be the case in a dilute quan
Ising system near a percolation transition.30 It is particularly
interesting that some of the most striking features that Fis
found in the one-dimensional model~a variable dynamica
critical exponent which diverges at the critical point and t
average and typical correlations are associated with diffe
critical exponents! have recently been found in the two
dimensional random transverse field Ising model.31

The outline of the paper is as follows. In Sec. II we intr
duce the model, an anisotropicXY spin chain in a transvers
field, where all the exchange integrals and transverse fi
are random. A similar model was also recently studied
merically using the density-matrix renormalization group32

A Jordan-Wigner transformation is then used to map
model onto a noninteracting fermion model. Section III co
tains a brief summary of the known properties of t
disorder-free model that are needed to understand the re
the paper. In Sec. IV we take the continuum limit of t
fermion model for various cases. The Ising transition and
anisotropy transition with only randomness in the anisotro
that results in a Dirac equation with a random mass. T
isotropicXX chain in a transverse field with randomness
the exchange and/or transverse field reduces to a Dirac e
tion with a random complex mass. Mapping the spin chain
these Dirac equations has the advantage that a numb
different exact analytic techniques can then be used to ev
ate the density of states and the localization length. T
properties of the solutions corresponding to the universa
class of the random transverse field Ising model are t
discussed in Sec. V. By examining the energy dependenc
the density of states we evaluate the dynamical critical
ponent, show the existence of a Griffiths’ phase near
transition, and show that the ground-state energy has an
sential singularity at the transition. We also present res
for thermodynamic properties and the typical correlat
length. The results obtained for the dynamical critical exp
nent, typical correlation length, and for the temperature
pendence of the specific heat near the Ising transition a
with the results of the RSRGDT and numerical work. Sin
our approach is explicitly exact our results are consist
with Fisher’s claim that the RSRGDT gives exact results
critical properties. In Sec. VI, we point out that the propert
of the incommensurate solution are such that it implies t
the anisotropy transition is destroyed in a non-zero tra
verse field if there is randomness in the isotropic exchang
in the transverse field. A brief report of some of the resu
presented here appeared previously.33

II. THE MODEL

The Hamiltonian to be considered is that of an anisotro
XY spin chain in a transverse field:

H52 (
n51

L

~Jn
xsn

xsn11
x 1Jn

ysn
ysn11

y 1hnsn
z!. ~1!
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Thesn
a , (a5x,y,z), are Pauli spin matrices. This is a qua

tum model because the Pauli matrices do not commute w
one another. The interactions,Jn

x , Jn
y , and transverse fields

hn , are independent random variables with Gaussian dis
butions. All the results given in this paper are for this ferr
magnetic case but also hold for the antiferromagnetic ca
By means of a spin rotationJn

x andhn can always be chose
to be non-negative. We shall assume thatJn

y is also non-
negative so that there is no frustration in the system. T
average values will be denoted

^Jn
x&[Jx, ^Jn

y&[Jy, ^hn&[h. ~2!

The deviation of the random variables from their avera
values is assumed to be small, relative to the average va
We can write our three parameters in terms of a random
and an averaged part,

Jn
a5Ja1dJn

a ~a5x,y!, hn5h1dhn . ~3!

The random variables are uncorrelated between sites
have variances

^~Jn
a2Ja!2&[~dJa!2~a5x,y!, ^~hn2h!2&[dh2. ~4!

For Jn
y50 the model is the random transverse field Isi

spin chain which is the quantum analog of the tw
dimensional Ising model with random coupling in one dire
tion, introduced by McCoy and Wu,34 and studied by Shan
kar and Murthy.35

At zero temperature and in the absence of disorder
model undergoes two distinct quantum phase transition36

Both transitions are second order. The phase diagram
shown in Fig. 1. The transition atJx1Jy5h from a para-
magnetic to a ferromagnetic phase will be referred to as
Ising transition.37 The transition atJx5Jy for h,(Jx1Jy)
from a ferromagnet with magnetization in thex direction to

FIG. 1. Phase diagram for the anisotropicXY spin chain in a
transverse field at zero temperature and in the absence of diso
The heavy lines represent second-order phase transitions. The
zontal line will be referred to as the anisotropic transition and
vertical line as the Ising transition. PM denotes a paramagn
phase and FMx denotes an Ising ferromagnet with magnetization
thex direction. To the right of the dashed line the energy gap in
excitation spectrum always occurs at the Brillouin-zone bound
~compare Fig. 2!. To the left of the dashed line gap occurs at a wa
vector that is incommensurate with the lattice.
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346 PRB 60J. E. BUNDER AND ROSS H. McKENZIE
one with magnetization in they direction will be referred to
as theanisotropic transition.38,39 This paper considers th
effect of disorder on these transitions.

Mapping to a fermion model

We perform a Jordan-Wigner transformation which ma
the Pauli spin matrices in Eq.~1! onto spinless fermions.39,40

The Pauli spin matrices

sx5S 0 1

1 0D sy5S 0 2 i

i 0 D sz5S 1 0

0 21D ~5!

satisfy the algebra

@sa,sb#52i eabcs
c, ~sa!251. ~6!

Define the following new operators on each site as

an
†5

1

2
~sn

x1 isn
y!, an5

1

2
~sn

x2 isn
y!. ~7!

The inverse transformation is

sn
x5an

†1an , sn
y5 i ~an2an

†!, sn
z5122anan

† . ~8!

Using these definitions the following relations can be o
tained:

$an
† ,an%51, an

25an
†50,

@am
† ,an#5@am

† ,an
†#5@am ,an#50, mÞn, ~9!

which show that thean’s andan
†’s are neither fermion opera

tors nor boson operators. The Hamiltonian~1!, in terms of
these new operators is

H52 (
n51

L

@~Jn
x1Jn

y!~an
†an111aian11

† !

1~Jn
x2Jn

y!~an
†an11

† 1anan11!

1hn~122anan
†!#. ~10!

Now consider a second transformation,

cn5expS p i (
j 51

n21

aj
†aj D ai ,

cn
†5an

† expS 2p i (
j 51

n21

aj
†aj D . ~11!

The cn’s and cn
†’s are fermion operators satisfying the fo

lowing anticommutation relations:

$cm ,cn
†%5dmn , $cm ,cn%5$cm

† ,cn
†%50. ~12!

These fermions can be viewed as kinks or domain walls
the local magnetization.36 The Hamiltonian is now
s

-

n

H52 (
n51

L

@~Jn
x1Jn

y!~cn
†cn112cncn11

† !

1~Jn
x2Jn

y!~cn
†cn11

† 2cncn11!1hn~cn
†cn2cncn

†!#.

~13!

The boundary terms have been neglected since they do
contribute to the thermodynamic limit.

III. SOLUTION OF THE DISORDER-FREE CASE

The model in the absence of disorder has been so
previously.41,42,36 We now highlight certain aspects of th
solution that will turn out to be particularly relevant to th
effect of disorder. In the disorder free caseJn

x5Jx, Jn
y5Jy,

andhn5h so that

H52 (
n51

L

@~Jx1Jy!~cn
†cn112cncn11

† !

1~Jx2Jy!~cn
†cn11

† 2cncn11!

1h~cn
†cn2cncn

†!#. ~14!

The caseh50 corresponds to the anisotropicXY spin chain
and was first solved by Lieb, Schultz, and Mattis.39 The case
Jy50 is the transverse field Ising chain and was first solv
by Pfeuty.37

We introduce the Fourier transform of the fermion ope
tors

cn5
1

AL
(

k
cke

ink,

cn
†5

1

AL
(

k
ck

†e2 ink. ~15!

Periodic boundary conditions (cn5cn1L) require the wave
vector,k, to take the following discrete values:

k5
2pm

L
, m52

1

2
L, . . . ,0,1, . . . ,

1

2
L21, ~16!

assumingL to be even. Substituting Eq.~15! in the Hamil-
tonian ~14! gives

H52(
k

$2@~Jx1Jy!cosk1h#ck
†ck

1 i ~Jx2Jy!sink~ck
†c2k

† 1ckc2k!2h%. ~17!

This Hamiltonian may be diagonalized by the Bogoliub
transformation,

ck
†5cosf~k!bk

†1 i sinf~k!b2k ,

ck5cosf~k!bk2 i sinf~k!b2k
† , ~18!

where thebk’s andbk
†’s are operators with fermion statistics

and
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tan„2f~k!…5
~Jx2Jy!sink

~Jx1Jy!cosk1h
. ~19!

This gives

H52(
k

E~k!@bk
†bk21/2#, ~20!

where

E~k!52@h21~Jx2Jy!212h~Jx1Jy!cosk

14JxJycos2 k#1/2, ~21!

and we have used,(k cosk50.
The energy gap will occur at a wave vectork0 such that

dE~k5k0!

dk
50. ~22!

We shall always takek0 to be the positive solution of the
above equation. Because the energy is symmetric ink there
will be two energy gaps at6k0. To describe the solutions o
this equation it is convenient to define

a52
h~Jx1Jy!

4JxJy
, ~23!

which is always negative for non-negativeJx, Jy, andh. The
energy gap wave vectork0 is given by

cosk05a, a.21,

k05p, a,21. ~24!

Typical dispersion curves for these two cases are show
Fig. 2. If we define

g[
Jx2Jy

Jx1Jy
, ~25!

and expressa as

a52
h

~Jx1Jy!~12g2!
, ~26!

then, the boundary between the two cases may be define

h

Jx1Jy
512g2. ~27!

This boundary is shown as a dashed line in Fig. 1. The
cases correspond to a commensurate (a,21) and an in-
commensurate (a.21) phase.36 It will turn out that the
effect of disorder on these two phases is very different.

The energy gap atk5k0 is 2D where

D5E~k0!. ~28!

The system is at criticality when the gap vanishes,D50.
When a,21 (k05p) the gap vanishes along the lineh
5Jx1Jy. We shall refer to the corresponding phase tran
tion as theIsing transition. When a.21 the energy gap
vanishes along the lineJx5Jy, providing h,Jx1Jy. We
in

by

o

i-

shall refer to this transition as theanisotropic transition. The
lines along which the gap vanishes are shown as solid l
in Fig. 1.

The critical behavior is determined by those low-ener
states near the energy gap wherek;k0. If k2k0 is small the
energy can be written as a Taylor series

E~k!25D21v0
2~k2k0!21•••, ~29!

where

v052@4JxJy2h~Jx1Jy!cosk028JxJy cos2 k0#1/2,

D52@h21~Jx2Jy!212h~Jx1Jy!cosk014JxJy cos2 k0#1/2.
~30!

FIG. 2. Typical dispersion relations for the excitation spectru
of the Hamiltonian~1! in the absence of disorder. The two cas
shown correspond to when the quantitya, defined in Eq.~23!, is ~a!
larger than negative one and~b! less than negative one. Note th
for ~b! the energy gap always occurs at the Brillouin-zone bound
whereas for~a! it occurs at a wave vector that is incommensura
with the reciprocal-lattice vectors. The cases~a! and ~b! occur in
regions of the phase diagram to the left and right of the dashed
in Fig. 1. ~The commensurate case also occurs on the vertical
h50: thenk05p/2).
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A. The ground-state energy

The ground-state energy,e, of the Hamiltonian~14! is the
energy of the filled Fermi sea

e~D!52E
2p

p dk

2p
E~k!, ~31!

whereE(k) is given by Eq.~21!. To discover the nature o
the singularity atD50 we differentiate the above integra
with respect toD2. For smallD the differentiated integral is
dominated by those low energys states close to the en
gap. Hence, we need only consider those states determ
by the low-energy dispersion relation~29!

]e

]D2
5E

k02kc

k01kc dk

4p

1

AD21v0
2~k2k0!2

~32!

52
1

2pv0
lnF D

2v0kc
G , ~33!

wherekc is a cutoff wave vector. Integrating with respect
D2 gives

e~D!2e~0!5
D2

4pv0
S 122 lnF D

2v0kc
G D . ~34!

The singularity of the ground-state energy is thus logar
mic. The critical exponenta, defined bye(D);D22a, is a
501. This critical exponent corresponds to the specific-h
critical exponent of the corresponding two-dimensional cl
sical Ising model.

B. The magnetization and correlation length

Barouch and McCoy41 calculated the magnetization an
correlation functions for the disorder-free model. Itset al.
considered the cased50.43 Further analysis was done b
Damle and Sachdev.42 The magnetization,Mx[^sn

x&, and
the correlation lengthj are defined by the asymptotic beha
ior (r→`) of the correlation function

^sn
xsn1r

x &→~Mx!21
A

r 2exp~2r /j!, ~35!

whereA is a constant. Ifh.Jx1Jy the system is a paramag
net and the magnetization is zero. Ifh,Jx1Jy and Jx.Jy

the system is a ferromagnet in thex direction, and the mag
netization is

~Mx!25~21!r
2g1/2

11g F12S h

Jx1JyD 2G1/4

. ~36!

This implies that the critical exponentb is 1/8 for the Ising
transition~approaching the transition as a ferromagnet! and
1/4 for the anisotropic transition.

The correlation lengthj is given by

expS 21

j D;ul2u22, ~37!

where
gy
ed

-

t
-

l25
h/Jx1Jy2@~h/Jx1Jy!22~12g2!#1/2

12g
. ~38!

This quantity is real~complex! outside~inside! the circle,

S h

Jx1JyD 2

1g251. ~39!

As a result

expS 21

j D;H l2
22 , outside circle

12g

11g
, inside circle.

~40!

The Ising transition is outside the circle and the anisotro
transition is inside the circle. This implies that the critic
exponentn51 for both the Ising and anisotropy transition

On the Ising critical line

^sn
xsn1r

x &;
1

r 1/4
~41!

and the critical exponenth55/4. On the anisotropic critica
line at h50,

^sn
xsn1r

x &;
1

r 1/2
~42!

and the critical exponenth53/2. The anisotropic transition
has the same critical behavior as a pair of decoupled Is
models. The critical exponents for the Ising transition a
summarized in Table II.

IV. THE CONTINUUM LIMIT

We shall now look at the effect of disorder on the critic
behavior. To do this we take the continuum limit of the d
ordered Hamiltonian written in terms of Fermi operators, E
~13!, when the system is near criticality. We will assum
that, for weak disorder, the phase transitions of the dis
dered system are close to the phase transitions of

TABLE II. Critical exponents for the transition in the transver
field Ising chain, without and with disorder.D is a measure of the
deviation from the critical point. The exponents for the random c
were calculated by Fisher~Ref. 13!. Some exponents are express

in terms of the golden mean,f[ 1
2 (11A5). H is an external field

in thex direction, i.e., the same direction as the magnetization. T
exponentsa andg are not defined~n.d.! in the random model due
to the presence of the Griffiths phase. With disorderd5` because
^s i

x&;@ ln(1/uHu)#2b.

Exponent Definition No disorder With disorde

a e;D22a 01(ln) n.d.
b ^sn

x&;Db 1/8 22f
g xxx;Dg 7/4 n.d.
d ^sn

x&;H1/d (D50) 15 `

n jav;D2n 1 2
h ^s r

xs0
x&;r 12h (D50) 5/4 f21

z t;jz 1 `
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disorder- free system. Those fermion states most effecte
the addition of disorder will be those low-energy states n
the energy gap, that is, those with wave vectors near6k0.

The Hamiltonian may be broken into slowly and rapid
varying parts. This is done by replacing the Fermi opera
cn with two slowly varying functions,cR(n) and cL(n),
which describe right and left movers, respectively,

cn5
1

A2
@e2 ik0ncR~n!1eik0ncL~n!#. ~43!

The exponential terms represent the rapidly varying par
cn . From the anticommutation relations of the Fermi ope
tors, cn andcn

† , it is possible to derive anticommutation re
lations for the slowly varying functions,

$cR
†~n!,cR~m!%5$cL

†~n!,cL~m!%5dnm , ~44!

and all other combinations are zero.

A. Ising transition

Whenk056p, Eq. ~43! may be simplified to

cn5~21!nc~n! ~45!

with

$c†~n!,c~m!%5dnm . ~46!

After substituting this into Hamiltonian~13!, we take the
continuum limit. To do this we transform the discrete va
able,n, into a continuous variable,x, and we write

c~n!5c~x5n!, c~n11!5c~x!1]xc~x!. ~47!

The functionc is slowly varying and so its derivative is ver
small. Where appropriate we can neglect these deriva
terms. The disorder is assumed to be small, hence te
combining both derivative terms and disordered terms m
be neglected. Substituting these approximations into
Hamiltonian and replacing the sum overn with an integral
over x gives

H5 (
n51

L

~c†,c!$ iJ2sy]x1@J1~x!2h~x!#sz%S c

c†D ,

~48!

where

J6~x!5Jn5x
x 6Jn5x

y , h~x!5hn5x . ~49!

By performing the following rotation into a new set of Pau
spin matrices, withk056p

sy5
DJ1sink0

2J2~J11h cosk0!
s11

v0~h1J1cosk0!

2J2~J11h cosk0!
s3,

sz52
D cosk0

2~J11h cosk0!
s11

v0 sink0

2~J11h cosk0!
s3,

sx5s2, ~50!

where D and v0 are defined in Eq.~30!, the Hamiltonian
becomes
by
r

r

f
-

e
s

y
e

H5
1

2E dx C~x!†@2 iv0s3]x1V~x!s2#C~x!, ~51!

where

V~x!52uJ12hu62@dJ1~x!2dh~x!#, ~52!

and dJ1(x) and dh(x) are the random parts andJ1 and h
are the average parts ofJ1(x) and h(x), respectively. The
function V(x) is real and its average value isD, the energy
gap of the pure system. For the case of no disorder~51! was
derived by Shankar.44 The case of the transverse field Isin
chain with randomness only inJx or h was derived by
Balents and Fisher.45 The fact that the Ising transition i
described by the same equation for any anisotropy sh
that it will be in the same universality class as the rand
transverse field Ising chain studied by Fisher.

B. Anisotropic transition

Near the anisotropic transition we must use the more g
eral decomposition of the Fermi operators shown in Eq.~43!.
As was done near the Ising transition we replace the disc
variablen, with a continuous variablex, and replace discrete
differences with derivatives. Next, we remove those dis
dered terms which are negligible. We shall make one
proximation which was not necessary near the Ising tra
tion. We will neglect all rapidly varying terms. A rapidly
varying term may be neglected because its integral will v
ish. Terms involving the product of two rapid terms may n
be neglected since the two rapid variations may produc
slowly varying part. The exponential terms are rapidly va
ing and the random terms may have slowly and rapidly va
ing parts. Combining all these approximations gives the f
lowing Hamiltonian:

H52E dxF1

2
@J1~x!cosk01h~x!#~cR

†cR1cL
†cL!

1 iJ2~x!sink0cL
†cR

†2
h~x!

2
1

J1

2
e2 ik0cR

†]xcR

1
J1

2
eik0cL

†]xcL1
J2

2
e2 ik0cR

†]xcL
†1

J2

2
eik0cL

†]xcR
†

1e2ik0x@dJ1~x!eik01dh~x!#cR
†cLG1H.c. ~53!

When k052p/2, Jx(x)5Jy(x)5tx/2 and h(x)50, this
Hamiltonian is equivalent to that obtained by Balents a
Fisher.45 The Hamiltonian in Eq.~53! can be simplified in
two particular cases.

1. Case I„dJn
x52dJn

y , dhn50…

If the only randomness is in the anisotropy, which mu
be equal but opposite„dJ1(x)5dh(x)50…, the Hamiltonian
reduces to
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H52E dx~cR
† ,cL!@~J1cosk01h!sz2J2~x!sink0sy

1 i ~J1sink0sz1J2cosk0sy!]x#S cR

cL
† D . ~54!

On performing the rotation in Eq.~50!, the Hamiltonian can
be simplified to

H5
1

2E dx~cR
† ,cL!@2 iv0s3]x1V~x!s1#S cR

cL
† D . ~55!

We have used the definition ofk0 on the anisotropic critica
line, cosk052h/J1, and defined

V~x!52uJ2usink062dJ2~x!sink0 . ~56!

Note that, like the Ising transition,V is real and its average
value isD. Hence, in this case the anisotropy transition is
the same universality class as the random transverse
Ising chain.

2. Case II „Jn
x5Jn

y
…

Another special case of the Hamiltonian in Eq.~53! is
when there is no anisotropy@J2(x)50#. Note that, in the
absence of disorder, this restricts the model to the anisotr
critical line. It shall also be assumed that any disorder
rapidly varying. The new Hamiltonian is

H52
1

2E ~cR
† ,cL

†!@22iJ1sink0sz]x1j~x!* s1

1j~x!s2#S cR

cL
D , ~57!

where j(x)52e22ik0x@dJ1(x)e2 ik01dh(x)# and s6

5 1
2 (sx6 isy). Sincek0 is incommensurate with the lattic

j(x) is complex. We have neglected a term involving t
sum over the magnetic field since it is a constant. Cons
the following rotation:

s352sz,

s15sx,

s252sy. ~58!

With this rotation,

H5
1

2E C~x!†@2 iv0s3]x1j~x!s11j~x!* s2#C~x!,

~59!

where s65 1
2 (s16 is2). The complex function, j(x)

52e22ik0x@dJ(x)1e2 ik01dh(x)#, has the following proper-
ties:

^j~x!&50,

^j~x!j~x8!&50,

^j~x!j~x8!* &5gd~x2x8!, ~60!

whereg54@(dJ1)21(dh)2#.
ld

ic
s

er

In summary, all three Hamiltonians~51!, ~55!, and ~59!,
can be written in the form46

H5
1

2E dx C~x!†@2 iv0s3]x1V~x!s11V~x!* s2#C~x!.

~61!

Note that the structure of the spinorC, is quite different in
all three cases. The functionV(x) satisfies

^V~x!&5D,

^V~x!V~x8!* &5D21gd~x2x8!. ~62!

The anisotropic case II (J250) has D50. The fact that
V(x) is complex for the anisotropic case II will lead to qua
tatively different behavior. In fact, in that case the disord
removes the phase transition. We refer to the case wh
V(x) is real as the commensurate case~that is, the Ising
transition and the anisotropic case I!. The case whereV(x) is
complex is the incommensurate case. The case of realV(x)
also describes dimerizedXX spin chains46–48 and spin
ladders.49,50The case of complexV(x) also describes anXX
spin chain in a transverse field with a modulation of t
exchange with wave vector 2k0.

V. EXACT SOLUTIONS

It is useful to define an energyD and a dimensionless
parameterd which are measures of the disorder strength a
the deviation from criticality, respectively,

D[
g

v0
, d[

D

D
. ~63!

Note that for the Ising transition withJy50, to leading order
in D/Jx, for a Gaussian distribution this parameterd agrees
with the d defined by Fisher13 and Young and Rieger,16

d[
^ ln h&2^ ln Jx&

^~ ln h!2&2^ ln h&21^~ ln Jx!2&2^ ln Jx&2
. ~64!

The advantage of casting the problem in the form of
Hamiltonian ~61! is that the latter has been studied exte
sively previously, andexact analytic expressions given fo
the energy dependence of the disorder-averaged densi
states^r(E)& and the localization lengthl(E). The exact
results have been found by Fokker-Planck equations,51,52

supersymmetry,53,54,45 the replica trick,55–57 S-matrix
summation,58 and the Dyson-Schmidt method.59

Due to the one-dimensionality all the states are localiz
by the disorder. The localization length can be found beca
in one dimension it is related to the real part of the on
fermion Green’s function.60,53

The density of states and the localization length are
lated to the one-electron Green’s functionG(x,x,E) and can
be written in terms off d8(u), the derivative of a dimension
less functionf d(u)

Tr G~E,x,x!5
d

dE

1

l~E!
1 ipr~E!5pr0f d8~E/D !,

~65!
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wherer0[1/(pv0) is the value of the density of states
high energies (uEu@D,D). The function f d is different for
the commensurate and incommensurate cases,

f d~u!5H 2u
]

]u
ln@Hd

(2)~u!# commensurate

d
]

]d
ln@ I iu~d!# incommensurate,

~66!

where Hd
(2) is a Hankel function of orderd and I iy is a

modified Bessel function with imaginary index.

Solution using a Fokker-Planck equation

To demonstrate how an exact solution may be found
will derive the density of states for the commensurate c
@V(x) real# by using Fokker-Planck equations. Many autho
have studied mathematically equivalent systems.51,58,61Con-
sider a general Dirac-type equation,

2 iv0

]c1

]x
1V~x!c25Ec1 ,

iv0

]c2

]x
1V~x!c15Ec2 . ~67!

The functionV is a real and random function of the form

V~x!5D1j~x!, ~68!

whereD is a constant andj is a random field which obey
the following statistical averages:

^j~x!&50, ^j~x!j~y!&5gd~x2y!. ~69!

We reduce the Dirac equation into a system of equations
two real functions by the following transformations:51

S C

C* D 5S c11c2*

c21c1*
D , S F

2F* D 5S c12c2*

c22c1*
D , ~70!

then we let

f 15ReC, f 25Im C, f152Im F, f25ReF.
~71!

It can be shown that (f 1 , f 2) and (f1 ,f2) satisfy the same
equations:

S V~x! v0

]

]x

2v0

]

]x
2V~x!

D S f 1

f 2
D 5ES f 1

f 2
D . ~72!

Define the following function:

z52
f 2

f 1
. ~73!

By differentiating the dynamic variablez with respect tox
and using Eq.~72! a dynamic equation forz may be con-
structed,
e
e

s

or

v0

]z

]x
52~E2D!2z2~E1D!2j~z221!. ~74!

This equation allows us to write down a Fokker-Planck eq
tion for the random variablez

]P~z,x!

]x
5

1

v0

]

]z S ~E2D!1z2~E1D!

1
D

2
~z221!

]

]z
~z221! D P~z,x!. ~75!

The functionP(z,x) is the probability density distribution
function of the random variablez at the pointx. It is the
derivative~with respect tox) of the probability thatz is less
than x. Since the probability ofz being less than infinity is
unity we expect

E
2`

`

P~z,x!dx51. ~76!

This is an important concept when dealing with probabil
densities.

We create a stationary Fokker-Planck equation by tak
the limit asx goes to infinity. The limit of the probability
density is

lim
x→`

P~z,x!5p~z!. ~77!

The stationary Fokker-Planck equation is

05
1

v0

]

]z S ~E2D!1z2~E1D!

1
D

2
~z221!

]

]z
~z221! D p~z!. ~78!

This equation can be integrated and Ovchinnikov a
Érikhman51 showed that the constant of integration isN(E),
the number of states below the energyE,

N~E!52
1

v0
S ~E2D!1z2~E1D!

1
D

2
~z221!

]

]z
~z221! D p~z!. ~79!

To simplify the solution of the above differential equatio
we perform two transformations.

The first transformation is defined by the following fun
tion:

cot
a~x!

2
5z52

f 2

f 1
. ~80!

Because of the nature of the cotangent, we can obtain
possible values of the ratio,2 f 2 / f 1, by restrictinga to some
interval of length 2p. We will restrict a to the interval
@2p/2,3p/2#. We are only interested in the case wherex
→`. As in Eq. ~76!, the integral of all probability densities
of a at largex, p(a), must equal unity,
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E
2p/2

3p/2

p~a!da51. ~81!

The relationship betweenp(z) andp(a) is

p~z!522p~a!sin2
a

2
. ~82!

The second transformation is

cosa56 sechf,

sina56 tanhf. ~83!

The upper sign refers toaP@2p/2,p/2# and the lower sign,
aP@p/2,3p/2#. It can be shown thatp(a)5p(f)coshf so
that Eq.~81! becomes

E
2`

`

p1~f!df1E
2`

`

p2~f!df51, ~84!
re
where the6 subscript onp refers to the different signs in Eq
~83!. After performing the two transformations Eq.~79! be-
comes

F2E coshf62D12D
]

]f Gp~f!5v0N~E!. ~85!

This first-order differential equation can be solved with t
boundary condition thatp(f) vanishes asf→`,

p~f!5
v0N~E!

2D E
f

`

dx expF E

D
~sinhf2sinhx!6

D

D
~f2x!G .

~86!

To find the number of states we recall that the probabi
density must be normalized so that the integral over all p
sible values of the random variablef is unity. After some
rearranging
f

2Dv0
21N~E!215E

2`

`

dfE
f

`

dx expF E

D
~sinhf2sinhx!1

D

D
~f2x!G

1E
2`

`

dfE
f

`

dx expF E

D
~sinhf2sinhx!2

D

D
~f2x!G . ~87!

If these two integrals are combined and we let 2y5x2f, d5D/D, and u5E/D, we obtain, after changing the order o
integration

2Dv0
21N~E!2154E

0

`

dy cosh 2dyE
2`

`

df exp@u sinhf2sinh~2y1f!#. ~88!

Now we letz5f1y,

2Dv0
21N~E!2154E

0

`

dy cosh~2dy!E
2`

`

dzexp@22u sinhy coshz#58E
0

`

dy cosh~2dy!E
0

`

dzexp@22u sinhy coshz#

58E
0

`

dy cosh~2dy!K0~2u sinhy!5p2@Jd~u!21Yd~u!2#, ~89!
y of

for
, as
whereJd(u) is a Bessel function of indexd andYd(u) is a
Bessel function of the second kind of orderd. The number of
states with energy less thanE is

N~E!5
2D

p2v0@Jd~E/D !21Yd~E/D !2#
. ~90!

To find the density of statesr(E), we differentiateN(E)

r~E!52
4

p2v0

Jd~u!Jd8~u!1Yd~u!Yd8~u!

@Jd~u!21Yd~u!2#2
. ~91!

This is the density of states from which we obtain our
sults.
-

VI. PROPERTIES OF THE COMMENSURATE SOLUTION

A. The density of states

Figure 3 shows the energy dependence of the densit
states from Eq.~91! for a range of values ofd with r0
51/(pv0). In the low-energy limit~smallu) we can take the
following approximation of Eq.~91!,

r~E!

r0
52

4

p

Yd8~u!

Yd~u!3
~92!

since the Bessel functions of the first kind remain finite
smallu whereas those of the second kind become infinite
shown in the following smallu approximations:
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Yd~u!;H 2

p
ln

u

2
d50

2
1

p
G~d!S 1

2
uD 2d

dÞ0.

~93!

These low-energy limits are substituted into Eq.~92! and
then the dominant terms are retained, that is, the sma
powers ofu

r~E!

r0
;5

2pD

E@ ln~E/2D!#3
d50

2pd

G~d!2 S E

2D D 2d21

dÞ0.

~94!

The divergence in the density of states atE50 is sometimes
referred to as the Dyson singularity.

The functionYd(u) is continuous asu and d approach
zero. This property is not apparent from Eq.~94!. To avoid
this problem we take the smalld ~close to criticality! limit of
Eq. ~92! before we take the small-u limit. Before we take any
limits we write the Bessel function of the second kind
terms of the Bessel function of the first kind,

Yd~u!5
Jd~u!cos~dp!2J2d~u!

sin~dp!
. ~95!

We can find a smalld approximation toJd(u) from its series
expansion,

Jd~u!5S 1

2
uD d

(
k50

`
@2~1/4!u2#

k!G~d1k11!
;S 1

2
uD d

J0~u!.

~96!

FIG. 3. Energy dependence of the disorder-averaged densi
states for the commensurate case for various values of the dim
sionless parameterd @see Eq.~64!#, which is a measure of the
deviation from criticality. The density of states is symmetrical ab
the Fermi energy (E50) and diverges at (E50) whend,

1
2 . This

parameter range corresponds to a Griffiths phase. Note that onl
from criticality (d@1) is there effectively a gap in the system. Th
contrasts with the disorder-free case, for which there is alway
gap except at the critical point.
st

So now we have a smalld approximation for a Bessel func
tion of the second kind

Yd~u!5J0~u!
@~1/2!u#d2@~1/2!u#2d

dp
. ~97!

Whenu is small we setJ0(u)51 and Eq.~92! becomes

r~E!

r0
52pd3S E

2D D 2d21 @11~E/2D !2d#

@12~E/2D !2d#3
. ~98!

This agrees with the scaling form obtained by Balents a
Fisher.45 By taking appropriate limits it can be shown th
this formula agrees with Eq.~94!. For d50 we use

lim
d→0S d

12S E

2D D 2dD 5 lim
d→0

d

12@112d ln~E/2D !#

52
1

2 ln~E/2D !
, ~99!

and ford becoming small we use, in Eq.~92!, G(d);1/d.
The low-energy (uEu!D) dependence of the density o

states contains some important physics. The density of st
diverges atE50 for d,1/2 and is zero atE50 for d.1/2.
These two cases lead to qualitatively very different behav
In the former case some susceptibilities will diverge as
temperature approaches zero. This corresponds to a Grif
or weakly ordered phase.11 Hence, for the Ising transition
there will be four phases: ferromagnet, weakly ordered f
romagnet, weakly ordered paramagnet, and paramagn13

~see Fig. 4!.

of
n-

t

far

a

FIG. 4. Phase diagram of the Ising transition in a random tra
verse field. The horizontal axis is a measure of the deviation fr
criticality in the nonrandom model. The vertical axis is the amou
of disorder. The four phases are ferromagnet~FM!, weakly ordered
ferromagnet~WO-FM!, weakly ordered paramagnet~WO-PM!, and
paramagnet~PM!. The weakly ordered phases are Griffiths phas
in which the linear susceptibility diverges but there is only sho
range order. Note that the dashed line does not represent a
phase transition and that higher-order susceptibilities will diverge
larger regions of the phase diagram.
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B. Ground-state energy

The dependence of the ground-state energy of the di
dered commensurate system ond can be shown to be infi
nitely differentiable, but not analytic. To show this we follo
a procedure similar to that used by McCoy and Wu34 and
Shankar and Murthy35 who considered the analogous tw
dimensional classical system. To find the ground-state
ergy in the presence of disorder we use

e~d!52E
0

`

r~E!E dE. ~100!

We make use of expression~98!, for the density of states a
low energies, which we assume is accurate up to an en
Ec , which is less than 2D,

e~d!52pr0D28d3E
0

Ec/2DE2d~11E2d!

~12E2d!3
dE

2E
Ec

`

r~E!E dE. ~101!

By integrating by parts

8d3E
0

Ec/2DE2d~11E2d!

~12E2d!3
dE

5F 4d2E112d

~12E2d!2G
0

Ec/2D

2F 2dE

~12E2d!
G

0

Ec/2D

12dE
0

Ec/2D dE

12E2d
. ~102!

As for the disorder free case~see Sec. III A! we subtract off
the ground-state energy atd50. To calculate thed50
ground-state energy we require the limit in Eq.~99! with
which we obtain

2
e~0!

pr0D2
5

Ec

2D@ ln~Ec/2D !#2
1

Ec

2D ln~Ec/2D !

2E
0

Ec/2D dE

ln E
1 lim

d→0

1

pr0D2EEc

`

r~E!E dE.

~103!

By subtracting the zerod case from the smalld case and
combining those terms analytic ind in a function f (d), we
obtain

e~d!2e~0!52pr0D2E
0

Ec/2D

dEF 2d

12E2d
1

1

ln EG1 f ~d!

52pr0D2E
0

`

dj e2j/2d@~12e2j!212j21#

1 f ~d!, ~104!
r-

n-

gy

where we have made the substitutionE5e2j/2d and setEc
52D, because this does not affect the analytic propertie
the integral. This integral can be solved in terms of Euler’sc
function62

e~d!2e~0!5pr0D2 ln 2d1pr0D2cS 1

2d D1 f ~d!

52pr0D2d2pr0D2(
n51

`

B2n~2d!2n~2n!21

1 f ~d!, ~105!

using the smalld approximation for thec function.62 The
Bernoulli numbersB2n are proportional to 2n!/(2p)2n for
large n. Because of this, the ground-state energy has z
radius of convergence about the pointd50. Thus the
ground-state energy is infinitely differentiable but is not
analytic function ofd. The critical exponent,a, defined in
Table II cannot be defined in this case.

C. Thermodynamic properties

1. Free energy

For any particular configuration of the disorder the fr
energy per site of the system is

F52kBT(
k

lnF2 coshS Ek

2kBTD G , ~106!

where$Ek% denotes the eigenvalues of the Hamiltonian~61!.
This simple formula holds because the eigenstates of
Hamiltonian are noninteracting fermions. It then follows th
the disorder-averaged free energy is

^F&52kBTE
0

`

dE^r~E!& lnF2 coshS E

2kBTD G . ~107!

The low-temperature behavior of the specific heat and
transverse susceptibility~for the anisotropic transitions! fol-
lows from the energy dependence of the disorder-avera
density of states.63,64 We now show this in detail.

2. Specific heat

The disorder-averaged specific heat is

^C~T!&52T
]2^F~T!&

]T2
5

1

TE0

`

dE E2^r~E!&
] f

]E
,

~108!

where f (T) is the Fermi distribution function. For the com
mensurate case withdÞ0 the mean specific heat is
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^C~T!&5
2pdr0

kBT2G~d!2~2D !2d21E0

Ec
dE

E2d11e2E/kBT

~11e2E/kBT!2
1

1

TEEc

`

dE r~E!
] f

]E
5

2pdr0kB
2d11T2d

G~d!2~2D !2d21E0

Ec /kBT

dy
y2d11e2y

~11e2y!2

1
1

TEEc

`

dE r~E!
] f

]E
. ~109!

As the temperature becomes very small the limit of the integral,Ec /kBT, becomes very large. The first integral will domina
the specific heat and will be evaluated from zero to infinity. By using integral tables62 it can be shown that

E
0

`

dy
yxe2y

~11e2y!2
5G~x11!(

k51

`
~21!k11

kx
, x.21

5G~x11!~12212x!z~x!. ~110!

wherez is the Riemann zeta function. The mean specific heat is then

^C~T!&5
4pdr0kBDG~2d12!~12222d!z~2d11!

G~d!2 S kBT

2D D 2d

. ~111!

For smalld, ^C(T)&;d3T2d, in agreement with Fisher13 and the numerical work of Young.17

The specific heat in the commensurate case withd50 is

^C~T!&52
pDr0

kBT2 E0

Ec
dE

Ee2E/kBT

@ ln~E/2D !#3~11e2E/kBT!2
1

1

TEEc

`

dE r~E!
] f

]E

52pDr0kBE
0

Ec /kBT

dy
ye2y

@ ln~kBTy/2D !#3~11e2y!2
1

1

TEEc

`

dE r~E!
] f

]E
. ~112!
l i
im
fo

d

so

e
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is

te-
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f

To simplify this equation we note that the termye2y/(1
1e2y)2 is appreciable only for values ofy of order unity.
Since we are taking a low-temperature limit,T!D, we may
approximate the term,@ ln(ykBT/D)#3, to simply @ ln(kBT/D)#3

when y;1. As in the previous case, the second integra
negligible as the temperature approaches zero and the l
of the first integral are zero and infinity. The specific heat
d50 is

^C~T!&52
pkBDr0

@ ln~kBT/2D !#3
ln 2, ~113!

which has the same temperature dependence as foun
Fisher.13

3. Transverse susceptibility

The mean transverse field susceptibility is, for the ani
tropic transition,64

^xzz~T!&5E
0

`

dE^r~E!&
] f

]E
. ~114!

For the commensurate case withdÞ0 and the temperatur
approaching zero the calculation of the susceptibility is si
lar to the calculation of the specific heat withdÞ0. The
mean transverse susceptibility is
s
its
r

by

-

i-

^xzz~T!&5
2pdr0G~2d!~122222d!z~2d21!

G~d!2 S kBT

2D D 2d21

.

~115!

If d, 1
2 andT→0 the susceptibility becomes infinite. This

the Griffiths phase region. We cannot take the limit asd goes
to zero of the susceptibility since the condition on the in
gral in Eq. ~110! is x.21 which means, in this case,d
.0. If we try to take this limit we see that it does not exis
The critical exponentg is not defined.

Similarly to the specific-heat calculation withd50 it can
be shown that whend50 the mean susceptibility at low
temperatures is

^xzz~T!&52
pr0D

kBT E
0

`

dy
e2y

y~ ln@ykBT/2D# !3~11e2y!2
.

~116!

The integrand is large aty51 andy50 so we can approxi-
mate the integral to an integral from zero to some cut ofA
of order unity. We also notice that, fory!1,

e2y

y~ ln@ykBT/2D# !3~11e2y!2
;

1

y~ ln@ykBT/2D# !3
.

~117!

Using these approximations the susceptibility is
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^xzz~T!&52
pr0D

kBT E
0

A

dy
1

y~ ln@ykBT/2D# !3

5
pDr0

kBT F 1

F lnS ykBT

2D D G2G
0

A

5
pDr0

kBT@ ln~AkBT/2D !#2
.

~118!

This susceptibility is finite whend50 unlessT50. A com-
parison with thedÞ0 result shows that the susceptibility
not continuous at the phase transition which is atd50.

D. Dynamic critical exponent z

This relates the scaling of energy~or time! scales to
length scales. We can make the following crude scaling
gument to extractz from the low-energy behavior of th
density of states. The total number of states~per unit length!
with energy less thanE, N(E) scales with the inverse of an
length scale l . By definition E; l 2z. This implies that
^r(E)&;E1/z21. Thus for the commensurate case, to lead
order ind,

z5
1

2d
, ~119!

in agreement with the renormalization group results
Fisher13 and the numerical results of Young and Rieger16

Igloi and Rieger also found the exact form of the dynami
exponent in the random transverse-field Ising spin chain
using a mapping to the Sinai-walk problem.28 Expression
~119! is a particularly striking result because it shows that~i!
z is not universal and~ii ! z diverges at the critical point. The
latter implies logarithmic scaling and activated dynamics65

E. Finite-size scaling

Monthus et al.66 studied an equation equivalent to E
~61! with V(x) real andD50.56 They have shown that on
line of lengthL, for a typical potentialV(x) the lowest ei-
genvalueE0 scales likeE0

2;exp(2cL1/2), wherec is a con-
stant. This is consistent with the scaling of lnE0 with L1/2 at
the critical point found numerically.16 The averagê E0

2&
;exp(2dL1/3) whered is a constant,66 showing the discrep-
ancy betweenaverage and typical values. Fisher and
Young24 recently derived the distribution function for th
energy gap from the RSRGDT and compared it to numer
results. The distribution function they derived gives avera
and typical values in agreement with the above results.

F. Correlation lengths

Fisher13 stressed the distinction between average and t
cal correlations. IfCi j [^AiAj& denotes a correlation func
tion of a variableAi then the average correlation functio
Cav(r )[(1/L)( i 51

L Ci ,i 1r is what is measured experimen
tally. Away from the critical point Cav(r );exp(2r/jav)
wherejav is the average correlation length. However,Cav(r )
is dominated by rare pairs of spins withCi j ;1. In contrast,
with probability oneCi ,i 1r;exp(2r/jtyp) wherej typ denotes
the typical correlation length. It is distinctly different from
r-

g

f

l
y

al
e

i-

jav (j typ!jav), having a different critical exponent. The lo
calization length is useful because it is proportional to
typical correlation length for quantities that are diagonal
the fermion representation.67

The localization length is obtained from integrating equ
tion ~65!,

1

l~E!
5

D

v0
Re„f d~u!…1const. ~120!

In the commensurate case the following approximation ho
for small u:

Re„f d~u!…52
uYd8~u!

Yd~u!
. ~121!

Equations~93! and ~97! give, for small energy,

l~E!5H v0

Dd
, dÞ0,

2
v0

D
ln

E

2D
, d50.

~122!

The localization length is infinite only whend50 and E
50.

For both the pure system and the random system,j typ
;l(0)21;D21, indicating thatn typ51 and that this critical
exponent is not modified by the presence of disorder. T
result also agrees with the RSRGDT. Balents and Fis
studied the same Dirac equation and examined the deca
the average Green function. Hence, they found the crit
exponent associated with the average correlation lengthjav
;D22.

VII. PROPERTIES
OF THE INCOMMENSURATE SOLUTION

It was shown in Sec. IV B 2 that the incommensurate
lution with d5D/D50 describes theXX chain which has no
anisotropy. We can use Eq.~65! to find the density of states
Alternatively, using Fokker-Planck equations, or a number
other methods,53,58,68,69it can be shown that the number o
states belowE is

N~E!5
Dr0

p

sinh~pu!

uI iu~d!u2
, ~123!

where u5E/D. The density of statesr may be found by
taking the derivative ofN(E). The density of states for sma
u is

r~E!

r0
5

1

I 0~d!2
. ~124!

Whend50, for anyu,

r~E!5r0 . ~125!

Hence, the incommensurate density of states is always fi
Whend50 the density of states is constant. Thus, for anXX
random chain in a nonzero transverse field there is no Dy
singularity. This agrees with the results of Smith.64
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To find the localization length we take the real part of E
~65! and integrate overE. For smallu, the localization length
for the incommensurate case is

l~E!5
4v0

D F11
4dI 1~d!

I 0~d! G21

. ~126!

The constant of integration must be evaluated by deriving
localization length from other methods.70 The most impor-
tant property of this result is that unlike for the commens
rate case the localization length is always finite. This me
that the typical correlation length of the corresponding s
model does not diverge when the pure system is at critica
Hence, in a nonzero transverse field the anisotropy ph
transition does not occur if there is randomness in the tra
verse field or the isotropic exchange.

VIII. CONCLUSIONS

We presented some exact results for the effect of diso
on the quantum critical properties one of the simplest mod
to undergo quantum phase transitions: an anisotropicXY
spin chain in a transverse field. By taking the continuu
limit of the corresponding noninteracting fermion model w
were able to map various cases of the model onto a D
equation with a random mass. This mapping has the dist
advantage that a number of different techniques can the
used to obtain exact analytic results for the density of sta
and the localization length. In the presence of disorder
Ising transition of the model is in the same universality cla
as the random transverse field Ising model. If there is o
r
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randomness in the anisotropy then the anisotropy transi
is also in this universality class. However, if there is rando
ness in the isotropic part of the exchange or in the transv
field then in a nonzero transverse field the anisotropy tra
tion is destroyed by the disorder. By examining the ene
dependence of the density of states we showed that the
namical critical exponent, show the existence of a Griffith
phase near the transition, and show that the ground-state
ergy has an essential singularity at the transition. The res
obtained for the typical correlation length, the dynamic
critical exponent, the finite-size scaling of the energy g
and for the temperature dependence of the specific heat
the Ising transition agree with the results of the RSRG
and numerical work. Since our result is explicitly exact, th
agreement is consistent with Fisher’s claim that t
RSRGDT gives exact results for critical behavior. The re
challenge is whether the mapping to the fermion model u
here can be used to obtain results for distribution functio
and spin-correlation functions. Recently some has been d
on distribution functions associated with the zero ene
eigenstates of the random Dirac equation.45,50,48,71
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27F. Iglói and H. Rieger, Europhys. Lett.39, 135 ~1997!.
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650 ~1977! @Sov. Phys. JETP46, 340 ~1977!#.
52I. M. Lifshits, S. A. Gredeskul, and L. A. Pastur,Introduction to

the Theory of Disordered Systems~Wiley, New York, 1988!, p.
109.

53R. Hayn and W. John, Z. Phys. B67, 169 ~1987!.
54H. J. Fischbeck and R. Hayn, Phys. Status Solidi B158, 565

~1990!.
55A. Comtet, A. Georges, and P. Le Doussal, Phys. Lett. B208, 487

~1988!.
.

,

.

56J. P. Bouchaud, A. Comtet, A. Georges, and P. Le Doussal, A
Phys.~N.Y.! 201, 285 ~1990!.

57M. Bocquet, cond-mat/9810225~unpublished!.
58A. A. Golub and Y. M. Chumakov, Fiz. Nizk. Temp.5, 900

~1979! @Sov. J. Low Temp. Phys.5, 427 ~1980!#.
59J. Mertsching, Phys. Status Solidi B174, 129 ~1992!.
60D. J. Thouless, J. Phys. C5, 77 ~1972!.
61V. N. Dutyshev, S. Y. Potapnko, and A. M. Satanin, Zh. E´ ksp.

Teor. Fiz.89, 298 ~1985! @ Sov. Phys. JETP62, 168 ~1985!#.
62I. M. Ryzhik and I. S. Gradshteyn,Tables of Integrals, Series an

Products~Academic, New York, 1965!.
63L. N. Bulaevskii, A. V. Zvarykina, Y. S. Karimov, R. B. Ly-

ubovskii, and I. F. Shchegolev, Zh. E´ ksp. Teor. Fiz.62, 725
~1972! @ Sov. Phys. JETP35, 384 ~1972!#.

64E. R. Smith, J. Phys. C3, 1419~1970!.
65H. Rieger and A. P. Young, cond-mat/9607005~unpublished!.
66C. Monthus, G. Oshanin, A. Comtet, and S. F. Burlatsky, Ph

Rev. E54, 231 ~1996!.
67A. Klein and J. F. Perez, Commun. Math. Phys.128, 99 ~1990!.
68L. P. Gor’kov and O. I. Dorokhov, Fiz. Nizk. Temp.4, 332

~1978! @Sov. J. Low Temp. Phys.4, 160 ~1978!#.
69A. A. Abrikosov and E. A. Dorotheyev, J. Low Temp. Phys.46,

53 ~1982!.
70A. A. Gogolin, Phys. Rep.166, 268 ~1988!.
71M. Steiner, Y. Chen, M. Fabrizio, and A. O. Gogolin

cond-mat/9806220~unpublished!.
72T. N. Nguyen, P. A. Lee, and H.-C. zur Loye, Science271, 489

~1996!.
73C. M. Wynn, M. A. Girtu, K. I. Sugiura, E. J. Brandon, J. L

Manson, J. S. Miller, and A. J. Epstein, Synth. Met.85, 1695
~1997!.

74J. C. Fernandes, R. B. Guimaraes, M. A. Continentino, H.
Borges, J. V. Valarelli, and A. Lacerda, Phys. Rev. B50, 16 754
~1994!.

75M. A. Continentino, J. C. Fernandes, R. B. Guimaraes, B. B
chat, H. A. Borges, J. V. Valarelli, E. Haanappel, A. Lacerd
and P. R. J. Silva, Philos. Mag. B70, 601 ~1996!.

76A. J. Wolthuis, W. J. Huiskamp, L. J. de Jongh, and J. Reed
Physica B133, 161 ~1985!.


